Journal articles on the topic 'Birman-Murakami-Wenzl algebras'

To see the other types of publications on this topic, follow the link: Birman-Murakami-Wenzl algebras.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 journal articles for your research on the topic 'Birman-Murakami-Wenzl algebras.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Häring-Oldenburg, Reinhard. "Cyclotomic Birman–Murakami–Wenzl algebras." Journal of Pure and Applied Algebra 161, no. 1-2 (July 2001): 113–44. http://dx.doi.org/10.1016/s0022-4049(00)00100-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goodman, Frederick M. "Cellularity of cyclotomic Birman–Wenzl–Murakami algebras." Journal of Algebra 321, no. 11 (June 2009): 3299–320. http://dx.doi.org/10.1016/j.jalgebra.2008.05.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rui, Hebing, and Linliang Song. "Decomposition matrices of Birman–Murakami–Wenzl algebras." Journal of Algebra 444 (December 2015): 246–71. http://dx.doi.org/10.1016/j.jalgebra.2015.07.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

GOODMAN, FREDERICK M., and HOLLY HAUSCHILD MOSLEY. "CYCLOTOMIC BIRMAN–WENZL–MURAKAMI ALGEBRAS, I: FREENESS AND REALIZATION AS TANGLE ALGEBRAS." Journal of Knot Theory and Its Ramifications 18, no. 08 (August 2009): 1089–127. http://dx.doi.org/10.1142/s0218216509007397.

Full text
Abstract:
The cyclotomic Birman–Wenzl–Murakami algebras are quotients of the affine BMW algebras in which the affine generator satisfies a polynomial relation. We show that the cyclotomic BMW algebras are free modules over any admissible, integral ground ring, and that they are isomorphic to cyclotomic versions of the Kauffman tangle algebras.
APA, Harvard, Vancouver, ISO, and other styles
5

Cohen, Arjeh M., Dié A. H. Gijsbers, and David B. Wales. "The Birman–Murakami–Wenzl Algebras of Type Dn." Communications in Algebra 42, no. 1 (October 18, 2013): 22–55. http://dx.doi.org/10.1080/00927872.2012.678955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Isaev, A. P., and O. V. Ogievetsky. "Jucys-Murphy elements for Birman-Murakami-Wenzl algebras." Physics of Particles and Nuclei Letters 8, no. 3 (May 2011): 234–43. http://dx.doi.org/10.1134/s1547477111030125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Jun, and Zhankui Xiao. "On tensor spaces for Birman–Murakami–Wenzl algebras." Journal of Algebra 324, no. 10 (November 2010): 2893–922. http://dx.doi.org/10.1016/j.jalgebra.2010.08.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Xu. "The Structure of Simple Modules of Birman-Murakami-Wenzl Algebras." Journal of Mathematics 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/876251.

Full text
Abstract:
We study the restriction of simple modulesDf,λof Birman-Murakami-Wenzl algebrasBn(r,q)withq being not a root of 1. Precisely, we study the module structure for the restriction ofDf,λtoBn-1(r,q)and describe the socle and head of the restriction of each simple module completely.
APA, Harvard, Vancouver, ISO, and other styles
9

Cohen, Arjeh M., and David B. Wales. "The Birman-Murakami-Wenzl algebras of type E n." Transformation Groups 16, no. 3 (June 17, 2011): 681–715. http://dx.doi.org/10.1007/s00031-011-9150-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Isaev, A. P., A. I. Molev, and O. V. Ogievetsky. "Idempotents for Birman-Murakami-Wenzl algebras and reflection equation." Advances in Theoretical and Mathematical Physics 18, no. 1 (2014): 1–25. http://dx.doi.org/10.4310/atmp.2014.v18.n1.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Beliakova, Anna, and Christian Blanchet. "Skein construction of idempotents in Birman-Murakami-Wenzl algebras." Mathematische Annalen 321, no. 2 (October 1, 2001): 347–73. http://dx.doi.org/10.1007/s002080100233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rui, Hebing, and Mei Si. "Non-vanishing Gram determinants for cyclotomic Nazarov–Wenzl and Birman–Murakami–Wenzl algebras." Journal of Algebra 335, no. 1 (June 2011): 188–219. http://dx.doi.org/10.1016/j.jalgebra.2011.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wilcox, S., and S. Yu. "On the cellularity of the cyclotomic Birman-Murakami-Wenzl algebras." Journal of the London Mathematical Society 86, no. 3 (September 11, 2012): 911–29. http://dx.doi.org/10.1112/jlms/jds019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Enyang, John. "Cellular bases for the Brauer and Birman–Murakami–Wenzl algebras." Journal of Algebra 281, no. 2 (November 2004): 413–49. http://dx.doi.org/10.1016/j.jalgebra.2003.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Goodman, Frederick M. "Comparison of admissibility conditions for cyclotomic Birman–Wenzl–Murakami algebras." Journal of Pure and Applied Algebra 214, no. 11 (November 2010): 2009–16. http://dx.doi.org/10.1016/j.jpaa.2010.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Goodman, Frederick M., and Holly Hauschild Mosley. "Cyclotomic Birman–Wenzl–Murakami Algebras, II: Admissibility Relations and Freeness." Algebras and Representation Theory 14, no. 1 (December 11, 2009): 1–39. http://dx.doi.org/10.1007/s10468-009-9173-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Goodman, Frederick M., and Holly Hauschild. "Affine Birman–Wenzl–Murakami algebras and tangles in the solid torus." Fundamenta Mathematicae 190 (2006): 77–137. http://dx.doi.org/10.4064/fm190-0-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

COHEN, ARJEH M., DIÉ A. H. GIJSBERS, and DAVID B. WALES. "TANGLE AND BRAUER DIAGRAM ALGEBRAS OF TYPE Dn." Journal of Knot Theory and Its Ramifications 18, no. 04 (April 2009): 447–83. http://dx.doi.org/10.1142/s0218216509007063.

Full text
Abstract:
A generalization of the Kauffman tangle algebra is given for Coxeter type D n. The tangles involve a pole of order 2. The algebra is shown to be isomorphic to the Birman–Murakami–Wenzl algebra of the same type. This result extends the isomorphism between the two algebras in the classical case, which, in our set-up, occurs when the Coxeter type is A n - 1. The proof involves a diagrammatic version of the Brauer algebra of type D n of which the generalized Temperley–Lieb algebra of type D n is a subalgebra.
APA, Harvard, Vancouver, ISO, and other styles
19

Enyang, John. "Specht modules and semisimplicity criteria for Brauer and Birman–Murakami–Wenzl algebras." Journal of Algebraic Combinatorics 26, no. 3 (April 7, 2007): 291–341. http://dx.doi.org/10.1007/s10801-007-0058-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

DIPPER, RICHARD, JUN HU, and FRIEDERIKE STOLL. "SYMMETRIZERS AND ANTISYMMETRIZERS FOR THE BMW-ALGEBRA." Journal of Algebra and Its Applications 12, no. 07 (May 16, 2013): 1350032. http://dx.doi.org/10.1142/s0219498813500321.

Full text
Abstract:
Let n ∈ ℕ and Bn(r, q) be the generic Birman–Murakami–Wenzl algebra with respect to indeterminants r and q. It is known that Bn(r, q) has two distinct linear representations generated by two central elements of Bn(r, q) called the symmetrizer and antisymmetrizer of Bn(r, q). These generate for n ≥ 3 the only one-dimensional two sided ideals of Bn(r, q) and generalize the corresponding notion for Hecke algebras of type A. The main result, Theorem 3.1, in this paper explicitly determines the coefficients of these elements with respect to the graphical basis of Bn(r, q).
APA, Harvard, Vancouver, ISO, and other styles
21

Isaev, A. P., A. N. Kirillov, and V. O. Tarasov. "Bethe subalgebras in affine Birman–Murakami–Wenzl algebras and flat connections for q-KZ equations." Journal of Physics A: Mathematical and Theoretical 49, no. 20 (April 18, 2016): 204002. http://dx.doi.org/10.1088/1751-8113/49/20/204002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Marin, Ivan. "Braids inside the Birman–Wenzl–Murakami algebra." Algebraic & Geometric Topology 10, no. 4 (September 9, 2010): 1865–86. http://dx.doi.org/10.2140/agt.2010.10.1865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhou, Cheng-Cheng, Kang Xue, Gang-Cheng Wang, Chun-Fang Sun, and Gui-Jiao Du. "Birman—Wenzl—Murakami Algebra and Topological Basis." Communications in Theoretical Physics 57, no. 2 (February 2012): 179–82. http://dx.doi.org/10.1088/0253-6102/57/2/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rui, Hebing, and Mei Si. "Singular parameters for the Birman–Murakami–Wenzl algebra." Journal of Pure and Applied Algebra 216, no. 6 (June 2012): 1295–305. http://dx.doi.org/10.1016/j.jpaa.2011.10.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pasquier, Vincent. "Incompressible Representations of the Birman-Wenzl-Murakami Algebra." Annales Henri Poincaré 7, no. 4 (April 25, 2006): 603–19. http://dx.doi.org/10.1007/s00023-006-0262-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kulish, P. P., N. Manojlović, and Z. Nagy. "Symmetries of spin systems and Birman–Wenzl–Murakami algebra." Journal of Mathematical Physics 51, no. 4 (April 2010): 043516. http://dx.doi.org/10.1063/1.3366259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhou, Chengcheng, Kang Xue, Lidan Gou, Chunfang Sun, Gangcheng Wang, and Taotao Hu. "Birman–Wenzl–Murakami algebra, topological parameter and Berry phase." Quantum Information Processing 11, no. 6 (November 16, 2011): 1765–73. http://dx.doi.org/10.1007/s11128-011-0331-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Grimm, Uwe. "TrigonometricR matrices related to ?dilute? Birman-Wenzl-Murakami algebra." Letters in Mathematical Physics 32, no. 3 (November 1994): 183–87. http://dx.doi.org/10.1007/bf00750661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

GOU, LIDAN, KANG XUE, QINGYONG WANG, GANGCHENG WANG, and CHUNFANG SUN. "A REPRESENTATION OF SPECIALIZED BIRMAN-WENZL-MURAKAMI ALGEBRA AND BERRY PHASE IN YANG-BAXTER SYSTEM." International Journal of Quantum Information 08, no. 07 (October 2010): 1187–97. http://dx.doi.org/10.1142/s0219749910006320.

Full text
Abstract:
We present an S-matrix, a solution of the braid relation. A matrix representation of specialized Birman-Wenzl-Murakami algebra is obtained. Based on which, a unitary [Formula: see text]-matrix is generated via the Yang-Baxterization approach. Then we construct a Yang-Baxter Hamiltonian through the unitary [Formula: see text]-matrix. Berry phase of this Yang-Baxter system is investigated in detail.
APA, Harvard, Vancouver, ISO, and other styles
30

Grimm, U. "Dilute Birman-Wenzl-Murakami algebra and Dn+1(2) models." Journal of Physics A: Mathematical and General 27, no. 17 (September 7, 1994): 5897–905. http://dx.doi.org/10.1088/0305-4470/27/17/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Belavin, Vladimir, and Doron Gepner. "Three blocks solvable lattice models and Birman–Murakami–Wenzl algebra." Nuclear Physics B 938 (January 2019): 223–31. http://dx.doi.org/10.1016/j.nuclphysb.2018.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Bo, Kang Xue, Gangcheng Wang, Ying Liu, and Chunfang Sun. "Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model." International Journal of Quantum Information 13, no. 03 (April 2015): 1550017. http://dx.doi.org/10.1142/s0219749915500173.

Full text
Abstract:
In this paper, we study three-dimensional (3D) reduced Birman–Murakami–Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.
APA, Harvard, Vancouver, ISO, and other styles
33

MacKay, N. J. "The fusion of R‐matrices using the Birman–Wenzl–Murakami algebra." Journal of Mathematical Physics 33, no. 4 (April 1992): 1529–37. http://dx.doi.org/10.1063/1.529677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

BLUMEN, SACHA C. "ON THE Uq(osp(1|2n)) AND U-q(so(2n + 1)) UNCOLORED QUANTUM LINK INVARIANTS." Journal of Knot Theory and Its Ramifications 19, no. 03 (March 2010): 335–53. http://dx.doi.org/10.1142/s0218216510007851.

Full text
Abstract:
Let L be a link and [Formula: see text] its link invariant associated with the vector representation of the quantum (super)algebra Uq(A). Let FL(r, s) be the Kauffman link invariant for L associated with the Birman–Wenzl–Murakami algebra BWMf(r, s) for complex parameters r and s and a sufficiently large rank f. For an arbitrary link L, we show that [Formula: see text] and [Formula: see text] for each positive integer n and all sufficiently large f, and that [Formula: see text] and [Formula: see text] are identical up to a substitution of variables. For at least one class of links FL(-r, -s) = FL(r, s) implying [Formula: see text] for these links.
APA, Harvard, Vancouver, ISO, and other styles
35

Gou, Li-Dan, Kang Xue, and Gang-Cheng Wang. "A 9 × 9 Matrix Representation of Birman—Wenzl—Murakami Algebra and Berry Phase in Yang—Baxter System." Communications in Theoretical Physics 55, no. 2 (February 2011): 263–67. http://dx.doi.org/10.1088/0253-6102/55/2/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rui, H., and M. Si. "Blocks of Birman-Murakami-Wenzl Algebras." International Mathematics Research Notices, April 30, 2010. http://dx.doi.org/10.1093/imrn/rnq083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Crampé, Nicolas, Luc Vinet, and Meri Zaimi. "Temperley–Lieb, Birman–Murakami–Wenzl and Askey–Wilson Algebras and Other Centralizers of $$U_q(\mathfrak {sl}_2)$$." Annales Henri Poincaré, June 6, 2021. http://dx.doi.org/10.1007/s00023-021-01064-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Kun, and Yong Zhang. "Quantum teleportation and Birman–Murakami–Wenzl algebra." Quantum Information Processing 16, no. 2 (January 17, 2017). http://dx.doi.org/10.1007/s11128-016-1512-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography