Academic literature on the topic 'Bipolar switching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bipolar switching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bipolar switching"
Symonds, R. L. "‘Switching’ in bipolar disorder." Advances in Psychiatric Treatment 12, no. 4 (July 2006): 306–7. http://dx.doi.org/10.1192/apt.12.4.306.
Full textAkiskal, H. S. "Temperament and bipolar switching." European Neuropsychopharmacology 6 (June 1996): 218. http://dx.doi.org/10.1016/0924-977x(96)88329-5.
Full textSilard, Andrei P., and Gabriel Nani. "TILBW Bipolar Power Switching Transistor." Japanese Journal of Applied Physics 28, Part 2, No. 3 (March 20, 1989): L356—L357. http://dx.doi.org/10.1143/jjap.28.l356.
Full textLange-Asschenfeldt, C., I. Blaeser, and T. Supprian. "Bipolar Switching after Carbamazepine Withdrawal." Pharmacopsychiatry 40, no. 2 (March 2007): 86–87. http://dx.doi.org/10.1055/s-2007-970140.
Full textRyu, Hojeong, Beomjun Park, and Sungjun Kim. "Bias Polarity Dependent Threshold Switching and Bipolar Resistive Switching of TiN/TaOx/ITO Device." Metals 11, no. 10 (September 26, 2021): 1531. http://dx.doi.org/10.3390/met11101531.
Full textRyu, Hojeong, and Sungjun Kim. "Irregular Resistive Switching Behaviors of Al2O3-Based Resistor with Cu Electrode." Metals 11, no. 4 (April 17, 2021): 653. http://dx.doi.org/10.3390/met11040653.
Full textPost, Robert M., Kirk D. Denicoff, Gabriele S. Leverich, and Mark A. Frye. "Drug-Induced Switching in Bipolar Disorder." CNS Drugs 8, no. 5 (November 1997): 352–65. http://dx.doi.org/10.2165/00023210-199708050-00002.
Full textXu, Qingyu, Xueyong Yuan, Yanqiang Cao, Lifang Si, and Di Wu. "Bipolar resistive switching in BiFe0.95Mn0.05O3 films." Solid State Communications 152, no. 22 (November 2012): 2036–39. http://dx.doi.org/10.1016/j.ssc.2012.08.023.
Full textPradel, Annie, Nathalie Frolet, Michel Ramonda, Andrea Piarristeguy, and Michel Ribes. "Bipolar resistance switching in chalcogenide materials." physica status solidi (a) 208, no. 10 (June 15, 2011): 2303–8. http://dx.doi.org/10.1002/pssa.201000767.
Full textAkiskal, Hagop S. "Switching From 'Unipolar' to Bipolar II." Archives of General Psychiatry 52, no. 2 (February 1, 1995): 114. http://dx.doi.org/10.1001/archpsyc.1995.03950140032004.
Full textDissertations / Theses on the topic "Bipolar switching"
Chin, Shaoan. "MOS-bipolar composite power switching devices." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/54275.
Full textPh. D.
Rabah, Kefa V. O. "A study of switching of MOS-bipolar power transistor hybrids." Thesis, Lancaster University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314432.
Full textYang, Xin. "Controlled IGBT switching for power electronics building block." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708442.
Full textNicholls, Jonathan Christopher. "Soft-switching performance analysis of the clustered insulated gate bipolar transistor (CIGBT)." Thesis, De Montfort University, 2009. http://hdl.handle.net/2086/2396.
Full textHossin, Mohamad Abdalla. "Evaluation of gallium arsenide Schottky Gate Bipolar Transistor for high-voltage power switching applications." Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263129.
Full textGambetta, Daniele Morco. "Sensorless technique for BLDC motors." University of Southern Queensland, Faculty of Engineering and Surveying, 2006. http://eprints.usq.edu.au/archive/00001427/.
Full textHatem, Firas Odai. "Bipolar resistive switching of bi-layered Pt/Ta2O5/TaOx/Pt RRAM : physics-based modelling, circuit design and testing." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39786/.
Full textEio, Samson. "Current Injection Techniques to Optimise the Switching Transients of Power Diodes. Thyristors and Insulated Gate Bipolar Transistors (IGBTs)." Thesis, Staffordshire University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522131.
Full textYou, Tiangui. "Resistive switching in BiFeO3-based thin films and reconfigurable logic applications." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-212501.
Full textDie Herunterskalierung von Transistoren für die Informationsverarbeitung in der Halbleiterindustrie wird in den nächsten Jahren zu einem Ende kommen. Auch die Herunterskalierung von nichtflüchtigen Speichern für die Informationsspeicherung sieht ähnlichen Herausforderungen entgegen. Es ist daher notwendig, neue IT-Paradigmen und neue Speicherkonzepte zu entwickeln. Das Widerstandsschaltbauelement ist ein elektrisches passives Bauelement, in dem ein der Widerstand mittels elektrischer Spannungspulse geändert wird. Solche Widerstandsschaltbauelemente zählen zu den aussichtsreichsten Kandidaten für die nächste Generation von nichtflüchtigen Speichern sowie für eine rekonfigurierbare Logik. Sie bieten die Möglichkeit zur gleichzeitigen Informationsverarbeitung und -speicherung. Der Fokus der vorliegenden Arbeit liegt bei der Herstellung und der Charakterisierung von BiFeO 3 (BFO)-basierenden Metal-insulator-Metall (MIM) Strukturen, um zukünftig deren Anwendung in nichtflüchtigen Speichern und in rekonfigurierbaren Logikschaltungen zu ermöglichen. Das Widerstandsschalten wurde in MIM-Strukturen mit einer BFO-Einzelschicht untersucht. Ein besonderes Merkmal von BFO-basierten MIM-Strukturen ist es, dass keine elektrische Formierung notwendig ist. Der Widerstandsschaltmechnismus wird durch das Modell einer variierten Schottky-Barriere erklärt. Dabei dienen Sauerstoff-Vakanzen im BFO als beweglichen Donatoren, die unter der Wirkung eines elektrischen Schreibspannungspulses nichtflüchtig umverteilt werden und die Schottky-Barriere des Bottom-Metallkontaktes ändern. Dabei spielen die während der Herstellung von BFO substitutionell eingebaute Ti-Donatoren in der Nähe des Bottom-Metallkontaktes eine wesentliche Rolle. Die Ti-Donatoren fangen Sauerstoff-Vakanzen beim Anlegen eines positiven elektrischen Schreibspannungspulses ein oder lassen diese beim Anlegen eines negativen elektrischen Schreibspannungspules wieder frei. Es wurde gezeigt, dass die Ti-Donatoren auch durch Ti-Implantation der Bottom-Elektrode in das System eingebracht werden können. MIM-Strukturen mit BiFeO 3 /Ti:BiFeO 3 (BFO/BFTO) Zweischichten weisen substitutionell eingebaute Ti-Donatoren sowohl nahe der Bottom-Elektrode als auch nahe der Top-Elektrode auf. Sie zeigen nichtflüchtiges, komplementäres Widerstandsschalten mit einer komplementär variierbaren Schottky-Barriere an der Bottom-Elektrode und an der Top-Elektrode ohne elektrische Formierung. Der Widerstand der BFO/BFTO-MIM-Strukturen hängt nicht nur von der Schreibspannung, sondern auch von der Polarität der Lesespannung ab. Für die rekonfigurierbaren logischen Anwendungen kann die Polarität der Lesespannung als zusätzliche Logikvariable verwendet werden. Damit gelingt die Programmierung und Speicherung aller 16 Booleschen Logik-Funktionen mit drei logischen Zyklen in dieselbe BFTO/BFO MIM-Struktur
Perez, Stéphanie. "Etude des effets de dose et débit de dose sur des amplificateurs à technologies bipolaires. Mise en application sur le satellite Robusta." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20075/document.
Full textThe aggressive space radiation environment constitutes a major cause of failure for components and systems on board the satellites. Bipolar transistors are know to be sensitive to ionizing radiation and may present dose rate effect (ELDRS). A greater degradation is observed at low dose rate. Current standards test methods can not fully take into account this sensitivity to the dose rate. The new Dose rate Switching test methodology takes into account this ELDRS effect. A Payload developed on the Robusta satellite and presented here will allow a first validation of the method. Classical amplifier (VFA) whose dose rate sensibility is well known and induce circuit effects, that means a non monotonous degradation of parameters related to antagonist phenomena, will be loaded on board Robusta satellite and used to validated the method. The satellite Payload is composed of LM124 and LM139. The low dose rate choice and the different switching applied relied on mission radiation analysis. This method allowed to reproduce the dose induced degradation of the components in half the time it takes at low dose rate. The results produced can then, after Robusta is launched, be compared to low dose rate data obtained in flight. A second study on current conveyor amplifier (CFA), so far very little studied, demonstrated the sensitivity to ionizing dose of this type of amplifier and identified new effects circuits. This study was conducted using three different types of irradiation and based on a circuit analysis. Irradiations and circuit analysis have shown that the amplitude of the degradation measured on the different parameters studied is erratic and depends on the perfect symmetry of the circuit: a slight discrepancy in the process between two transistors will induce a more or less significant symmetry in the parameters degradation. This early work will be a base for various studies, including the study of synergy dose/SET or synergy dose/EMC on CFA
Books on the topic "Bipolar switching"
Katzer, Uwe. Schaltungsentwicklung, Simulation und Entwurf von Ansteuer- und Überwachungs-IC's für eine IGBT-Halbbrücke. Dusseldorf: VDI Verlag, 1999.
Find full textFrangos, Philippos Phivos. The simulation and measurement of temperature transients in switching bipolar power transistors. Birmingham: University of Birmingham, 1986.
Find full textGerster, Christian. Reihenschaltung von Leistungshalbleitern mit steuerseitig geregelter Spannungsverteilung. Konstanz: Hartung-Gorre, 1995.
Find full textBook chapters on the topic "Bipolar switching"
Okada, Y., and K. Tada. "GaAs/AlGaAs Reflection-Type Optical Switch Using Heterojunction Bipolar Transistor Waveguide Structure." In Photonic Switching II, 50–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76023-5_8.
Full textBruchhaus, Rainer, and Rainer Waser. "Bipolar Resistive Switching in Oxides for Memory Applications." In Thin Film Metal-Oxides, 131–67. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0664-9_4.
Full textGandhi, Gaurav, and Varun Aggarwal. "Canonic Memristor: Bipolar Electrical Switching in Metal-Metal Contacts." In Advances in Memristors, Memristive Devices and Systems, 263–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51724-7_11.
Full textWoggon, B. "Treatment of Bipolar Disorder, Depressed Phase Augmentation/Switching Strategies." In Mood Disorders, 78–87. Basel: KARGER, 1997. http://dx.doi.org/10.1159/000061662.
Full textFolsche, Thorsten, Hannah Benedictine Maier, Thomas Hillemacher, and Helge Frieling. "Combination Therapies and Switching of Agents in Depression and Bipolar Disorders." In NeuroPsychopharmacotherapy, 1–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-56015-1_437-1.
Full textBertilsson, Kent, and Chris I. Harris. "Comparison of Bipolar and Unipolar SiC Switching Devices for Very High Power Applications." In Materials Science Forum, 975–78. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.975.
Full text"Bipolar Power Switching Devices." In Fundamentals of Silicon Carbide Technology, 353–415. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2014. http://dx.doi.org/10.1002/9781118313534.ch9.
Full textMir, Shameem. "Antidepressant-induced switching in bipolar affective disorder." In Case Studies in Psychopharmacology, 199–209. CRC Press, 2002. http://dx.doi.org/10.1201/b14331-23.
Full textMcCarty, Richard. "Stress and Bipolar Disorder." In Stress and Mental Disorders: Insights from Animal Models, 297–328. Oxford University Press, 2020. http://dx.doi.org/10.1093/med-psych/9780190697266.003.0010.
Full textThompson, Marc T. "Bipolar Transistor Switching and the Charge Control Model." In Intuitive Analog Circuit Design, 269–304. Elsevier, 2006. http://dx.doi.org/10.1016/b978-075067786-8/50010-0.
Full textConference papers on the topic "Bipolar switching"
SILARD, Andrei, and Gabriel NANI. "TILBW Bipolar Power Switching Transistor." In 1988 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1988. http://dx.doi.org/10.7567/ssdm.1988.a-2-2.
Full textFengxiao, Zhai, Hao Yunqi, Liu Nannan, Gao Xiaokai, Liu Sujuan, and Yang Kun. "Bipolar resistive switching of Ge2Sb2Te5 material." In Eleventh International Conference on Information Optics and Photonics (CIOP 2019), edited by Hannan Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2548815.
Full textYueh-Ru Yang. "A DSP-based bipolar switching power supply." In 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS 2011). IEEE, 2011. http://dx.doi.org/10.1109/peds.2011.6147384.
Full textKuibo Yin, Mi Li, Yiwei Liu, Congli He, Bin Chen, Jinzhi Wang, Fei Zhuge, Run-Wei Li, Ping Cui, and Xiaoqing Pan. "Bipolar resistance switching in multiferroic BiFeO3 polycrystalline films." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424655.
Full textAlekseeva, Liudmila, Anatolii Petrov, and Dmitrii Chigirev. "Bipolar resistive switching in PbO nanoscale thin films." In 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2016. http://dx.doi.org/10.1109/eiconrusnw.2016.7448106.
Full textHsu, C. W., C. L. Lo, I. T. Wang, and T. H. Hou. "High-density 1S1R Flexible Bipolar Resistive-Switching Memory." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.b-8-1.
Full textBreglio, Giovanni, Antonello Cutolo, Paolo Spirito, and Luigi Zeni. "Optical switching of bipolar-mode field effect transistors." In Photonics for Industrial Applications, edited by William R. Donaldson. SPIE, 1995. http://dx.doi.org/10.1117/12.198651.
Full textLiu, Jian, Lijie Zhang, Zitao Shi, Xin Wang, Lin Lin, Li Wang, Chen Zhang, et al. "Characterizing phase switching structures for ESD protection." In 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM. IEEE, 2011. http://dx.doi.org/10.1109/bctm.2011.6082790.
Full textBag, A., M. K. Hota, S. Mallik, and C. K. Maiti. "Bipolar resistive switching in different plant and animal proteins." In 2014 IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2014. http://dx.doi.org/10.1109/ipfa.2014.6898184.
Full textLiu, N., P. Yan, H. J. Sun, and X. S. Miao. "Bipolar resistive switching behaviors of AgBiTe chalcogenide thin films." In Information Storage System and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/isst.2017.isu2a.5.
Full textReports on the topic "Bipolar switching"
Cooper, James A., and Jr. Exploratory Development of SiC Bipolar Transistors and GaN Heterojunction Bipolar Transistors for High-Power Switching Applications. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada413135.
Full textOvrebo, Gregory K. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada616757.
Full text