Academic literature on the topic 'Blast furnaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Blast furnaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Blast furnaces"
Kornilov, B. V., O. L. Chaika, V. V. Lebid, Ye I. Shumelchyk, and A. O. Moskalina. "THE THERMAL WORK ANALYSIS OF THE FIREPLACES OF BLAST FURNACES OF UKRAINE OF VARIOUS DESIGNS." Fundamental and applied problems of ferrous metallurgy, no. 35 (2021): 55–68. http://dx.doi.org/10.52150/2522-9117-2021-35-55-68.
Full textNicolle, Rémy. "The operation of charcoal blast furnaces in the XIXth century." Metallurgical Research & Technology 117, no. 1 (2020): 117. http://dx.doi.org/10.1051/metal/2019071.
Full textNicolle, Rémy. "History of the iron furnace using the physical-chemical blast furnace model." Metallurgical Research & Technology 120, no. 1 (2023): 108. http://dx.doi.org/10.1051/metal/2022098.
Full textBonechi, L., F. Ambrosino, P. Andreetto, G. Bonomi, D. Borselli, S. Bottai, T. Buhles, et al. "BLEMAB European project: muon imaging technique applied to blast furnaces." Journal of Instrumentation 17, no. 04 (April 1, 2022): C04031. http://dx.doi.org/10.1088/1748-0221/17/04/c04031.
Full textM, Kuznetsov, Kryachko G, and Sigarev E. "Changes in the design and operation of the accumulatory part of domain furnaces in the process improving fuel technology." Theory and practice of metallurgy, no. 1, 2022 (January 5, 2022): 5–14. http://dx.doi.org/10.34185/tpm.1.2022.01.
Full textBernasowski, M., A. Klimczyk, and R. Stachura. "Support algorithm for blast furnace operation with optimal fuel consumption." Journal of Mining and Metallurgy, Section B: Metallurgy 55, no. 1 (2019): 31–38. http://dx.doi.org/10.2298/jmmb180206010b.
Full textGanin, D. R., V. G. Druzhkov, A. A. Panychev, and A. Yu Fuks. "Analysis of indices and operation improvement conditions of JSC “Ural Steel” blast furnace shop." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information, no. 12 (December 19, 2018): 46–54. http://dx.doi.org/10.32339/0135-5910-2018-12-46-54.
Full textChaika, O. L., B. V. Kornilov, V. V. Lebid, A. O. Moskalyna, Ye I. Shumelchyk, and M. H. Dzhyhota. "Implementation of mathematical models of material and heat balances of blast furnace smelting as part of the ACS TP of PJSC "MK "Azovstal"." Fundamental and applied problems of ferrous metallurgy 36 (2022): 82–94. http://dx.doi.org/10.52150/2522-9117-2022-36-82-94.
Full textSpirin, Nikolay, Oleg Onorin, and Alexander Istomin. "Prediction of Blast Furnace Thermal State in Real-Time Operation." Solid State Phenomena 299 (January 2020): 518–23. http://dx.doi.org/10.4028/www.scientific.net/ssp.299.518.
Full textSpirin, N. A., A. A. Polinov`, A. V. Pavlov, O. P. Onorin, and G. N. Logachev. "Environmental and Technological Aspects of Converter Slag Utilization in Sintering and Blast-Furnace Production." KnE Materials Science 2, no. 2 (September 3, 2017): 19. http://dx.doi.org/10.18502/kms.v2i2.941.
Full textDissertations / Theses on the topic "Blast furnaces"
Grant, Michael G. K. "Factors affecting the mechanical properties of blast furnace coke." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26702.
Full textApplied Science, Faculty of
Materials Engineering, Department of
Graduate
Cochrane, R. F. "Energy conservation in the zinc-lead blast furnace." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383056.
Full textSIQUEIRA, ELIS REGINA LIMA. "NATURAL GAS SIMULATION INJECTED FOR TUYERES OF BLAST FURNACES STEEL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25322@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O alto forno é um reator metalúrgico cujo objetivo consiste na produção de ferro-gusa. O consumo de combustível/redutor no processo de redução de minério de ferro em altos fornos, representa mais de 50 por cento do custo do gusa. No sentido de aumentar a produtividade e reduzir o consumo de combustível/redutor são empregadas técnicas de injeção de combustíveis auxiliares pelas ventaneiras dos altos fornos. A combustão de gás natural (GN) injetado nas ventaneiras produz grande quantidade de hidrogênio, esse gás é melhor redutor se comparado ao monóxido de carbono, pois ele possui velocidade de reação maior com os óxidos de ferro e, além disso, a geração de CO2 no processo de redução é diminuída quando comparado ao uso do carvão pulverizado (PCI), que é atualmente o material de injeção mais usado no Brasil. Este trabalho propõe a simulação da combustão de GN injetado pelas ventaneiras de um alto forno, utilizando o software CHEMKIN. As simulações provenientes deste software são amplamente utilizadas para otimização da combustão, sendo possível explorar rapidamente o impacto das variáveis de projeto sobre o desempenho do processo. Os resultados provenientes dessa simulação computacional em condições típicas de alto forno permitiram a previsão da temperatura de chama adiabática e a quantificação dos gases redutores de óxidos de ferro: H2 e CO. A partir da variação dos parâmetros de processo foi possível obter resultados úteis para a tomada de decisão, visando controlar e otimizar o processo.
The blast furnace is a metallurgical reactor whose goal is to produce pig iron. The fuel / reductant in the reduction of iron ore in the blast furnace process, represents more than 50 percent of the cost of the iron. In order to increase the productivity of the blast furnace and reduce fuel consumption / reducer injection techniques are employed by tuyeres of materials that act as fuel / reducer. The combustion of natural gas injected into the tuyeres produces large amounts of hydrogen, which replaces part of the carbon monoxide as reducing gas in the tank. The hydrogen gas is better compared to the reductant carbon monoxide, because it has reaction rate with the iron oxides and, moreover, the CO2 generation in the process of reduction is decreased when compared to the use of pulverized coal (PCI), which is currently the material most commonly used injection by tuyeres in Brazil. This paper proposes the simulation of combustion of natural gas injected into the tuyeres of a blast furnace, using the CHEMKIN software package. Simulations from this software are widely used for optimization of combustion, which can quickly explore the impact of design variables on the performance of the process, using accurate models of chemical kinetics. The computer simulation results from the combustion of natural gas at typical conditions of blast furnaces allowed the prediction of the adiabatic flame temperature and the reaching of the reducing gases of iron oxides: H2 and CO. From the variation of process parameters was possible to obtain useful results in order to control and optimize the process.
Dong, Xuefeng Materials Science & Engineering Faculty of Science UNSW. "Modelling of gas-powder-liquid-solid multiphase flow in a blast furnace." Awarded by:University of New South Wales. School of Materials Science and Engineering, 2004. http://handle.unsw.edu.au/1959.4/20808.
Full textChen, Matthew Lidong Materials Science & Engineering Faculty of Science UNSW. "Multiphase flow in packed beds with special reference to ironmaking blast furnace." Awarded by:University of New South Wales. Materials Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41354.
Full textPipatmanomai, Suneerat. "Investigation of coal behaviour under conditions simulating injection into blast furnaces." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289829.
Full textVan, der Vyver W. F. (Wilhelmina Fredrika). "Evaluation of the REAS test for blast furnace charge materials." Diss., University of Pretoria, 1998. http://hdl.handle.net/2263/30402.
Full textDissertation (MSc (Metallurgy))--University of Pretoria, 1998.
Materials Science and Metallurgical Engineering
unrestricted
Schlesinger, Mark E. "LEAD OXIDE SOLUBILITY IN LEAD BLAST-FURNACE SLAGS (ACTIVITY, THERMODYNAMICS)." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/291261.
Full textSun, Stanley Shuye. "A study of kinetics and mechanisms of iron ore reduction in ore/coal composites." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ30115.pdf.
Full textZhou, Zongyan Materials Science & Engineering Faculty of Science UNSW. "Mathematical modelling of gas-solid flow and thermal behaviour in an ironmaking blast furnace." Awarded by:University of New South Wales, 2007. http://handle.unsw.edu.au/1959.4/35214.
Full textBooks on the topic "Blast furnaces"
Bernd, Becher. Blast furnaces. Cambridge, Mass: MIT Press, 1990.
Find full textBernd, Becher. Blast furnaces. Cambridge, Mass: MIT Press, 1990.
Find full textWoodward, Joseph H. Alabama blast furnaces. Tuscaloosa: University of Alabama Press, 2007.
Find full textWoodward, Joseph H. Alabama blast furnaces. Tuscaloosa: University of Alabama Press, 2007.
Find full textCudmore, J. F. Metallurgical coke manufacture and factors influencing its behaviour in the blast furnace. North Ryde, N.S.W: Australian Coal Industry Research Laboratories, 1987.
Find full textJoint Society on Iron and Steel Basic Research (Japan). Committee on Reaction within Blast Furnaces., ed. Blast furnace phenomena and modelling. London: Elsevier Applied Science, 1987.
Find full textLiu, Yuncai. The Operation of Contemporary Blast Furnaces. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7074-2.
Full textHutny, W. P. Direct use of coal in blast-furnace technology. Ottawa, Ont: Canada Centre for Mineral and Energy Technology, 1989.
Find full textKlimenko, V. A. Osnovy fiziki domennogo prot͡s︡essa. Moskva: "Metallurgii͡a︡," Cheli͡a︡binskoe otd-nie, 1991.
Find full textGavrilov, E. E. Gazovshchik domennoĭ pechi: Tekhnologicheskie osnovy domennogo proizvodstva. Moskva: "Metallurgii͡a︡", 1986.
Find full textBook chapters on the topic "Blast furnaces"
Vignes, Alain. "Blast Furnaces." In Extractive Metallurgy 3, 79–124. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118617106.ch4.
Full textLiu, Yuncai. "The Explosion of Blast Furnace." In The Operation of Contemporary Blast Furnaces, 447–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_12.
Full textLiu, Yuncai. "Basic Operation of Blast Furnace." In The Operation of Contemporary Blast Furnaces, 225–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_7.
Full textCavaliere, Pasquale, and Alessio Silvello. "CO2 Emission Reduction in Blast Furnaces." In Ironmaking and Steelmaking Processes, 151–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39529-6_9.
Full textLiu, Yuncai. "Introduction." In The Operation of Contemporary Blast Furnaces, 1–8. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_1.
Full textLiu, Yuncai. "The Operation of BF Blowing on (in)." In The Operation of Contemporary Blast Furnaces, 385–421. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_10.
Full textLiu, Yuncai. "The Operation of Blowing Out, Blanking and Furnace Blowing Off." In The Operation of Contemporary Blast Furnaces, 423–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_11.
Full textLiu, Yuncai. "To Activize the Hearth." In The Operation of Contemporary Blast Furnaces, 9–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_2.
Full textLiu, Yuncai. "The Structure of Stock Column and the Control of Gas Distribution." In The Operation of Contemporary Blast Furnaces, 51–109. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_3.
Full textLiu, Yuncai. "To Stable Furnace Temperature." In The Operation of Contemporary Blast Furnaces, 111–67. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7074-2_4.
Full textConference papers on the topic "Blast furnaces"
Kim, Keeyoung, Byeongrak Seo, Sang-Hoon Rhee, Seungmoon Lee, and Simon S. Woo. "Deep Learning for Blast Furnaces." In CIKM '19: The 28th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357384.3357803.
Full textFu, Dong, Yan Chen, Chenn Q. Zhou, Yongfu Zhao, Louis W. Lherbier, and John G. Grindey. "CFD Modeling of Skull Formation in a Blast Furnace Hearth." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58394.
Full textWu, Bin, Tom Roesel, and Chenn Q. Zhou. "Numerical Modeling of Pulverized Charcoal and Hot Oxygen Co-Injection in a Blast Furnace Tuyere." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13107.
Full textSchweitzer, J. S., and R. C. Lanza. "Nuclear techniques for the inspection of blast furnaces." In The fifteenth international conference on the application of accelerators in research and industry. AIP, 1999. http://dx.doi.org/10.1063/1.59276.
Full textLiu, Xiang, Guangwu Tang, Tyamo Okosun, Armin K. Silaen, Stuart J. Street, and Chenn Q. Zhou. "Investigation of Heat Transfer Phenomena in Blast Furnace Tuyere/Blowpipe Region." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4961.
Full textGhorbani, Hamid, Kyle Chomyn, Maher Al-Dojayli, and Afshin Sadri. "ASSESSMENT OF HEARTH REFRACTORY WEAR IN OPERATING BLAST FURNACES." In 48° Seminário de Redução de Minérios e Matérias-primas. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/2594-357x-31161.
Full textSoltys, Cameron, Maher Al-Dojayli, and Hamid Ghorbani. "THERMAL BENDING OF COPPER COOLING STAVES IN BLAST FURNACES." In 49° Seminário de Redução de Minérios e Matérias-primas. São Paulo: Editora Blucher, 2019. http://dx.doi.org/10.5151/2594-357x-32533.
Full textSadri, A., R. Santini, and M. Henstock. "Imaging the Remaining Refractory Lining in Active Blast Furnaces." In AISTech 2020. AIST, 2020. http://dx.doi.org/10.33313/380/232.
Full textGandra, Beatriz Fausta, Alexandre Alves Barbosa, and Alexandre Medeiros Silva. "PHOSPHORUS BEHAVIOR IN BLAST FURNACES WITH DIFFERENT THERMODYNAMIC CONDITIONS." In 50° Seminário de Redução de Minérios e Matérias-primas. São Paulo: Editora Blucher, 2022. http://dx.doi.org/10.5151/2594-357x-34288.
Full textQuaranta, N., M. Caligaris, H. López, M. Unsen, and C. Giansiracusa. "Blast furnaces’ mud: waste or a new by-product?" In WASTE MANAGEMENT 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wm080421.
Full textReports on the topic "Blast furnaces"
Chepeliev, Maksym. A Revised CO2 Emissions Database for GTAP. GTAP Research Memoranda, June 2022. http://dx.doi.org/10.21642/gtap.rm37.
Full textAuthor, Not Given. Blast Furnace Granular Coal Injection Project. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/16145.
Full textMcDaniel, E. (Immobilization of technetium in blast furnace slag). Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5385009.
Full textHutny, W. P., and J. T. Price. Direct use of coal in blast-furnace technology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/306986.
Full textWang, Tianqi, Maryam Salehi, and Andrew J. Whelton. Blast Furnace Slag Usage and Guidance for Indiana. Purdue University, August 2018. http://dx.doi.org/10.5703/1288284316647.
Full textHill, D. G., T. J. Strayer, and R. W. Bouman. An update on blast furnace granular coal injection. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/682308.
Full textHutny, W. P., and J. T. Price. Analysis and regression model of blast furnace coal injection. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/304361.
Full textSeaman, John. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1082429.
Full textTrivelpiece, Cory, and Madison Hsieh. Blast furnace slag reactions in various solutions (Interim Report). Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1784919.
Full textHutny, W. P., J. A. MacPhee, and L. Giroux. Feasibility study on the effect of coal injection into the blast furnace on performance and emissions from the blast furnace-coke oven system. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/304634.
Full text