To see the other types of publications on this topic, follow the link: BL Lacertae objects.

Journal articles on the topic 'BL Lacertae objects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'BL Lacertae objects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Britzen, S., A. Witzel, B. P. Gong, J. W. Zhang, G. Krishna, A. Goyal, M. F. Aller, H. D. Aller, and J. A. Zensus. "Understanding BL Lacertae objects." Astronomy and Astrophysics 515 (June 2010): A105. http://dx.doi.org/10.1051/0004-6361/200913685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sandrinelli, A., S. Covino, A. Treves, A. M. Holgado, A. Sesana, E. Lindfors, and V. F. Ramazani. "Quasi-periodicities of BL Lacertae objects." Astronomy & Astrophysics 615 (July 2018): A118. http://dx.doi.org/10.1051/0004-6361/201732550.

Full text
Abstract:
We review the reports of possible year-long quasi-periodicities of BL Lac objects in the γ-ray and optical bands, and present a homogeneous time analysis of the light curves of PKS2155−304, PG1553+113, and BL Lac. Based on results from a survey covering the entire Fermi γ-ray sky we have estimated the fraction of possible quasi-periodic BL Lac objects. We compared the cyclical behaviour in BL Lac objects with that derived from the search of possible optical periodicities in quasars, and find that at z ≲ 1 the cosmic density of quasi-periodic BL Lac objects is larger than that of quasi-periodic quasars. If the BL Lac quasi-periodicities were due to a supermassive binary black hole (SBBH) scenario, there could be a tension with the upper limits on the gravitational wave background measured by the pulsar timing array. The argument clearly indicates the difficulties of generally associating quasi-periodicities of BL Lac objects with SBBHs.
APA, Harvard, Vancouver, ISO, and other styles
3

Stocke, John T. "New Observations of BL Lacertae Objects." Symposium - International Astronomical Union 175 (1996): 385–88. http://dx.doi.org/10.1017/s0074180900081171.

Full text
Abstract:
This contribution is divided into three parts: 1. A summary of mostly published work that describes the new type of BL Lac Objects discovered with X-ray satellites, “X-ray Bright BL Lacs (XBLs)”, and their relationship to the previously known “radio bright BL Lacs (RBLs).” Most (but not all?) of the differences between XBLs and RBLs are explicable using a “viewing angle” model in which the soft X-ray emission emanates into a much wider cone (23-30°) than the radio emission (8-10°). 2. New ROSAT PSPC soft X-ray observations are presented for complete samples of XBLs and RBLs which may explain the absence of luminous optical emission lines in BL Lacs. 3. A deep, subarcsec optical imaging survey of a large (50) sample of both XBLs and RBLs conducted at the Canada-France-Hawaii 3.6m Telescope (CFHT), whose purpose was to characterize the host galaxies and clustering environment of BL Lacs. This work defines more precisely the “parent population” of BL Lacs and identifies a small number of discrepant objects which may not be “beamed FR 1s”.
APA, Harvard, Vancouver, ISO, and other styles
4

Paggi, A., A. Cavaliere, V. Vittorini, and M. Tavani. "Power for dry BL Lacertae objects." Astronomy & Astrophysics 508, no. 3 (December 2009): L31—L34. http://dx.doi.org/10.1051/0004-6361/200913566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wolter, Anna, Alessandro Caccianiga, Roberto della Ceca, and Tommaso Maccacaro. "Luminosity functions of BL Lacertae objects." Astrophysical Journal 433 (September 1994): 29. http://dx.doi.org/10.1086/174622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Jun-Hui, Tong-Xu Hua, Yu-Hai Yuan, Yong-Xiang Wang, Yi Liu, Jiang-Bo Su, Yong-Wei Zhang, Jiang-He Yang, and Yong Huang. "Radio Polarization of BL Lacertae Objects." Publications of the Astronomical Society of Japan 58, no. 6 (December 25, 2006): 945–49. http://dx.doi.org/10.1093/pasj/58.6.945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andruchow, I., G. E. Romero, and S. A. Cellone. "Polarization microvariability of BL Lacertae objects." Astronomy & Astrophysics 442, no. 1 (September 30, 2005): 97–107. http://dx.doi.org/10.1051/0004-6361:20053325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sbarufatti, B., R. Falomo, A. Treves, and J. Kotilainen. "Optical spectroscopy of BL Lacertae objects." Astronomy & Astrophysics 457, no. 1 (September 12, 2006): 35–43. http://dx.doi.org/10.1051/0004-6361:20065455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moles, M., J. M. Garcia-Pelayo, J. Masegosa, and A. Aparicio. "UBVRI observations of BL Lacertae objects." Astrophysical Journal Supplement Series 58 (June 1985): 255. http://dx.doi.org/10.1086/191040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sbarufatti, B., A. Treves, and R. Falomo. "Imaging Redshifts of BL Lacertae Objects." Astrophysical Journal 635, no. 1 (December 10, 2005): 173–79. http://dx.doi.org/10.1086/497022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Qin, Y. P., and G. Z. Xie. "Decijansky Radio Flux BL Lacertae Objects." Astrophysical Journal 487, no. 1 (September 20, 1997): L41—L44. http://dx.doi.org/10.1086/310860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lamer, G., H. Brunner, and R. Staubert. "ROSAT Observations of Bright BL Lacertae Objects." Symposium - International Astronomical Union 159 (1994): 377. http://dx.doi.org/10.1017/s0074180900175692.

Full text
Abstract:
We have compiled a sample of 23 X-ray and radio selected BL Lacertae objects which have been observed with the Position Sensitive Proportional Counter (PSPC) on board of the ROSAT Satellite. The sample consists of three parts:In Table I results from 4 objects observed for their known rapid X-ray variability are presented. 5 objects are the BL Lac subset of a complete sample of flat spectrum radio sources with 5 GHz flux densities > 1 Jy. Detailed results from this sample will be published in Brunner et al. 1993. The data of the 14 remainig objects were collected from the ROSAT data archive to supplement the sample. The whole sample contains 7 X-ray selected objects (XBLs,αOX < 1.2) and 16 radio selected objects (RBLs).The X-ray spectra of the sources are well described by single power laws with galactic absorption. The X-ray energy indices αX are widely dispersed around a mean of 1.34. Significant X-ray flux variability and correlated spectral variability was detected on timescales down to hours. The object H 1218+304 was found to be rapidly variable within each of three observations. Its spectral hardness is correlated with the flux level (see Table I).We calculated the intrinsic distributions of the spectral indices αX for the XBL and RBL samples and of the differences between ROSAT and EXOSAT ME spectral indices αPSPC – αME (only XBL sample) using a maximum likelihood fit. There is no significant difference in the mean spectral indices between the X-ray and radio selected subsamples. The mean values < αX > are 1.34 for XBLs and 1.33 for RBLs. The spectra of the X-ray selected objects slightly steepen at higher X-ray energies (< αPSPC – αME > = −0.11). This supports the view that the X-ray emission of XBLs is supplied by synchrotron radiation. The steepening of the X-ray spectrum is then due to a cutoff in the energy distribution of the electrons.
APA, Harvard, Vancouver, ISO, and other styles
13

Xie, G. Z., Y. H. Zhang, K. H. Li, F. K. Liu, J. C. Wang, and X. M. Wang. "CCD Photometry of 12 BL Lacertae Objects." Astronomical Journal 111 (March 1996): 1065. http://dx.doi.org/10.1086/117852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Xie, G. Z., S. B. Zhou, B. Z. Dai, E. W. Liang, K. H. Li, J. M. Bai, S. Y. Xing, and W. W. Liu. "Photometric monitoring of 12 BL Lacertae objects." Monthly Notices of the Royal Astronomical Society 329, no. 4 (February 2002): 689–99. http://dx.doi.org/10.1046/j.1365-8711.2002.04952.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Miller, H. R., M. T. Carini, and B. D. Goodrich. "Detection of microvariability for BL Lacertae objects." Nature 337, no. 6208 (February 1989): 627–29. http://dx.doi.org/10.1038/337627a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zheng, Y. G., X. Zhang, and X. W. Bi. "Optical Spectra of Four BL Lacertae Objects." Publications of the Astronomical Society of the Pacific 119, no. 855 (May 2007): 477–82. http://dx.doi.org/10.1086/519175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cavaliere, A., E. Giallongo, and F. Vagnetti. "BL Lacertae objects as an evolutionary population." Symposium - International Astronomical Union 119 (1986): 491–92. http://dx.doi.org/10.1017/s0074180900153252.

Full text
Abstract:
If the BL Lac Objects are active nuclei with a beamed component that is dominant when directed at us, their observed luminosity function must comprise a flat faint branch: N(L)dL ∝ L1+1/pdL with p=4.5 (Urry and Shafer 1984). If this is flatter than the LF NP(L) of the parent objects at equal observed L, then we expect the counts of BL Lacs to flatten out in turn at fluxes quite higher than the counts of the parents, even when both populations evolve strongly and uniformly with comparable timescales (Cavaliere, Giallongo and Vagnetti 1985).
APA, Harvard, Vancouver, ISO, and other styles
18

Sol, Hélène, and Lourdes Vicente. "A Tentative Sketch for BL Lacertae Objects." Symposium - International Astronomical Union 159 (1994): 473. http://dx.doi.org/10.1017/s0074180900176521.

Full text
Abstract:
VLBI polarization data show magnetic field configuration parallel to the nuclear jet in quasars and perpendicular to it in BL Lac objects. It appears difficult to account for this contrast within the unified scheme for AGN. To investigate a direct explanation of this peculiarity of BL Lac objects, we study the possibilities of propagation and radiation of beams of particles in transverse ambient magnetic field. High energy streams with kinetic energy density larger than the ambient magnetic one, Ekin > Emag, can easily propagate with enhancement of the transverse magnetic field at the leading edge of the stream and reconnection of magnetic lines in its wake. Synchrotron radiation in front shocks naturally leads to the observed polarization. Moreover self-polarization, with formation of charge layers and E × B drift velocity, allows substantial propagation for even lower energy streams with Ekin < Emag, as long as their density no is large enough, typically κ = 4πnomic2/B2 > 1. Such low energy streams are non diamagnetic and do not modify the ambient field. Any high energy tail of the total particle distribution in the jet therefore radiates in the transverse field pattern. This concerns for instance the BL Lac object W Comae if we assume a proton-electron jet with bulk velocity vo = 0.1c (as the source does not require relativistic beaming so far), an equipartition magnetic field B = 0.02 G and a density of radiating particles nr = 0.05cm−3 at about 7 pc from the nucleus (knot K3). For nr/no = 10−3, one gets the stream density no = 50cm−3 which allows good propagation as κ reaches 2 × 103, and still corresponds to a moderate mass outflow of 0.06 M⊙ /year for a VLBI jet cross-sectional area of 2pc2.
APA, Harvard, Vancouver, ISO, and other styles
19

Smith, Paul S., G. Grant Williams, Gary D. Schmidt, Aleksandar M. Diamond‐Stanic, and Dennis L. Means. "Highly Polarized Optically Selected BL Lacertae Objects." Astrophysical Journal 663, no. 1 (July 2007): 118–24. http://dx.doi.org/10.1086/517992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Xie Guang-zhong, Hao Peng-jiu, Lu Ru-wei, and Li Kai-hua. "Optical behaviour of four BL lacertae objects." Chinese Astronomy and Astrophysics 12, no. 3 (September 1988): 197–204. http://dx.doi.org/10.1016/0275-1062(88)90047-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Meisner, Aaron M., and Roger W. Romani. "IMAGING REDSHIFT ESTIMATES FOR BL LACERTAE OBJECTS." Astrophysical Journal 712, no. 1 (February 24, 2010): 14–25. http://dx.doi.org/10.1088/0004-637x/712/1/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cavaliere, A., and D. Malquori. "The Evolution of the BL Lacertae Objects." Astrophysical Journal 516, no. 1 (May 1, 1999): L9—L12. http://dx.doi.org/10.1086/311984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fan, J. H., K. S. Cheng, and L. Zhang. "Polarization and Variations of BL Lacertae Objects." Publications of the Astronomical Society of Japan 53, no. 2 (April 25, 2001): 201–5. http://dx.doi.org/10.1093/pasj/53.2.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tramacere, A., P. Giommi, E. Massaro, M. Perri, R. Nesci, S. Colafrancesco, G. Tagliaferri, et al. "SWIFT observations of TeV BL Lacertae objects." Astronomy & Astrophysics 467, no. 2 (February 20, 2007): 501–8. http://dx.doi.org/10.1051/0004-6361:20066226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gabuzda, D. C., A. B. Pushkarev, and T. V. Cawthorne. "3.6 cm VLBI Total Intensity and Polarization Images of BL Lacertae Objects." Symposium - International Astronomical Union 175 (1996): 51–52. http://dx.doi.org/10.1017/s0074180900079985.

Full text
Abstract:
The major distinguishing features of BL Lacertae Objects are weak or absent line emission and strong and variable optical, infrared, and radio polarization (Angel and Stockman 1980; Kollgaard 1994). The radio emission and much of the optical emission is believed to be synchrotron radiation. There are now some 20 BL Lacertae objects for which VLBI polarization (VLBP) images have been made at λ = 6 cm (Gabuzda et al. 1994 and references therein). In nearly every BL Lacertae object in which polarization structure has been detected, the polarization position angles in knots in the jets are nearly parallel to the VLBI structural axis. Assuming the jet components to be optically thin, the magnetic fields inferred by this orientation are nearly perpendicular to the direction of the jet; perhaps the most natural interpretation of this is that the knots are associated with shocks that compress an initially tangled magnetic field as they propagate down the VLBI jet, enhancing the magnetic field transverse to the compression (Laing 1980; Hughes, Aller, & Aller 1989).
APA, Harvard, Vancouver, ISO, and other styles
26

Padovani, Paolo, and Paolo Giommi. "The Rosat X-Ray Spectra of BL Lacertae Objects." Symposium - International Astronomical Union 175 (1996): 267–68. http://dx.doi.org/10.1017/s0074180900080761.

Full text
Abstract:
We have analyzed the X-ray spectra of all BL Lacs observed (as pointed or serendipitous sources) by ROSAT. Spectral indices were obtained from the hardness ratios given in the WGA catalogue, a large list of X-ray sources generated from all the ROSAT PSPC pointed observations. The selection of the objects was done by cross-correlating the first revision of the WGA catalogue with our recent catalogue of BL Lacs. This resulted in 163 observations of 85 distinct BL Lacs, which correspond to about half the confirmed BL Lacs presently known. This represents the largest number of BL Lacs for which homogeneous X-ray spectral information is available and the largest BL Lac sample ever studied at X-ray frequencies.
APA, Harvard, Vancouver, ISO, and other styles
27

D'Amicis, R., R. Nesci, E. Massaro, M. Maesano, F. Montagni, and F. D'Alessio. "Spectral Variability of BL Lac Objects." Publications of the Astronomical Society of Australia 19, no. 1 (2002): 111–13. http://dx.doi.org/10.1071/as01113.

Full text
Abstract:
AbstractWe present the relation between optical luminosity and spectral slope for eight BL Lac objects (3C66A, PKS 0422+00, S5 0716+71, OJ 287, ON 231, OQ 530, S5 1803+78 and BL Lacertae), derived from B, V, R, and I observations spanning a time interval of about 5 years. Four objects show a marked correlation between spectral slope and luminosity, being bluer when brighter, while for the other four the correlation is weaker or absent. Possible explanations are briefly discussed in the framework of current models of the BL Lac phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
28

Landoni, Marco, R. Falomo, S. Paiano, and A. Treves. "ZBLLAC: A Spectroscopic Database of BL Lacertae Objects." Astrophysical Journal Supplement Series 250, no. 2 (October 15, 2020): 37. http://dx.doi.org/10.3847/1538-4365/abb5ae.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Padovani, P., and P. Giommi. "A Sample-oriented catalogue of BL Lacertae objects." Monthly Notices of the Royal Astronomical Society 277, no. 4 (December 15, 1995): 1477–90. http://dx.doi.org/10.1093/mnras/277.4.1477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Smith, Eric P., C. P. O'Dea, and S. A. Baum. "The megaparsec-scale environments of BL Lacertae objects." Astrophysical Journal 441 (March 1995): 113. http://dx.doi.org/10.1086/175340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hardcastle, M. J., D. M. Worrall, M. Birkinshaw, and C. M. Canosa. "Unifying B2 radio galaxies with BL Lacertae objects." Monthly Notices of the Royal Astronomical Society 338, no. 1 (January 1, 2003): 176–88. http://dx.doi.org/10.1046/j.1365-8711.2003.06039.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Padovani, Paolo, Luigi Costamante, Paolo Giommi, Gabriele Ghisellini, Andrea Comastri, Anna Wolter, Laura Maraschi, Gianpiero Tagliaferri, and C. Megan Urry. "BeppoSAXobservations of 1-Jy BL Lacertae objects - I." Monthly Notices of the Royal Astronomical Society 328, no. 3 (December 2001): 931–43. http://dx.doi.org/10.1046/j.1365-8711.2001.04918.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Laurent‐Muehleisen, S. A., R. I. Kollgaard, E. D. Feigelson, W. Brinkmann, and J. Siebert. "The RGB Sample of Intermediate BL Lacertae Objects." Astrophysical Journal 525, no. 1 (November 1999): 127–43. http://dx.doi.org/10.1086/307881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tomaschitz, R. "Tachyonic γ-ray cascades from BL Lacertae objects." EPL (Europhysics Letters) 85, no. 2 (January 2009): 29001. http://dx.doi.org/10.1209/0295-5075/85/29001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Landoni, M., R. Falomo, A. Treves, and B. Sbarufatti. "Spectroscopy of BL Lacertae objects of extraordinary luminosity." Astronomy & Astrophysics 570 (October 2014): A126. http://dx.doi.org/10.1051/0004-6361/201424232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Capetti, A., and C. M. Raiteri. "Looking for the least luminous BL Lacertae objects." Astronomy & Astrophysics 580 (August 2015): A73. http://dx.doi.org/10.1051/0004-6361/201525890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fan, J. H., G. Z. Xie, J. J. Li, J. Liu, S. L. Wen, R. R. Huang, Z. M. Tang, and Y. J. Wang. "Radio-selected BL Lacertae objects and some correlations." Astrophysical Journal 415 (September 1993): 113. http://dx.doi.org/10.1086/173148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Horan, D. "VHE observations of BL Lacertae objects: 1995–2000." New Astronomy Reviews 48, no. 5-6 (April 2004): 391–93. http://dx.doi.org/10.1016/j.newar.2003.12.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cassaro, P., C. Stanghellini, D. Dallacasa, M. Bondi, and R. A. Zappalà. "Bendings of radio jets in BL Lacertae objects." Astronomy & Astrophysics 381, no. 2 (January 2002): 378–88. http://dx.doi.org/10.1051/0004-6361:20011460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kidger, Mark R. "CCD monitoring of quasars and BL Lacertae objects." Publications of the Astronomical Society of the Pacific 100 (October 1988): 1248. http://dx.doi.org/10.1086/132311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Falomo, Renato, Jorge Melnick, and Enrico G. Tanzi. "On the close environment of BL Lacertae objects." Nature 345, no. 6277 (June 1990): 692–94. http://dx.doi.org/10.1038/345692a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rector, Travis A., John T. Stocke, and Eric S. Perlman. "A Search for Low‐Luminosity BL Lacertae Objects." Astrophysical Journal 516, no. 1 (May 1999): 145–62. http://dx.doi.org/10.1086/307076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Padovani, Paolo, Paolo Giommi, Andrea Comastri, Gabriele Ghisellini, Tommaso Maccacaro, Franco Mantovani, Laura Maraschi, et al. "BeppoSAX observations of 1 Jy BL lacertae objects." Nuclear Physics B - Proceedings Supplements 69, no. 1-3 (January 1999): 431–34. http://dx.doi.org/10.1016/s0920-5632(98)00256-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gabuzda, D. C., D. H. Roberts, J. F. C. Wardle, and L. F. Brown. "Milliarcsecond Polarization Properties of Several BL Lacertae Objects." Symposium - International Astronomical Union 129 (1988): 167–68. http://dx.doi.org/10.1017/s0074180900134400.

Full text
Abstract:
We discuss the λ6 cm total intensity and polarization structures of a number of BL Lacertae objects at milliarcsecond resolution. 0235+164 was unresolved and weakly polarized at each of two epochs a year apart; each of the other objects displays structure in polarized flux. 0735+178 and 1749+096 can be adequately modeled by two or three point components—a “core” plus one or two “knots.” The core components were moderately polarized (≃ 5%), while “knots” may be polarized at 8% or more, consistent with these components being optically thin. Preliminary results for BL Lac indicate that the total intensity structure can be modeled well by a set of four gaussian components; the polarization structure is complex, but is dominated by the northernmost knot in the jet.
APA, Harvard, Vancouver, ISO, and other styles
45

Fan, J. H., and R. G. Lin. "Infrared Variation of Radio‐selected BL Lacertae Objects." Astrophysical Journal Supplement Series 121, no. 1 (March 1999): 131–57. http://dx.doi.org/10.1086/313191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stocke, John T., Simon L. Morris, Isabella Gioia, Tommaso Maccacaro, R. E. Schild, and A. Wolter. "No evidence for radio-quiet BL Lacertae objects." Astrophysical Journal 348 (January 1990): 141. http://dx.doi.org/10.1086/168221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Urry, C. M., R. F. Mushotzky, and S. S. Holt. "X-ray spectroscopy of five BL Lacertae objects." Astrophysical Journal 305 (June 1986): 369. http://dx.doi.org/10.1086/164254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Romanishin, W. "Imaging redshift estimates for two BL Lacertae objects." Astrophysical Journal 320 (September 1987): 586. http://dx.doi.org/10.1086/165576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hovatta, T., E. Lindfors, D. Blinov, V. Pavlidou, K. Nilsson, S. Kiehlmann, E. Angelakis, et al. "Optical polarization of high-energy BL Lacertae objects." Astronomy & Astrophysics 596 (December 2016): A78. http://dx.doi.org/10.1051/0004-6361/201628974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Caccianiga, A., T. Maccacaro, A. Wolter, R. Della Ceca, and I. M. Gioia. "On the Cosmological Evolution of BL Lacertae Objects." Astrophysical Journal 566, no. 1 (February 10, 2002): 181–86. http://dx.doi.org/10.1086/338073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography