Journal articles on the topic 'Black-box learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Black-box learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nax, Heinrich H., Maxwell N. Burton-Chellew, Stuart A. West, and H. Peyton Young. "Learning in a black box." Journal of Economic Behavior & Organization 127 (July 2016): 1–15. http://dx.doi.org/10.1016/j.jebo.2016.04.006.
Full textBattaile, Bennett. "Black-box electronics and passive learning." Physics Today 67, no. 2 (February 2014): 11. http://dx.doi.org/10.1063/pt.3.2258.
Full textHess, Karl. "Black-box electronics and passive learning." Physics Today 67, no. 2 (February 2014): 11–12. http://dx.doi.org/10.1063/pt.3.2259.
Full textKatrutsa, Alexandr, Talgat Daulbaev, and Ivan Oseledets. "Black-box learning of multigrid parameters." Journal of Computational and Applied Mathematics 368 (April 2020): 112524. http://dx.doi.org/10.1016/j.cam.2019.112524.
Full textThe Lancet Respiratory Medicine. "Opening the black box of machine learning." Lancet Respiratory Medicine 6, no. 11 (November 2018): 801. http://dx.doi.org/10.1016/s2213-2600(18)30425-9.
Full textRudnick, Abraham. "The Black Box Myth." International Journal of Extreme Automation and Connectivity in Healthcare 1, no. 1 (January 2019): 1–3. http://dx.doi.org/10.4018/ijeach.2019010101.
Full textPintelas, Emmanuel, Ioannis E. Livieris, and Panagiotis Pintelas. "A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and White-Box Intrinsic Interpretability." Algorithms 13, no. 1 (January 5, 2020): 17. http://dx.doi.org/10.3390/a13010017.
Full textKirsch, Louis, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh, and Yutian Chen. "Introducing Symmetries to Black Box Meta Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7202–10. http://dx.doi.org/10.1609/aaai.v36i7.20681.
Full textTaub, Simon, and Oleg S. Pianykh. "An alternative to the black box: Strategy learning." PLOS ONE 17, no. 3 (March 18, 2022): e0264485. http://dx.doi.org/10.1371/journal.pone.0264485.
Full textHargreaves, Eleanore. "Assessment for learning? Thinking outside the (black) box." Cambridge Journal of Education 35, no. 2 (June 2005): 213–24. http://dx.doi.org/10.1080/03057640500146880.
Full textTUMER, KAGAN, and ADRIAN AGOGINO. "MULTIAGENT LEARNING FOR BLACK BOX SYSTEM REWARD FUNCTIONS." Advances in Complex Systems 12, no. 04n05 (August 2009): 475–92. http://dx.doi.org/10.1142/s0219525909002295.
Full textBaird, Jo-Anne. "Does the learning happen inside the black box?" Assessment in Education: Principles, Policy & Practice 18, no. 4 (November 2011): 343–45. http://dx.doi.org/10.1080/0969594x.2011.614857.
Full textEshel, Neir, Ju Tian, and Naoshige Uchida. "Opening the black box: dopamine, predictions, and learning." Trends in Cognitive Sciences 17, no. 9 (September 2013): 430–31. http://dx.doi.org/10.1016/j.tics.2013.06.010.
Full textGarcía, Raquel M. Crespo, Abelardo Pardo, Carlos Delgado Kloos, Katja Niemann, Maren Scheffel, and Martin Wolpers. "Peeking into the black box: visualising learning activities." International Journal of Technology Enhanced Learning 4, no. 1/2 (2012): 99. http://dx.doi.org/10.1504/ijtel.2012.048313.
Full textFung, Pak L., Martha A. Zaidan, Hilkka Timonen, Jarkko V. Niemi, Anu Kousa, Joel Kuula, Krista Luoma, et al. "Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration." Journal of Aerosol Science 152 (February 2021): 105694. http://dx.doi.org/10.1016/j.jaerosci.2020.105694.
Full textSharma, Shubham, and Usha Lenka. "How organizations learn: models uncovering the black box." Development and Learning in Organizations: An International Journal 33, no. 1 (January 7, 2019): 20–23. http://dx.doi.org/10.1108/dlo-01-2018-0008.
Full textNayyar, Rashmeet Kaur, Pulkit Verma, and Siddharth Srivastava. "Differential Assessment of Black-Box AI Agents." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 9 (June 28, 2022): 9868–76. http://dx.doi.org/10.1609/aaai.v36i9.21223.
Full textPrice, W. Nicholson. "Big data and black-box medical algorithms." Science Translational Medicine 10, no. 471 (December 12, 2018): eaao5333. http://dx.doi.org/10.1126/scitranslmed.aao5333.
Full textBurton-Chellew, Maxwell N., and Stuart A. West. "The Black Box as a Control for Payoff-Based Learning in Economic Games." Games 13, no. 6 (November 16, 2022): 76. http://dx.doi.org/10.3390/g13060076.
Full textThakkar, Pooja. "Drug Classification using Black-box models and Interpretability." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1518–29. http://dx.doi.org/10.22214/ijraset.2021.38203.
Full textMahya, Parisa, and Johannes Fürnkranz. "An Empirical Comparison of Interpretable Models to Post-Hoc Explanations." AI 4, no. 2 (May 19, 2023): 426–36. http://dx.doi.org/10.3390/ai4020023.
Full textÇallı, Erdi, Keelin Murphy, Ernst T. Scholten, Steven Schalekamp, and Bram van Ginneken. "Explainable emphysema detection on chest radiographs with deep learning." PLOS ONE 17, no. 7 (July 28, 2022): e0267539. http://dx.doi.org/10.1371/journal.pone.0267539.
Full textAth Thaariq, Guruh Ihda Alfi, Budi Nugroho, and Faisal Muttaqin. "PENGUJIAN EQUIVALENCE PARTITIONS PADA E-LEARNING ILMU UPN "VETERAN" JAWA TIMUR." Prosiding Seminar Nasional Informatika Bela Negara 2 (November 25, 2021): 44–47. http://dx.doi.org/10.33005/santika.v2i0.101.
Full textTraub, Simon, and Oleg S. Pianykh. "Correction: An alternative to the black box: Strategy learning." PLOS ONE 17, no. 6 (June 21, 2022): e0270441. http://dx.doi.org/10.1371/journal.pone.0270441.
Full textYu, Mengran, and Shiliang Sun. "Natural Black-Box Adversarial Examples against Deep Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 8 (June 28, 2022): 8936–44. http://dx.doi.org/10.1609/aaai.v36i8.20876.
Full textQin, Zengyi, Dawei Sun, and Chuchu Fan. "Sablas: Learning Safe Control for Black-Box Dynamical Systems." IEEE Robotics and Automation Letters 7, no. 2 (April 2022): 1928–35. http://dx.doi.org/10.1109/lra.2022.3142743.
Full textMartínez Ramírez, Marco A., Emmanouil Benetos, and Joshua D. Reiss. "Deep Learning for Black-Box Modeling of Audio Effects." Applied Sciences 10, no. 2 (January 16, 2020): 638. http://dx.doi.org/10.3390/app10020638.
Full textHwangbo, Jemin, Christian Gehring, Hannes Sommer, Roland Siegwart, and Jonas Buchli. "Policy Learning with an Efficient Black-Box Optimization Algorithm." International Journal of Humanoid Robotics 12, no. 03 (September 2015): 1550029. http://dx.doi.org/10.1142/s0219843615500292.
Full textHang, Jie, Keji Han, Hui Chen, and Yun Li. "Ensemble adversarial black-box attacks against deep learning systems." Pattern Recognition 101 (May 2020): 107184. http://dx.doi.org/10.1016/j.patcog.2019.107184.
Full textHsu, William, and Joann G. Elmore. "Shining Light Into the Black Box of Machine Learning." JNCI: Journal of the National Cancer Institute 111, no. 9 (January 10, 2019): 877–79. http://dx.doi.org/10.1093/jnci/djy226.
Full textTenne, Yoel. "Machine–Learning in Optimization of Expensive Black–Box Functions." International Journal of Applied Mathematics and Computer Science 27, no. 1 (March 28, 2017): 105–18. http://dx.doi.org/10.1515/amcs-2017-0008.
Full textAzodi, Christina B., Jiliang Tang, and Shin-Han Shiu. "Opening the Black Box: Interpretable Machine Learning for Geneticists." Trends in Genetics 36, no. 6 (June 2020): 442–55. http://dx.doi.org/10.1016/j.tig.2020.03.005.
Full textKuze, Naomi, Keiichiro Seno, and Toshimitsu Ushio. "Learning-based black box checking for k-safety hyperproperties." Engineering Applications of Artificial Intelligence 126 (November 2023): 107029. http://dx.doi.org/10.1016/j.engappai.2023.107029.
Full textYulistyanti, Dwi, Tri Yani Akhirina, Thomas Afrizal, Aulia Paramita, and Naely Farkhatin. "Testing Learning Media for English Learning Applications Using BlackBox Testing Based on Equivalence Partitions." Scope : Journal of English Language Teaching 6, no. 2 (April 22, 2022): 73. http://dx.doi.org/10.30998/scope.v6i2.12845.
Full textXie, Xianwei, Baozhi Sun, Xiaohe Li, Tobias Olsson, Neda Maleki, and Fredrik Ahlgren. "Fuel Consumption Prediction Models Based on Machine Learning and Mathematical Methods." Journal of Marine Science and Engineering 11, no. 4 (March 29, 2023): 738. http://dx.doi.org/10.3390/jmse11040738.
Full textROCHA, ANDERSON, JOÃO PAULO PAPA, and LUIS A. A. MEIRA. "HOW FAR DO WE GET USING MACHINE LEARNING BLACK-BOXES?" International Journal of Pattern Recognition and Artificial Intelligence 26, no. 02 (March 2012): 1261001. http://dx.doi.org/10.1142/s0218001412610010.
Full textYu, Wen, and Francisco Vega. "Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells." Journal of Intelligent & Fuzzy Systems 39, no. 3 (October 7, 2020): 4547–56. http://dx.doi.org/10.3233/jifs-200491.
Full textCandelieri, Antonio, Riccardo Perego, Ilaria Giordani, Andrea Ponti, and Francesco Archetti. "Modelling human active search in optimizing black-box functions." Soft Computing 24, no. 23 (October 24, 2020): 17771–85. http://dx.doi.org/10.1007/s00500-020-05398-2.
Full textMayr, Franz, Sergio Yovine, and Ramiro Visca. "Property Checking with Interpretable Error Characterization for Recurrent Neural Networks." Machine Learning and Knowledge Extraction 3, no. 1 (February 12, 2021): 205–27. http://dx.doi.org/10.3390/make3010010.
Full textPercy, William, and Kevin Dow. "The Coaching Black Box: Risk Mitigation during Change Management." Journal of Risk and Financial Management 14, no. 8 (July 27, 2021): 344. http://dx.doi.org/10.3390/jrfm14080344.
Full textIyer, Padmavathi, and Amirreza Masoumzadeh. "Learning Relationship-Based Access Control Policies from Black-Box Systems." ACM Transactions on Privacy and Security 25, no. 3 (August 31, 2022): 1–36. http://dx.doi.org/10.1145/3517121.
Full textPark, Charles, Claire Wu, and Glenn Regehr. "Shining a Light Into the Black Box of Group Learning." Academic Medicine 95, no. 6 (June 2020): 919–24. http://dx.doi.org/10.1097/acm.0000000000003099.
Full textYILDIRIM, Özen, and Safiye BİLİCAN DEMİR. "Inside the black box: do teachers practice assessment as learning?" International Journal of Assessment Tools in Education 9, Special Issue (November 29, 2022): 46–71. http://dx.doi.org/10.21449/ijate.1132923.
Full textAmato, Domenico, Salvatore Calderaro, Giosué Lo Bosco, Riccardo Rizzo, and Filippo Vella. "Metric Learning in Histopathological Image Classification: Opening the Black Box." Sensors 23, no. 13 (June 28, 2023): 6003. http://dx.doi.org/10.3390/s23136003.
Full textLiu, Sijia, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, and Alexander Gray. "An ADMM Based Framework for AutoML Pipeline Configuration." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4892–99. http://dx.doi.org/10.1609/aaai.v34i04.5926.
Full textLetsoin, Sri Murniani Angelina. "DESAIN DAN IMPLEMENTASI MOBILE LEARNING (M-LEARNING) GEOMETRY AND BULDING FLAT (GBF)." MUSTEK ANIM HA 7, no. 1 (August 6, 2018): 57–68. http://dx.doi.org/10.35724/mustek.v7i1.1500.
Full textCretu, Andrei. "Learning the Ashby Box: an experiment in second order cybernetic modeling." Kybernetes 49, no. 8 (November 23, 2019): 2073–90. http://dx.doi.org/10.1108/k-06-2019-0439.
Full textBausch, Johannes. "Fast Black-Box Quantum State Preparation." Quantum 6 (August 4, 2022): 773. http://dx.doi.org/10.22331/q-2022-08-04-773.
Full textArora, Sanjeev. "Opening the Black Box of Deep Learning: Some Lessons and Take-aways." ACM SIGMETRICS Performance Evaluation Review 49, no. 1 (June 22, 2022): 1. http://dx.doi.org/10.1145/3543516.3453910.
Full textGadzinski, Gregory, and Alessio Castello. "Combining white box models, black box machines and human interventions for interpretable decision strategies." Judgment and Decision Making 17, no. 3 (May 2022): 598–627. http://dx.doi.org/10.1017/s1930297500003594.
Full text