Journal articles on the topic 'Black hole - hydrodynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Black hole - hydrodynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nomura, H., S. Mineshige, M. Hirose, K. Nomoto, and T. Suzuki. "Black Hole Disk Accretion in Supernovae." Symposium - International Astronomical Union 188 (1998): 243–44. http://dx.doi.org/10.1017/s0074180900114949.
Full textLiu, Wenshuai. "Evolution of circumbinary accretion disk around supermassive binary black hole: post-Newtonian hydrodynamics versus Newtonian hydrodynamics." Monthly Notices of the Royal Astronomical Society 504, no. 1 (April 15, 2021): 1473–81. http://dx.doi.org/10.1093/mnras/stab1022.
Full textFABRIS, J. C., O. F. PIATTELLA, H. E. S. VELTEN, I. G. SALAKO, and J. TOSSA. "A NOTE ON ACOUSTIC BLACK HOLES IN NEO-NEWTONIAN THEORY." Modern Physics Letters A 28, no. 37 (November 20, 2013): 1350169. http://dx.doi.org/10.1142/s0217732313501691.
Full textGe, Xian-Hui, Hong-Qiang Leng, Li Qing Fang, and Guo-Hong Yang. "Transport Coefficients for Holographic Hydrodynamics at Finite Energy Scale." Advances in High Energy Physics 2014 (2014): 1–16. http://dx.doi.org/10.1155/2014/915312.
Full textMaeda, Kei-ichi, and Umpei Miyamoto. "Black hole-black string phase transitions from hydrodynamics." Journal of High Energy Physics 2009, no. 03 (March 10, 2009): 066. http://dx.doi.org/10.1088/1126-6708/2009/03/066.
Full textLaguna, Pablo, Warner A. Miller, and Wojciech H. Zurek. "Smoothed particle hydrodynamics near a black hole." Astrophysical Journal 404 (February 1993): 678. http://dx.doi.org/10.1086/172321.
Full textIvanov, Pavel B., Igor V. Igumenshchev, and Igor D. Novikov. "Hydrodynamics of Black Hole–Accretion Disk Collision." Astrophysical Journal 507, no. 1 (November 1998): 131–44. http://dx.doi.org/10.1086/306324.
Full textHong, Soon-Tae. "Global embeddings and hydrodynamic properties of Kerr black hole." Modern Physics Letters A 31, no. 35 (November 2, 2016): 1650204. http://dx.doi.org/10.1142/s0217732316502047.
Full textHawley, John F. "Hydrodynamics Near the Central Engine." International Astronomical Union Colloquium 89 (1986): 369–83. http://dx.doi.org/10.1017/s0252921100086176.
Full textBEREZIN, V. A. "UNUSUAL HYDRODYNAMICS." International Journal of Modern Physics A 02, no. 05 (October 1987): 1591–615. http://dx.doi.org/10.1142/s0217751x87000831.
Full textKremer, Kyle, James C. Lombardi, Wenbin Lu, Anthony L. Piro, and Frederic A. Rasio. "Hydrodynamics of Collisions and Close Encounters between Stellar Black Holes and Main-sequence Stars." Astrophysical Journal 933, no. 2 (July 1, 2022): 203. http://dx.doi.org/10.3847/1538-4357/ac714f.
Full textBhattacharjee, Abhrajit, Sandip K. Chakrabarti, and Dipak Debnath. "Transonic Accretion and Winds Around Pseudo-Kerr Black Holes And Comparison with General Relativistic Solutions." Research in Astronomy and Astrophysics 22, no. 3 (February 22, 2022): 035016. http://dx.doi.org/10.1088/1674-4527/ac4889.
Full textYamamoto, R., and J. Fukue. "Radiatively-driven black hole winds revisited." Monthly Notices of the Royal Astronomical Society 502, no. 4 (February 9, 2021): 5797–807. http://dx.doi.org/10.1093/mnras/stab346.
Full textNaji, J. "Hydrodynamics of a rotating charged black hole in (2+1) dimensions with a scalar charge." Canadian Journal of Physics 92, no. 11 (November 2014): 1320–23. http://dx.doi.org/10.1139/cjp-2014-0121.
Full textBarai, Paramita, Daniel Proga, and Kentaro Nagamine. "Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies." Monthly Notices of the Royal Astronomical Society 418, no. 1 (September 14, 2011): 591–611. http://dx.doi.org/10.1111/j.1365-2966.2011.19508.x.
Full textMatsuo, Yoshinori, Sang-Jin Sin, Shingo Takeuchi, Takuya Tsukioka, and Chul-Moon Yoo. "Sound modes in holographic hydrodynamics for charged AdS black hole." Nuclear Physics B 820, no. 3 (October 2009): 593–619. http://dx.doi.org/10.1016/j.nuclphysb.2009.02.026.
Full textCenci, Elia, Luca Sala, Alessandro Lupi, Pedro R. Capelo, and Massimo Dotti. "Black hole spin evolution in warped accretion discs." Monthly Notices of the Royal Astronomical Society 500, no. 3 (November 7, 2020): 3719–27. http://dx.doi.org/10.1093/mnras/staa3449.
Full textGillessen, S., R. Genzel, T. K. Fritz, F. Eisenhauer, O. Pfuhl, T. Ott, A. Burkert, M. Schartmann, and A. Ballone. "Observations of the gas cloud G2 in the Galactic center." Proceedings of the International Astronomical Union 9, S303 (October 2013): 254–63. http://dx.doi.org/10.1017/s1743921314000702.
Full textLAUGHLIN, R. B. "EMERGENT RELATIVITY." International Journal of Modern Physics A 18, no. 06 (March 10, 2003): 831–53. http://dx.doi.org/10.1142/s0217751x03014071.
Full textDavis, Shane W., and Alexander Tchekhovskoy. "Magnetohydrodynamics Simulations of Active Galactic Nucleus Disks and Jets." Annual Review of Astronomy and Astrophysics 58, no. 1 (August 18, 2020): 407–39. http://dx.doi.org/10.1146/annurev-astro-081817-051905.
Full textWU, BIN, and PAUL ROMATSCHKE. "SHOCK WAVE COLLISIONS IN AdS5: APPROXIMATE NUMERICAL SOLUTIONS." International Journal of Modern Physics C 22, no. 12 (December 2011): 1317–42. http://dx.doi.org/10.1142/s0129183111016920.
Full textSotani, Hajime, and Kohsuke Sumiyoshi. "Stability of the protoneutron stars towards black hole formation." Monthly Notices of the Royal Astronomical Society 507, no. 2 (August 10, 2021): 2766–76. http://dx.doi.org/10.1093/mnras/stab2301.
Full textLützgendorf, Nora, Markus Kissler-Patig, Karl Gebhardt, Holger Baumgardt, Diederik Kruijssen, Eva Noyola, Nadine Neumayer, et al. "Intermediate-mass black holes in globular clusters: observations and simulations." Proceedings of the International Astronomical Union 10, S312 (August 2014): 181–88. http://dx.doi.org/10.1017/s1743921315007784.
Full textLützgendorf, Nora, Markus Kissler-Patig, Karl Gebhardt, Holger Baumgardt, Diederik Kruijssen, Eva Noyola, Nadine Neumayer, et al. "Intermediate-mass black holes in globular clusters: observations and simulations - Update." Proceedings of the International Astronomical Union 12, S316 (August 2015): 240–45. http://dx.doi.org/10.1017/s1743921315010601.
Full textLi, Jiaru, Adam M. Dempsey, Hui Li, Dong Lai, and Shengtai Li. "Hydrodynamical Simulations of Black Hole Binary Formation in AGN Disks." Astrophysical Journal Letters 944, no. 2 (February 1, 2023): L42. http://dx.doi.org/10.3847/2041-8213/acb934.
Full textCui, Can, Feng Yuan, and Bo Li. "Large-scale Dynamics of Winds Originating from Black Hole Accretion Flows. I. Hydrodynamics." Astrophysical Journal 890, no. 1 (February 14, 2020): 80. http://dx.doi.org/10.3847/1538-4357/ab6e6e.
Full textCufari, M., Eric R. Coughlin, and C. J. Nixon. "The Eccentric Nature of Eccentric Tidal Disruption Events." Astrophysical Journal 924, no. 1 (January 1, 2022): 34. http://dx.doi.org/10.3847/1538-4357/ac32be.
Full textChabanov, Michail, Luciano Rezzolla, and Dirk H. Rischke. "General-relativistic hydrodynamics of non-perfect fluids: 3+1 conservative formulation and application to viscous black hole accretion." Monthly Notices of the Royal Astronomical Society 505, no. 4 (May 17, 2021): 5910–40. http://dx.doi.org/10.1093/mnras/stab1384.
Full textRuban, V. P. "Ideal hydrodynamics outside and inside a black hole: Hamiltonian description in Painlevé-Gullstrand coordinates." Journal of Experimental and Theoretical Physics 119, no. 1 (July 2014): 83–90. http://dx.doi.org/10.1134/s1063776114070061.
Full textNAKAMURA, KO, TOSHITAKA KAJINO, GRANT J. MATHEWS, SUSUMU SATO, and SEIJI HARIKAE. "A REVIEW OF r-PROCESS NUCLEOSYNTHESIS IN THE COLLAPSAR JET." International Journal of Modern Physics E 22, no. 10 (October 2013): 1330022. http://dx.doi.org/10.1142/s0218301313300221.
Full textCASSARO, P., F. SCHILLIRÓ, V. COSTA, G. BELVEDERE, R. A. ZAPPALÁ, and G. LANZAFAME. "THE ENGINE OF OUTFLOWS IN AGN: THE ROLE OF PHYSICAL TURBULENT VISCOSITY." International Journal of Modern Physics D 17, no. 09 (September 2008): 1635–40. http://dx.doi.org/10.1142/s0218271808013248.
Full textNomura, Mariko, Ken Ohsuga, and Chris Done. "Line-driven disc wind in near-Eddington active galactic nuclei: decrease of mass accretion rate due to powerful outflow." Monthly Notices of the Royal Astronomical Society 494, no. 3 (April 11, 2020): 3616–26. http://dx.doi.org/10.1093/mnras/staa948.
Full textCHATTOPADHYAY, INDRANIL, and SANDIP K. CHAKRABARTI. "INVESTIGATION OF RADIATIVE OUTFLOWS AROUND COMPACT OBJECTS." International Journal of Modern Physics D 09, no. 01 (February 2000): 57–69. http://dx.doi.org/10.1142/s0218271800000062.
Full textMeliani, Zakaria, Yosuke Mizuno, Hector Olivares, Oliver Porth, Luciano Rezzolla, and Ziri Younsi. "Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer." Astronomy & Astrophysics 598 (January 27, 2017): A38. http://dx.doi.org/10.1051/0004-6361/201629191.
Full textNomura, Mariko, Kazuyuki Omukai, and Ken Ohsuga. "Radiation hydrodynamics simulations of line-driven AGN disc winds: metallicity dependence and black hole growth." Monthly Notices of the Royal Astronomical Society 507, no. 1 (August 3, 2021): 904–13. http://dx.doi.org/10.1093/mnras/stab2214.
Full textJaniuk, Agnieszka, Daniel Proga, and Ryuichi Kurosawa. "Nonaxisymmetric Effects in Black Hole Accretion Inviscid Hydrodynamics: Formation and Evolution of a Tilted Torus." Astrophysical Journal 681, no. 1 (July 2008): 58–72. http://dx.doi.org/10.1086/588375.
Full textGafton, Emanuel, and Stephan Rosswog. "Tidal disruptions by rotating black holes: effects of spin and impact parameter." Monthly Notices of the Royal Astronomical Society 487, no. 4 (June 3, 2019): 4790–808. http://dx.doi.org/10.1093/mnras/stz1530.
Full textChon, Sunmyon, Takashi Hosokawa, and Kazuyuki Omukai. "Cosmological direct-collapse black hole formation sites hostile for their growth." Monthly Notices of the Royal Astronomical Society 502, no. 1 (January 13, 2021): 700–713. http://dx.doi.org/10.1093/mnras/stab061.
Full textToscani, Martina, Giuseppe Lodato, Daniel J. Price, and David Liptai. "Gravitational waves from tidal disruption events: an open and comprehensive catalog." Monthly Notices of the Royal Astronomical Society 510, no. 1 (December 3, 2021): 992–1001. http://dx.doi.org/10.1093/mnras/stab3384.
Full textWilliams, R. J. R., A. C. Baker, and Judith J. Perry. "Symbiotic starburst-black hole active galactic nuclei — I. Isothermal hydrodynamics of the mass-loaded interstellar medium." Monthly Notices of the Royal Astronomical Society 310, no. 4 (December 1999): 913–62. http://dx.doi.org/10.1046/j.1365-8711.1999.02881.x.
Full textTanaka, Y. "Observations of Compact X-Ray Sources." International Astronomical Union Colloquium 89 (1986): 198–221. http://dx.doi.org/10.1017/s0252921100086097.
Full textKundu, Suman Kumar, Eric R. Coughlin, and C. J. Nixon. "Stars Crushed by Black Holes. III. Mild Compression of Radiative Stars by Supermassive Black Holes." Astrophysical Journal 939, no. 2 (November 1, 2022): 71. http://dx.doi.org/10.3847/1538-4357/ac9734.
Full textRahman, N., H.-T. Janka, G. Stockinger, and S. E. Woosley. "Pulsational pair-instability supernovae: gravitational collapse, black hole formation, and beyond." Monthly Notices of the Royal Astronomical Society 512, no. 3 (March 23, 2022): 4503–40. http://dx.doi.org/10.1093/mnras/stac758.
Full textWeih, Lukas R., Hector Olivares, and Luciano Rezzolla. "Two-moment scheme for general-relativistic radiation hydrodynamics: a systematic description and new applications." Monthly Notices of the Royal Astronomical Society 495, no. 2 (May 11, 2020): 2285–304. http://dx.doi.org/10.1093/mnras/staa1297.
Full textWilliamson, David J., Lars H. Bösch, and Sebastian F. Hönig. "Binary AGNs simulations with radiation pressure reveal a new duty cycle, and a reduction of gravitational torque, through ‘minitori’ structures." Monthly Notices of the Royal Astronomical Society 510, no. 4 (January 3, 2022): 5963–73. http://dx.doi.org/10.1093/mnras/stab3792.
Full textPapavasileiou, Theodora, Odysseas Kosmas, and Ioannis Sinatkas. "Simulations of Neutrino and Gamma-Ray Production from Relativistic Black-Hole Microquasar Jets." Galaxies 9, no. 3 (September 13, 2021): 67. http://dx.doi.org/10.3390/galaxies9030067.
Full textToscani, Martina, Giuseppe Lodato, and Rebecca Nealon. "Gravitational wave emission from unstable accretion discs in tidal disruption events." Monthly Notices of the Royal Astronomical Society 489, no. 1 (August 13, 2019): 699–706. http://dx.doi.org/10.1093/mnras/stz2201.
Full textQuera-Bofarull, Arnau, Chris Done, Cedric Lacey, Jonathan C. McDowell, Guido Risaliti, and Martin Elvis. "Q wind code release: a non-hydrodynamical approach to modelling line-driven winds in active galactic nuclei." Monthly Notices of the Royal Astronomical Society 495, no. 1 (April 30, 2020): 402–12. http://dx.doi.org/10.1093/mnras/staa1117.
Full textTrebitsch, Maxime, Marta Volonteri, and Yohan Dubois. "Modelling a bright z = 6 galaxy at the faint end of the AGN luminosity function." Monthly Notices of the Royal Astronomical Society 494, no. 3 (April 20, 2020): 3453–63. http://dx.doi.org/10.1093/mnras/staa1012.
Full textMarchant, Pablo, and Takashi J. Moriya. "The impact of stellar rotation on the black hole mass-gap from pair-instability supernovae." Astronomy & Astrophysics 640 (August 2020): L18. http://dx.doi.org/10.1051/0004-6361/202038902.
Full text