Academic literature on the topic 'Biphasic stimulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biphasic stimulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biphasic stimulation"

1

Walsh, Paul L., Jelena Petrovic, and R. Mark Wightman. "Distinguishing splanchnic nerve and chromaffin cell stimulation in mouse adrenal slices with fast-scan cyclic voltammetry." American Journal of Physiology-Cell Physiology 300, no. 1 (January 2011): C49—C57. http://dx.doi.org/10.1152/ajpcell.00332.2010.

Full text
Abstract:
Electrical stimulation is an indispensible tool in studying electrically excitable tissues in neurobiology and neuroendocrinology. In this work, the consequences of high-intensity electrical stimulation on the release of catecholamines from adrenal gland slices were examined with fast-scan cyclic voltammetry at carbon fiber microelectrodes. A biphasic signal, consisting of a fast and slow phase, was observed when electrical stimulations typically used in tissue slices (10 Hz, 350 μA biphasic, 2.0 ms/phase pulse width) were applied to bipolar tungsten-stimulating electrodes. This signal was found to be stimulation dependent, and the slow phase of the signal was abolished when smaller (≤250 μA) and shorter (1 ms/phase) stimulations were used. The slow phase of the biphasic signal was found to be tetrodotoxin and hexamethonium independent, while the fast phase was greatly reduced using these pharmacological agents. Two different types of calcium responses were observed, where the fast phase was abolished by perfusion with a low-calcium buffer while both the fast and slow phases could be modulated when Ca2+ was completely excluded from the solution using EGTA. Perfusion with nifedipine resulted in the reduction of the slow catecholamine release to 29% of the original signal, while the fast phase was only decreased to 74% of predrug values. From these results, it was determined that high-intensity stimulations of the adrenal medulla result in depolarizing not only the splanchnic nerves, but also the chromaffin cells themselves resulting in a biphasic catecholamine release.
APA, Harvard, Vancouver, ISO, and other styles
2

Hwang, Hyeoncheol, Kyu-Chang Wang, Moon Suk Bang, Hyung-Ik Shin, Seung-Ki Kim, Ji Hoon Phi, Ji Yeoun Lee, Jinwoo Choi, Seungwoo Cha, and Keewon Kim. "Optimal stimulation parameters for intraoperative bulbocavernosus reflex in infants." Journal of Neurosurgery: Pediatrics 20, no. 5 (November 2017): 464–70. http://dx.doi.org/10.3171/2017.6.peds16664.

Full text
Abstract:
OBJECTIVEThe aim of this study was to establish optimal electric stimulation parameters for intraoperatively monitoring the bulbocavernosus reflexes (BCRs) in infants.METHODSThe authors retrospectively reviewed the medical records of all infants (age < 24 months) who had undergone an untethering operation for tethered cord syndrome between May 2013 and February 2014 at a single institution and whose baseline BCR had been elicited during surgery. Using different combinations of stimulation parameters—number of stimulation pulses: 4 or 8 pulses, interpulse interval: 1, 2, or 5 msec, and polarity of stimulation: biphasic or monophasic—the authors compared the relative mean amplitude of 10 BCR responses (rmaBCRs) to each combination of parameters.RESULTSThe rmaBCRs were larger with the 8-pulse stimulations than with the 4-pulse stimulations (p < 0.0001). There was a tendency, though not statistically significant, for larger rmaBCRs to be obtained with the longer interpulse interval in the 8-pulse stimulation (p = 0.1289). The biphasic stimulation produced larger rmaBCRs than the monophasic stimulation (p = 0.0005).CONCLUSIONSBiphasic 8-pulse stimulations with 5-msec or 2-msec intervals yield the largest BCR responses. Considering that an 8-pulse stimulation with 5-msec intervals may overlap the onset of the BCR, a biphasic 8-pulse stimulation with 2-msec intervals is recommended as the optimal stimulation paradigm to monitor intraoperative BCRs in infants.
APA, Harvard, Vancouver, ISO, and other styles
3

Ward, Tyler, Neil Grabham, Chris Freeman, Yang Wei, Ann-Marie Hughes, Conor Power, John Tudor, and Kai Yang. "Multichannel Biphasic Muscle Stimulation System for Post Stroke Rehabilitation." Electronics 9, no. 7 (July 17, 2020): 1156. http://dx.doi.org/10.3390/electronics9071156.

Full text
Abstract:
We present biphasic stimulator electronics developed for a wearable functional electrical stimulation system. The reported stimulator electronics consist of a twenty four channel biphasic stimulator. The stimulator circuitry is physically smaller per channel and offers a greater degree of control over stimulation parameters than existing functional electrical stimulator systems. The design achieves this by using, off the shelf multichannel high voltage switch integrated circuits combined with discrete current limiting and dc blocking circuitry for the frontend, and field programmable gate array based logic to manage pulse timing. The system has been tested on both healthy adults and those with reduced upper limb function following a stroke. Initial testing on healthy users has shown the stimulator can reliably generate specific target gestures such as palm opening or pointing with an average accuracy of better than 4 degrees across all gestures. Tests on stroke survivors produced some movement but this was limited by the mechanical movement available in those users’ hands.
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Chae-Eun, Younginha Jung, and Yoon-Kyu Song. "8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses." Journal of Nanoscience and Nanotechnology 21, no. 8 (August 1, 2021): 4298–302. http://dx.doi.org/10.1166/jnn.2021.19405.

Full text
Abstract:
Retinal prostheses substitute the functionality of damaged photoreceptors by electrically stimulating retinal ganglion cells (RGCs). RGCs, densely packed in a small region, needs a high spatial resolution of the microelectrode, which in turn raises its impedance. Therefore, the high output impedance circuit and the high compliance output voltage are the key characteristics of the current-source-based stimulator. Also, as the system is intended to implant in the retina, the stimulation parameter should be optimized for efficiency and safety. Here we designed 8-channel neural stimulator customized to the retinal ganglion cell. Designed IC is fabricated in the TSMC 0.18 μm 1P6M RF CMOS process with 3.3 V supply voltage, occupying the 1060 μm×950 μm area.
APA, Harvard, Vancouver, ISO, and other styles
5

Nilsson, Jan, John Ravits, and Mark Hallett. "Stimulus artifact compensation using biphasic stimulation." Muscle & Nerve 11, no. 6 (June 1988): 597–602. http://dx.doi.org/10.1002/mus.880110612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arfin, Scott K., Michael A. Long, Michale S. Fee, and Rahul Sarpeshkar. "Wireless Neural Stimulation in Freely Behaving Small Animals." Journal of Neurophysiology 102, no. 1 (July 2009): 598–605. http://dx.doi.org/10.1152/jn.00017.2009.

Full text
Abstract:
We introduce a novel wireless, low-power neural stimulation system for use in freely behaving animals. The system consists of an external transmitter and a miniature, implantable wireless receiver–stimulator. The implant uses a custom integrated chip to deliver biphasic current pulses to four addressable bipolar electrodes at 32 selectable current levels (10 μA to 1 mA). To achieve maximal battery life, the chip enters a sleep mode when not needed and can be awakened remotely when required. To test our device, we implanted bipolar stimulating electrodes into the songbird motor nucleus HVC (formerly called the high vocal center) of zebra finches. Single-neuron recordings revealed that wireless stimulation of HVC led to a strong increase of spiking activity in its downstream target, the robust nucleus of the arcopallium. When we used this device to deliver biphasic pulses of current randomly during singing, singing activity was prematurely terminated in all birds tested. Thus our device is highly effective for remotely modulating a neural circuit and its corresponding behavior in an untethered, freely behaving animal.
APA, Harvard, Vancouver, ISO, and other styles
7

Aiello, Orazio. "On the DC Offset Current Generated during Biphasic Stimulation: Experimental Study." Electronics 9, no. 8 (July 25, 2020): 1198. http://dx.doi.org/10.3390/electronics9081198.

Full text
Abstract:
This paper deals with the DC offset currents generated by a platinum electrode matrix during biphasic stimulation. A fully automated test bench evaluates the nanoampere range DC offset currents in a realistic and comprehensive scenario by using platinum electrodes in a saline solution as a load for the stimulator. Measurements are performed on different stimulation patterns for single or dual hexagonal stimulation sites operating simultaneously and alternately. The effectiveness of the return electrode presence in reducing the DC offset current is considered. Experimental results show how for a defined nominal injected charge, the generated DC offset currents differ depending on the stimulation patterns, frequency, current amplitude, and pulse width of a biphasic signal.
APA, Harvard, Vancouver, ISO, and other styles
8

Kolbl, Florian, Yannick Bornat, Jonathan Castelli, Louis Regnacq, Gilles N’Kaoua, Sylvie Renaud, and Noëlle Lewis. "IC-Based Neuro-Stimulation Environment for Arbitrary Waveform Generation." Electronics 10, no. 15 (August 3, 2021): 1867. http://dx.doi.org/10.3390/electronics10151867.

Full text
Abstract:
Electrical stimulation of the nervous system is commonly based on biphasic stimulation waveforms, which limits its relevance for some applications, such as selective stimulation. We propose in this paper a stimulator capable of delivering arbitrary waveforms to electrodes, and suitable for non-conventional stimulation strategies. Such a system enables in vivo stimulation protocols with optimized efficacy or energy efficiency. The designed system comprises a High Voltage CMOS ASIC generating a configurable stimulating current, driven by a digital circuitry implemented on a FPGA. After fabrication, the ASIC and system were characterized and tested; they successfully generated programmable waveforms with a frequential content up to 1.2 MHz and a voltage compliance between [−17.9; +18.3] V. The system is not optimum when compared to single application stimulators, but no embedded stimulator in the literature offers an equivalent bandwidth which allows the wide range of stimulation paradigms, including high-frequency blocking stimulation. We consider that this stimulator will help test unconventional stimulation waveforms and can be used to generate proof-of-concept data before designing implantable and application-dedicated implantable stimulators.
APA, Harvard, Vancouver, ISO, and other styles
9

Woods, A. J., and M. J. Stock. "Biphasic brown fat temperature responses to hypothalamic stimulation in rats." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 266, no. 2 (February 1, 1994): R328—R337. http://dx.doi.org/10.1152/ajpregu.1994.266.2.r328.

Full text
Abstract:
Low-level electrical stimulation (monophasic square-wave pulses: 15 Hz, 7.0 microA, 0.5 ms) of the ventromedial hypothalamus (VMH) in anesthetized rats produced a decrease (phase 1) in interscapular brown adipose tissue (IBAT) temperature that was sustained for as long as the stimulus was applied (2-45 min). A rise in IBAT temperature (phase 2) occurred only after the stimulation had stopped. VMH stimulations ipsilateral and contralateral to a lateral hypothalamic (LH) lesion indicated that the phase 1 response required an intact LH, and denervation of IBAT showed that both phases required an intact sympathetic innervation. Central intracerebroventricular injections of amphetamine and dopamine produced decreases in IBAT temperature similar in magnitude to the phase 1 response to electrical stimulation of the VMH. This, as well as the observation that pimozide blocked phase 1, suggested that dopaminergic pathways were responsible for mediating the phase 1 decrease in IBAT temperature. The peripheral mechanisms responsible for phase 1 are unknown, but a vascular component might explain the unexpected decrease in IBAT temperature seen during sustained VMH stimulation.
APA, Harvard, Vancouver, ISO, and other styles
10

Field-Fote, Edelle C., Brent Anderson, Valma J. Robertson, and Neil I. Spielholz. "Monophasic and biphasic stimulation evoke different responses." Muscle & Nerve 28, no. 2 (July 14, 2003): 239–41. http://dx.doi.org/10.1002/mus.10414.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biphasic stimulation"

1

Howe, Daniel Steven. "A WIRELESS ELECTRICAL STIMULATION SYSTEMFOR WOUND HEALING THERAPYWITH BIPHASIC HIGH-VOLTAGE PULSED CURRENT OUTPUT." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1365179992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petersson, Marcus. "Computational Modeling of Deep Brain Stimulation." Thesis, Linköping University, Department of Biomedical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9512.

Full text
Abstract:

Deep brain stimulation (DBS) is a surgical treatment technique, which involves application of electrical pulses via electrodes inserted into the brain. Neurons, typically located in the basal ganglia network, are stimulated by the electrical field. DBS is currently widely used for symptomatically treating Parkinson’s disease patients and could potentially be used for a number of neurological diseases. In this study, computational modeling was used to simulate the electrical activity of neurons being affected by the electrical field, to gain better understanding of the mechanisms of DBS. The spatial and temporal distribution of the electrical field was coupled to a cable model representing a human myelinated axon. A passing fiber with ends infinitely far away was simulated. Results show that excitation threshold is highly dependent on the diameter of the fiber and the influence (threshold-distance and threshold-diameter relations) can be controlled to some extent, using charge-balanced biphasic pulses.

APA, Harvard, Vancouver, ISO, and other styles
3

Ly, Mai Thanh Graduate School of Biomedical Engineering Faculty of Engineering UNSW. "Electrical stimulation of cells involved in wound healing." Publisher:University of New South Wales. Graduate School of Biomedical Engineering, 2008. http://handle.unsw.edu.au/1959.4/41523.

Full text
Abstract:
Problem investigated: Chronic wounds are not only a major burden to the patient arising from general pain and discomfort but also generate economic costs to both these individuals and the health care system. Various electrical stimulation regimes have been employed to study the effects of electrical stimulation on wound healing both in vivo and in vitro. In was hypothesised that electrical stimulation using various waveforms can modulate cell function, particularly cell migration. The aim of this thesis was to study the effects of electrical stimulation on cellular migration, in particular endothelial cells and fibroblasts, key cell types involved in wound healing. The impact of collagen matrix on cell migration was also assessed. Methods: Cells were seeded on either glass or collagen I substrate and stimulated with various electrical regimes via platinum electrodes connected to a constant current source. Cell migration was accessed by manual tracking of cell nuclei over a period of 3 hours from digital time-lapse images acquired during stimulation. Data from cell tracking were analysed for directional migration, migration rates and mean square displacement. Results: No directional cell migration for both endothelial cells and fibroblasts were observed when stimulated with either alternating or biphasic currents. However, surface substrate had impacted on cell motility with opposite effects being observed for the two cell types. Endothelial cells tended to migrate at a faster rate on collagen I substrate than on glass, compared with fibroblasts, which displayed a slower rate of migration on collagen I substrate. Significant changes in mean square displacement of biphasic current stimulated cells on collagen I substrate compared to unstimulated cells were also observed. Conclusion: This thesis has illustrated cell migration can be modulated by electrical stimulation, in particular asymmetric biphasic current. It has also been demonstrated surface substrate can impact cell migration.
APA, Harvard, Vancouver, ISO, and other styles
4

Hyde, Molly. "The Combined and Differential Effects of Monophasic and Biphasic Repetitive Transcranial Magnetic Stimulation on ERP-Indexed Attentional Processing in Treatment-Resistant Depression." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39932.

Full text
Abstract:
In addition to low mood, major depressive disorder (MDD) is characterized by persistent cognitive deficits that impair daily functioning and resist improvement with conventional pharmacotherapies. Repetitive transcranial magnetic stimulation (rTMS) holds promise as an efficacious alternative, offering better outcomes than medication for patients with treatment-resistant depression (TRD). Yet, current rTMS protocols that administer sinusoidal biphasic pulses achieve remission in less than the majority. However, monophasic pulses may yield higher success rates based on greater cortical excitation/neuromodulation strength. MDD is associated with altered P300 event-related potentials (ERPs), indexing decreased attentional resource allocation and slower cortical processing speed. Using a cohort of 20 TRD patients who received high-frequency rTMS, this study aimed to assess the impact of monophasic and biphasic stimulation on attention-related P300 measures and their utility as correlates of clinical/cognitive response. Based on baseline and post-treatment change in P300 components, rTMS-induced increases in automatic attention/passive information processing differed by pulse type and predicted greater clinical improvement in depressed individuals. This study represents an important step towards identifying cognitive changes and underlying cortical mechanisms associated with rTMS response and targeted MDD treatment.
APA, Harvard, Vancouver, ISO, and other styles
5

Yao, Tien Sing, and 姚天行. "Neurotic biphasic stimulation driver." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/77703033399425110847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jin-Wei, and 李晉緯. "An Adjustable Biphasic Pulse Electrical stimulation chip." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/wwc6yt.

Full text
Abstract:
碩士
國立雲林科技大學
電子工程系
102
This study considered the specifications of electrical stimulation output current and thus used TSMC 0.25-um HV mixed signal Based BCD process to integrate a system and components used in traditional electrical stimulator into one chip. The architecture of this electrical stimulation chip contained an 8-bit digital-to-analog converter and a high-voltage driver circuit. Considering the differential nonlinearity (DNL) as well as the glitch and avoiding unnecessary waste of area, to achieve high-linearity current output, the 8-bit digital-to-analog converter was implemented on segmented current mode structure, which was consisted of thermometer-coded 6-bit MSBs and binary-weighted 2-bit LSBs, and generated 1mA. In order to increase the performance of the electrical stimulator, the converter combined high-voltage driver circuit to amplify the output current with pulse width modulation circuit transferred from FPGA. The circuit simulation applied HSPICE to simulate, and the simulation result of the 8-bit digital-to-analog converter showed that the maximum differential nonlinearity (DNL,max) and integral nonlinearity (INL,max) were 0.0025 LSB and 0.078 LSB, respectively. After the amplification of high-voltage driver circuit, the output current gained from 1mA to 50mA, and the anodic maximum differential nonlinearity (DNLan,max) and anodic integral nonlinearity (INLan,max) were 0.04 LSB and 0.21 LSB, respectively, while the cathodic maximum differential nonlinearity (DNLca,max) and cathodic integral nonlinearity (INLca,max) were 0.04 LSB and 0.138 LSB, respectively. This study widens the line of output current terminal and modifies the size of MOS. In addition, since the current source is easily interfered by temperature, which makes this system become nonlinear, a bandgap is added to the biasing circuit for preventing the biasing voltage from the influence of temperature. Thus, the system can improve the linearity of digital-to-analog convertor and combines FPGA to control electrical stimulation cycle, which increases the applicability and the performance of the entire system.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Gui-Rong, and 陳桂榕. "A 50mA Biphasic Pulse Stimulation Chip Using High-Voltage Process." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/41567221845096622959.

Full text
Abstract:
碩士
國立雲林科技大學
電子與光電工程研究所碩士班
101
This study used TSMC 0.25-um HV mixed signal Based BCD 2.5/5/7/12/20/24/40/45/60V process to implement the Biphasic Pulse Stimulation Chip ,which aimed to reduce the large volume caused by the high-power components of booster circuit in traditional electric stimulator. In this electrical stimulator architecture, a suitable structure was planed to solve the problem with power consumption and area consumption caused by high-voltage transistors. The structure contained 8-bit high-voltage digital-to-analog converter to control any intensity of output current in electrical stimulation. It also taken segmented current mode structure, 6-bit MSBs thermomeder-coded and 2-bit LSBs binary-weighted to achieve high linearity. Furthermore, since this study utlizied 5/30/60V as power supply, linearity offset may occur between low-voltage circuit and high-voltage circuit. Therefore voltage limiting technique was proposed to increase the linearity of output value from the electrical stimulator. In circuit simulation, we apply for HSPICE to simulation. The simulation result showed that, the maximum output current of anodic(Ian,max) and cathodic(Ica,max) were 49.98mA and 50.03mA respectively. The maximum differential nonlinearity(DNLan,max) and integral nonlinearity(INLan,max) of anodic were -0.12 LSB and 0.51 LSB respectively. The maximum differential nonlinearity(DNLca,max) and integral nonlinearity(INLca,max) of cathodic were -0.19 LSB and 0.28 LSB respectively. In addition, the frequency of electrical stimulation (TP) was 24.9Hz, the stimulation duration of anodic(Ta) and cathodic(Tc) were 300.08μs and 300.05μs respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Yi-Ching, and 盧怡晴. "A Biphasic Current Mode Functional Electrical Stimulator with A Class-AB Charge Compensation Mechanism for Deep Brain Stimulation." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/4hbg44.

Full text
Abstract:
碩士
國立臺灣科技大學
電機工程系
107
A current mode functional electrical stimulator(FES) with class-AB charge compensation mechanism is proposed. In the two-channel FES, a six-bit current DAC is equipped to provide the stimulation current, and the current intensity can be adjusted from 50 uA to 3 mA for animal experiments and human body use. In addition, the safety issue of the electric stimulator is also considered. Therefore, the biphasic current mode is applied to suppress the epileptic effect first by a cathodic current, and then an anodic current of the same intensity is performed for the first stage charge elimination. Besides, the generated stimulation waveform parameters can be adjusted in 12 bits to increase the application flexibility. However, due to the non-ideal effect of the process, the accumulated charge cannot be completely cancelled by the biphasic current. Therefore, an innovative class-AB based charge compensator is proposed. By the characteristics of the class AB OTA, low quiescent current and high compensation efficiency can be achieved. The two-channel FES system was combined with an analog front-end (AFE) system to develop an animal experimental platform and cooperated with the team of Professor Fang-Chia Chang of the Taiwan University Veterinary Department to conduct animal experiments to verify the safety issue and the effectiveness of the FES. In order to further increase the flexibility of the FES, a single channel FES is modularized to facilitate channel expansion. At the same time, the biphasic current architecture is improved, and the shape selection function between pulse and decaying exponential shape is added to further analysis the stimulation efficiency. This design is applied in a four-channel FES, and the performance of the chip is being measured.
APA, Harvard, Vancouver, ISO, and other styles
9

"Gamma Band Oscillation Response to Somatosensory Feedback Stimulation Schemes Constructed on Basis of Biphasic Neural Touch Representation." Doctoral diss., 2017. http://hdl.handle.net/2286/R.I.45529.

Full text
Abstract:
abstract: Prosthetic users abandon devices due to difficulties performing tasks without proper graded or interpretable feedback. The inability to adequately detect and correct error of the device leads to failure and frustration. In advanced prostheses, peripheral nerve stimulation can be used to deliver sensations, but standard schemes used in sensorized prosthetic systems induce percepts inconsistent with natural sensations, providing limited benefit. Recent uses of time varying stimulation strategies appear to produce more practical sensations, but without a clear path to pursue improvements. This dissertation examines the use of physiologically based stimulation strategies to elicit sensations that are more readily interpretable. A psychophysical experiment designed to investigate sensitivities to the discrimination of perturbation direction within precision grip suggests that perception is biomechanically referenced: increased sensitivities along the ulnar-radial axis align with potential anisotropic deformation of the finger pad, indicating somatosensation uses internal information rather than environmental. Contact-site and direction dependent deformation of the finger pad activates complimentary fast adapting and slow adapting mechanoreceptors, exhibiting parallel activity of the two associate temporal patterns: static and dynamic. The spectrum of temporal activity seen in somatosensory cortex can be explained by a combined representation of these distinct response dynamics, a phenomenon referred in this dissertation to “biphasic representation.” In a reach-to-precision-grasp task, neurons in somatosensory cortex were found to possess biphasic firing patterns in their responses to texture, orientation, and movement. Sensitivities seem to align with variable deformation and mechanoreceptor activity: movement and smooth texture responses align with potential fast adapting activation, non-movement and coarse texture responses align with potential increased slow adapting activation, and responses to orientation are conceptually consistent with coding of tangential load. Using evidence of biphasic representations’ association with perceptual priorities, gamma band phase locking is used to compare responses to peripheral nerve stimulation patterns and mechanical stimulation. Vibrotactile and punctate mechanical stimuli are used to represent the practical and impractical percepts commonly observed in peripheral nerve stimulation feedback. Standard patterns of constant parameters closely mimic impractical vibrotactile stimulation while biphasic patterns better mimic punctate stimulation and provide a platform to investigate intragrip dynamics representing contextual activation.
Dissertation/Thesis
Doctoral Dissertation Biomedical Engineering 2017
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, Chia-Lin, and 賴佳琳. "Interaction between Peripheral Blood Monocytes (PBM) and Lymphocytes (PBLs) of Healthy Porcine Circovirus TypeⅡ (PCV2)-Carrier Pigs Following Monophasic or Biphasic Stimulation." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/45755478966075571077.

Full text
Abstract:
碩士
國立臺灣大學
獸醫學研究所
95
Porcine circovirus type Ⅱ (PCV2) infection has been demonstrated to be an essential factor in the induction of the newly emerged disease, postweaning multisystemic wasting syndrome (PMWS), in pigs. PCV2 antibodies have been found in pigs worldwidely, usually with high seroprevalence. Although monocyte/macrophage lineage cells are considered as the major target cells, the role of lymphocytes on the disease development is still uncertain. Immune activation and co-factors such as bacteria or viruses have been suggested to be important factors in the induction of PMWS. Our previous studies have demonstrated that the PCV2 nucleic acid and antigens could be detected intranuclearly in bacterial lipopolysaccharide (LPS)-treated PCV2-inoculated swine alveolar macrophages (AMs) and in concanavalin A (Con A)-stimulated swine peripheral blood lymphocytes (PBLs). The objective of the present study was to further evaluate whether there is an enhancement effect on the PCV2-positive rate in either monocytes or lymphocytes of peripheral blood following monophasic or biphasic stimulation with LPS and/or Con A in healthy PCV2-carrier pigs. After stimulation with LPS and/or Con A, both PCV2 antigen- and nucleic acid-containing rates of the peripheral blood mononuclear cells (PBMCs) of healthy PCV2-carrier pigs measured by immunofluorescent assay (IFA), surface marker IFA, in situ hybridization-polymerase chain reaction (ISH-PCR), and real time PCR increased with time. The levels of the PCV2 antigen-containing rate in Con A-treated group and the group treated simultaneously with LPS and Con A ( (LPS + Con A)-treated groups) were significantly greater than those of the NT and LPS-treated groups. Significant difference was also seen among the LPS-, Con A, and (LPS + Con A)-treated groups. The viral titer of the (LPS + Con A)-treated group increased at 3 days post-incubation (DPI) as did antigen- and nucleic acid-containing rates. Two third of the PCV2-positive cells belonged to SWC3- population; this implies that lymphocytes may also play an important role on PCV2 replication. The results indicate that interaction between PBMs and PBLs may exist and simultaneous activation of PBMs and PBLs may result in increased PCV2 load in both cells. The results further support that immune activation may increase the morbidity of PMWS in PCV2-infected pigs via the increase in viral load.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biphasic stimulation"

1

Epstein, Charles M. Electromagnetism. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0001.

Full text
Abstract:
This article elucidates on the concept of electromagnetism and electromagnetic induction with a view to explaining the theory of magnetic stimulation, used to cure diseases in human beings. Magnetic stimulation follows the principles of electromagnetism. A changing primary current induces secondary currents, which are called eddy currents, in the nearby conductors (human tissue in this case). The strength of the electric field is measured by its electromotive force (emf), which in turn, is measured in volts. The changing primary current also gives rise to an induced voltage in the primary loop itself. The essential circuitry of a magnetic stimulator is composed of three elements, the capacitor, inductance of the stimulation coil, and a switch to connect them. This article also explains the process of the energy flow system through the inductor-capacitor system, applying this principle to the biphasic TMS pulse.
APA, Harvard, Vancouver, ISO, and other styles
2

Sommer, Martin, and Walter Paulus. TMS waveform and current direction. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0002.

Full text
Abstract:
This article introduces the difference between biphasic and monophasic transcranial magnetic stimulation (TMS). Waveform and current direction determine the effectiveness of TMS in humans. The alternating use of mono and biphasic pulses as conditioning or test pulse has so far not been possible. Since pulses of different waveform or orientation cannot be applied through the same coil at an interval in the millisecond range, using two different coils could be a feasible approach. This article brings in the concept of repetitive TMS (rTMS). Although clinical relevance is lacking, there is plenty of interesting data available for rTMS. Both pulse configuration and current direction affect the modulation of corticospinal excitability induced by rTMS. The effects during rTMS may differ from those outlasting rTMS. Further studies are needed to confirm the histological and physiological basis for these differences, and to clarify their clinical relevance.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biphasic stimulation"

1

Nogueira, R. R., D. C. Souza, J. C. Palma, G. N. Nogueira-Neto, and P. Nohama. "The Output Circuit of a Biphasic Constant Current Electrical Stimulator." In VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016, 621–25. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4086-3_156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rao, V. Bhujanga, P. Seetharamaiah, and Nukapeyi Sharmili. "Design of a Prototype for Vision Prosthesis." In Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement, 492–505. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8050-9.ch025.

Full text
Abstract:
This article describes how the field of vision prostheses is currently being developed around the world to restore useful vision for people suffering from retinal degenerative diseases. The vision prosthesis system (VPS) maps visual images to electrical pulses and stimulates the surviving healthy parts in the retina of the eye, i.e. ganglion cells, using electric pulses applied through an electrode array. The retinal neurons send visual information to the brain. This article presents the design of a prototype vision prosthesis system which converts images/video into biphasic electric stimulation pulses for the excitation of electrodes simulated by an LED array. The proposed prototype laboratory model has been developed for the design of flexible high-resolution 1024-electrode VPS, using an embedded computer-based efficient control algorithm for better visual prediction. The prototype design for the VPS is verified visually through a video display on an LCD/LED array. The experimental results of VPS are enumerated for the test objects, such as, palm, human face and large font characters. The results were found to be satisfactory.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biphasic stimulation"

1

Lee, Edward K. F., and Anthony Lam. "A Matching Technique for Biphasic Stimulation Pulse." In 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iscas.2007.378031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Acosta, Adan I., Muhammad S. Noor, Zelma H. T. Kiss, and Kartikeya Murari. "A lightweight discrete biphasic current stimulator for rodent deep brain stimulation." In 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2015. http://dx.doi.org/10.1109/biocas.2015.7348360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Song, and Hoi Lee. "Biphasic-current-pulse self-calibration techniques for monopolar current stimulation." In 2009 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2009. http://dx.doi.org/10.1109/biocas.2009.5372085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Constandinou, Timothy G., Julius Georgiou, and Chris Toumazou. "A partial-current-steering biphasic stimulation driver for neural prostheses." In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4541965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tahayori, Bahman, and Socrates Dokos. "Optimal stimulus profiles for neuroprosthetic devices: Monophasic versus biphasic stimulation." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maohua Ren, Jinyong Zhang, Lei Wang, and Zhenyu Wang. "A novel biphasic-current-pulse calibration technique for electrical neural stimulation." In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maghami, Mohammad Hossein, Amir M. Sodagar, and Mohamad Sawan. "Biphasic, energy-efficient, current-controlled stimulation back-end for retinal visual prosthesis." In 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2014. http://dx.doi.org/10.1109/iscas.2014.6865110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cho, Donghyeok, Nahmil Koo, Taekwang Jang, and Seonghwan Cho. "An Offset Charge Compensating Biphasic Neuro - stimulation for Faradaic DC-Current Reduction." In 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tazawa, Ryunosuke, Daisuke Okano, Yuki Hatazawa, Masao Sugi, Shunta Togo, Yinlai Jiang, and Hiroshi Yokoi. "Stimulation Wave Profiles for Elbow Flexion in Surface Electrical Stimulation Based on Burst-Modulated Symmetric Biphasic Rectangular Waves." In 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO). IEEE, 2019. http://dx.doi.org/10.1109/arso46408.2019.8948739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moradi, Saed, Esmaeel Maghsoudloo, and Reza Lotfi. "New charge balancing method based on imbalanced biphasic current pulses for functional electrical stimulation." In 2012 20th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2012. http://dx.doi.org/10.1109/iraniancee.2012.6292367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography