Academic literature on the topic 'Biosynthesis in plants'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biosynthesis in plants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biosynthesis in plants"

1

Procházková, D., D. Haisel, and D. Pavlíková. "Nitric oxide biosynthesis in plants – the short overview." Plant, Soil and Environment 60, No. 3 (March 19, 2014): 129–34. http://dx.doi.org/10.17221/901/2013-pse.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baerson, Scott R., Joachim Schröder, Daniel Cook, Agnes M. Rimando, Zhiqiang Pan, Franck E. Dayan, Brice P. Noonan, and Stephen O. Duke. "Alkylresorcinol biosynthesis in plants." Plant Signaling & Behavior 5, no. 10 (October 2010): 1286–89. http://dx.doi.org/10.4161/psb.5.10.13062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, Ning, Yanhua Liu, Hongbo Zhang, Yongmei Du, Xinmin Liu, and Zhongfeng Zhang. "Solanesol Biosynthesis in Plants." Molecules 22, no. 4 (March 23, 2017): 510. http://dx.doi.org/10.3390/molecules22040510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bach, Thomas J., Albert Boronat, Narciso Campos, Albert Ferrer, and Kai-Uwe Vollack. "Mevalonate Biosynthesis in Plants." Critical Reviews in Biochemistry and Molecular Biology 34, no. 2 (January 1999): 107–22. http://dx.doi.org/10.1080/10409239991209237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tanner, Gregory J., Kathy T. Francki, Sharon Abrahams, John M. Watson, Philip J. Larkin, and Anthony R. Ashton. "Proanthocyanidin Biosynthesis in Plants." Journal of Biological Chemistry 278, no. 34 (June 4, 2003): 31647–56. http://dx.doi.org/10.1074/jbc.m302783200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

EDWARDS, LUCRETIA S., KEVIN BEAUTEMENT, FIONA J. PURSE, and TIMOTHY R. HAWKES. "Lysine biosynthesis in plants." Biochemical Society Transactions 22, no. 1 (February 1, 1994): 80S. http://dx.doi.org/10.1042/bst022080s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thimmappa, Ramesha, Katrin Geisler, Thomas Louveau, Paul O'Maille, and Anne Osbourn. "Triterpene Biosynthesis in Plants." Annual Review of Plant Biology 65, no. 1 (April 29, 2014): 225–57. http://dx.doi.org/10.1146/annurev-arplant-050312-120229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stepansky, A., and T. Leustek. "Histidine biosynthesis in plants." Amino Acids 30, no. 2 (March 2006): 127–42. http://dx.doi.org/10.1007/s00726-005-0247-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kolesnikova, Mariya D., Quanbo Xiong, Silvia Lodeiro, Ling Hua, and Seiichi P. T. Matsuda. "Lanosterol biosynthesis in plants." Archives of Biochemistry and Biophysics 447, no. 1 (March 2006): 87–95. http://dx.doi.org/10.1016/j.abb.2005.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aarabi, Fayezeh, Miyuki Kusajima, Takayuki Tohge, Tomokazu Konishi, Tamara Gigolashvili, Makiko Takamune, Yoko Sasazaki, et al. "Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants." Science Advances 2, no. 10 (October 2016): e1601087. http://dx.doi.org/10.1126/sciadv.1601087.

Full text
Abstract:
Glucosinolates (GSLs) in the plant order of the Brassicales are sulfur-rich secondary metabolites that harbor antipathogenic and antiherbivory plant-protective functions and have medicinal properties, such as carcinopreventive and antibiotic activities. Plants repress GSL biosynthesis upon sulfur deficiency (−S); hence, field performance and medicinal quality are impaired by inadequate sulfate supply. The molecular mechanism that links –S to GSL biosynthesis has remained understudied. We report here the identification of the –S marker genes sulfur deficiency induced 1 (SDI1) and SDI2 acting as major repressors controlling GSL biosynthesis in Arabidopsis under –S condition. SDI1 and SDI2 expression negatively correlated with GSL biosynthesis in both transcript and metabolite levels. Principal components analysis of transcriptome data indicated that SDI1 regulates aliphatic GSL biosynthesis as part of –S response. SDI1 was localized to the nucleus and interacted with MYB28, a major transcription factor that promotes aliphatic GSL biosynthesis, in both yeast and plant cells. SDI1 inhibited the transcription of aliphatic GSL biosynthetic genes by maintaining the DNA binding composition in the form of an SDI1-MYB28 complex, leading to down-regulation of GSL biosynthesis and prioritization of sulfate usage for primary metabolites under sulfur-deprived conditions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Biosynthesis in plants"

1

Jin, Xin. "Isoprenoid and flavonoid biosynthesis and regulation in higher plants." Doctoral thesis, Universitat de Lleida, 2019. http://hdl.handle.net/10803/667579.

Full text
Abstract:
Aquesta tesi es centra principalment en l'anàlisi funcional i la caracterització dels gens que codifiquen per a alguns metabòlits secundaris i en l’estudi de la seva regulació en les plantes. Els objectius generals varen ser (a) entendre millor la regulació transcripcional del gen de la biosíntesi dels carotenoids, la β-carotè hidroxilasa 2 (BCH2) en el blat de moro i (b) l'anàlisi funcional de les dues isopentenil difosfat isomerasas (OsIPPI) d'arròs i determinar la seva localització subcel·lular. Simultàniament, es va estudiar com la llum afecta la via metabòlica i a la producció de pelargonidina en l'arròs; es van identificar també els gens essencials de la seva biosíntesi en Gentiana lutea L. var. aurantiaca. Les plantes de blat de moro i arròs es varen transformar amb els gens dels factors de transcripció ZmMYB i ZmPBF. Es va analitzar l’expressió gènica transitòria i es va realitzar transformació estable. Els resultats obtinguts indiquen que tant ZmPBF com ZmGAMYB poden transactivar l'expressió de ZmBCH2 a l’endosperm del blat de moro, i ZmPBF i ZmGAMYB transactiven independentment el promotor de ZmBCH2 en arròs. Els dos paràlegs de IPPI (OsIPPI1 i OsIPPI2) aïllats prèviament en arròs varen tenir un patró d'expressió diferent; l'ARNm de OsIPPI1 va ser més abundant que l'ARNm de OsIPPI2 en tots els teixits. Es va usar la microscòpia de fluorescència confocal i microscòpia inmunoelectrónica per determinar la localització de les dues proteïnes. Aquestes es localitzen en el reticle endoplasmàtic (RE), així com en els peroxisomes i les mitocòndries, mentre que només es va detectar OsIPPI2 en els plastidis. La detecció d'ambdues isoformes en el RE indica que DMAPP es pot sintetitzar de novo en aquest compartiment. Diferents tècniques com UPLC, GC-MS i qRT-PCR també es varen utilitzar per perfilar els metabòlits primaris i secundaris i l'expressió gènica relacionada en plàntules d'arròs des-etioladas. Els resultats varen revelar que el metabolisme primari i secundari i els gens corresponents estan regulats per la llum, especialment en la biosíntesi d'isoprenoides en fulles d'arròs. Onze derivats de pelargonidina es varen identificar en els pètals de G. lutea i es varen perfilar els gens de la seva via de biosíntesi, revelant que DFR, ANS i 3GT afecten principalment a l'acumulació dels glucòsids de pelargonidina. Tots aquests resultats suggereixen la idea que la biosíntesi dels carotenoids en plantes superiors és regulada a diferents nivells.
Esta tesis se centra principalmente en el análisis funcional y en la caracterización de los genes que codifican para algunos metabolitos secundarios y en el estudio de su regulación en las plantas. Los objetivos generales fueron (a) profundizar en el conocimiento de la regulación transcripcional del gen de la biosíntesis de los carotenoides, la β-caroteno hidroxilasa 2 (BCH2) en el maíz, y (b) analizar la función de las dos isopentenil difosfato isomerasas (OsIPPI) de arroz, determinando además su localización subcelular. Simultáneamente, se estudió cómo la luz afecta a la vía metabólica y a la producción de pelargonidina en el arroz; se identificaron también los genes esenciales de su biosíntesis en Gentiana lutea L. var. aurantiaca. Las plantas de maíz y arroz se transformaron con los genes de los factores de transcripción ZmMYB y ZmPBF. Se analizó la expresión génica transitoria y se realizó transformación estable. Los resultados obtenidos indicaron que tanto ZmPBF como ZmGAMYB pueden transactivar la expresión de ZmBCH2 en endospermo de maíz, y ZmPBF y ZmGAMYB transactivar independientemente el promotor de ZmBCH2 en arroz. Los dos parálogos de IPPI (OsIPPI1 y OsIPPI2) aislados previamente en arroz tuvieron un patrón de expresión diferente; el ARNm de OsIPPI1 fue más abundante que el ARNm de OsIPPI2 en todos los tejidos. Se usó la microscopía de fluorescencia confocal y microscopía inmunoelectrónica para determinar la localización de ambas proteínas. Estas se localizan en el retículo endoplásmico (RE), así como en los peroxisomas y las mitocondrias, mientras que solo se detectó OsIPPI2 en los plastidios. La detección de ambas isoformas en el RE indica que DMAPP se puede sintetizar de novo en este compartimiento. Diferentes técnicas como UPLC, GC-MS y qRT-PCR también se utilizaron para perfilar los metabolitos primarios y secundarios y la expresión génica en plántulas de arroz des-etioladas. Los resultados revelaron que los genes involucrados en la en el metabolismo primario y secundario están regulados por la luz, especialmente en la biosíntesis de isoprenoides en hojas de arroz. Once derivados de pelargonidina se identificaron en los pétalos de G. lutea y se perfilaron los genes de la vía de biosíntesis, revelando que DFR, ANS y 3GT afectan principalmente a la acumulación de los glucósidos de pelargonidina. Todos estos resultados contribuyen al conocimiento, a diferentes niveles, de la regulación de las rutas biosinteticas de los carotenoides en plantas superiores.
This thesis mainly focuses on functional analysis and characterization of a number of secondary metabolite biosynthetic genes and the regulation of the corresponding secondary metabolite biosynthetic pathway in plants. The overall aims were to elucidate the transcriptional regulation of β-carotene hydroxylase 2 gene (BCH2) in maize, the functional analysis of rice isopentenyl diphosphate isomerases (OsIPPI), and determine their subcellular localization. Simultaneously, the influence of light on the metabolic pathway in rice was studied and the pelargonidin quantification and essential pelargonidin biosynthesis genes in Gentiana lutea L. var. aurantiaca were identified. Maize and rice plants were transformed with transcription factor genes ZmMYB and ZmPBF, via transient gene expression and stable transformation respectively. The results indicated that both ZmPBF and ZmGAMYB can transactivate ZmBCH2 expression in maize endosperm and ZmPBF and ZmGAMYB independently transactivate the ZmBCH2 promoter in rice. The two IPPI paralogs (OsIPPI1 and OsIPPI2) isolated previously in rice had a different expression pattern; OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues. Confocal fluorescence microscopy and immuno-electron microscopy were used to determine the localization of both proteins. These localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids. The detection of both isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. UPLC, GC-MS and qRT-PCR were used to profile the primary and secondary metabolites and gene expression in de-etioleted rice seedlings. The results revealed both primary and secondary metabolism and the corresponding genes are regulated by light, especially isoprenoids biosynthesis in rice leaves. Eleven pelargonidin derivatives were identified in the petals of G. lutea and the biosynthetic pathway genes were profiled, revealing DFR, ANS and 3GT mainly affect the accumulation of pelargonidin glucosides. Collectively my results provide novel insights of the regulation of carotenoid and flavonoid biosynthesis in higher plants at different levels.
APA, Harvard, Vancouver, ISO, and other styles
2

Savill, Julia. "Carotenoid biosynthesis in higher plants." Thesis, Liverpool John Moores University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Milborrow, Barry Vaughan Biotechnology &amp Biomolecular Sciences Faculty of Science UNSW. "Biosynthesis of abscisic acid in plants." Awarded by:University of New South Wales. Biotechnology & Biomolecular Sciences, 2007. http://handle.unsw.edu.au/1959.4/42883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parry, Andrew David. "Abscisic acid biosynthesis in higher plants." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Macaulay, Keith Malcolm. "Salicylic acid biosynthesis in higher plants." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Chien-an Andy. "Osmoregulation and proline biosynthesis in plants /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487843688956923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wheeler, Glen L. "The biosynthesis of ascorbic acid in plants." Thesis, University of Exeter, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ashurst, Jennifer Lilian. "Investigation of pantothenate biosynthesis in higher plants." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Okunishi, Tomoya. "Stereochemistry of Lignan Biosynthesis in Thymelaeaceae Plants." Kyoto University, 2003. http://hdl.handle.net/2433/149001.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第10276号
農博第1348号
新制||農||869(附属図書館)
学位論文||H15||N3797(農学部図書室)
UT51-2003-H697
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 島田 幹夫, 教授 桑原 保正, 教授 坂田 完三
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
10

Hamilton, John T. G. "Biosynthesis of organofluorine compounds in plants and bacteria." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Biosynthesis in plants"

1

Zhang, Yuyang. Ascorbic acid in plants: Biosynthesis, regulation and enhancement. New York: Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sandager, Line. Genes and enzymes involved in the biosynthesis of triacylglycerol in plants and yeast. Alnarp: Swedish University of Agricultural Sciences, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eich, Eckart. Solanaceae and convolvulaceae - secondary metabolites: Biosynthesis, chemotaxonomy, biological and economic significance : a handbook. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1940-, Barak Z., Chipman D. M, and Schloss J. V, eds. Biosynthesis of branched chain amino acids: Proceedings of the Workshop on the Biosynthesis of Branched Chain Amino Acids, Beer-sheva, Israel, November 1988. [S.l.]: Balaban Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sylvie, Cloutier, and Ragupathy Raja, eds. Flax lipids: Classes, biosynthesis, genetics and the promise of applied genomics for understanding and altering of fatty acids. Hauppauge, N.Y: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

C, Pech J., Latché A, and Balagué C, eds. Cellular and molecular aspects of the plant hormone ethylene: Proceedings of the International Symposium on Cellular and Molecular Aspects of Biosynthesis and Action of the Plant Hormone Ethylene, Agen, France, August 31st - September 4th, 1992. Dordrecht, [Netherlands]: Kluwer Academic, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eithan, Galun, ed. The manufacture of medical and health products by transgenic plants. London: Imperial College Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

John, Philip. Biosynthesis of the major crop products: The biochemistry, cell physiology, and molecular biology involved in the synthesis by crop plants of sucrose, fructan, starch, cellulose, oil, rubber, and protein. Chichester: Wiley, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grierson, Don, ed. Biosynthesis and Manipulation of Plant Products. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2142-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Medicinal natural products: A biosynthetic approach. 3rd ed. Hoboken: Wiley, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Biosynthesis in plants"

1

Pengelly, Andrew. "Terpenes." In The constituents of medicinal plants, 73–94. 3rd ed. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789243079.0005.

Full text
Abstract:
Abstract This chapter provides an overview of the various structures and biosynthesis and biosynthetic pathways of terpenes and terpenoids (terpenes with oxygen) from medicinal plants, such as Ginkgo biloba, Picrorhiza kurroa, Rehmannia glutinosa, olives and ginger, among others.
APA, Harvard, Vancouver, ISO, and other styles
2

Hartmann, Thomas, and Dietrich Ober. "Biosynthesis and Metabolism of Pyrrolizidine Alkaloids in Plants and Specialized Insect Herbivores." In Biosynthesis, 207–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-48146-x_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mizukami, Hajiem, and Hiroaki Hayashi. "Biosynthesis and Biotransformation." In Transgenic Crop Plants, 251–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04809-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yuyang. "Ascorbate Biosynthesis in Plants." In Ascorbic Acid in Plants, 35–43. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4127-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glawischnig, E., M. D. Mikkelsen, and B. A. Halkier. "Glucosinolates: Biosynthesis and Metabolism." In Sulphur in Plants, 145–62. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0289-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beggs, Christopher J., Eckard Wellmann, and Hans Grisebach. "Photocontrol of flavonoid biosynthesis." In Photomorphogenesis in plants, 467–99. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-017-2624-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Beggs, Christopher J., and Eckard Wellmann. "Photocontrol of flavonoid biosynthesis." In Photomorphogenesis in Plants, 733–51. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1884-2_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hedden, Peter. "Gibberellin biosynthesis in higher plants." In Annual Plant Reviews, Volume 49, 37–72. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119210436.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tripathy, Baishnab C., and Gopal K. Pattanayak. "Chlorophyll Biosynthesis in Higher Plants." In Photosynthesis, 63–94. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1579-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Droux, M., D. Job, and R. Douce. "Cysteine Biosynthesis in Higher Plants." In Photosynthesis: Mechanisms and Effects, 3183–86. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_746.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biosynthesis in plants"

1

Usmanov, I. Yu, A. V. Scherbakov, V. B. Ivanov, and E. R. Yumagulova. "Fractal analysis of flavonoid biosynthesis system." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gorina, S. S., E. A. Smirnova, Y. Y. Toporkova, and A. N. Grechkin. "Lipoxygenase cascade: key enzymes of biosynthesis, dynamics gene expression in abiotic stress." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rassabina, A. E., O. P. Guryanov, and F. V. Minibaeva. "Lichen melanins Cetraria islandica and Pseudevernia furfuracea: structural features and biosynthesis pathways." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rumyantsev, S. D., S. V. Veselova, T. V. Nuzhnaya, and G. F. Burkhanova. "Role of the Stagonospora nodorum effector SnTox3 in regulation of cytokinins synthesis and metabolism in infected wheat plants." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.209.

Full text
Abstract:
The effect of the Stagonospora nodorum effector SnTox3 on the biosynthesis and metabolism of cytokinins of host plant was studied. The SnTox3 effector influenced the biosynthesis of cytokinins along an ethylene-dependent and ethylene-independent pathway.
APA, Harvard, Vancouver, ISO, and other styles
5

"Biosynthesis of silver nanoparticles using extracts of medicinal plants." In Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doroshenko, A. S., and M. N. Danilova. "Cryptochromes and the trans factor HY5 regulate the chlorophyll biosynthesis during cytokinin-dependent greening of A. thaliana." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paygacheva, N. O., V. Yu Gorshkov, N. E. Gogoleva, O. E. Petrova, E. A. Kovtunov, and Yu V. Gogolev. "Biosynthesis enzymes of enterobactin-like siderophore of pectobacteria: role in interaction with plants and in stress adaptation." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Regulation and evolution of flavonoid biosynthesis pathway in polyploid plants." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gilvanova, E. A., and P. Yu Milman. "Auxin and carotene biosynthesis by the bacterium Pantoea agglomerans." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.086.

Full text
Abstract:
Monitoring of auxin and carotene during cultivation of the Pantoea agglomerans strain IB-BF revealed that the maximum yield of the target products is provided not by population density, but by the qualitative composition of the nutrient medium and the need for a larger peptide component of the substrate (rich amino acid set), which is part of the standard LB medium.
APA, Harvard, Vancouver, ISO, and other styles
10

Erokhin, D. V., O. D. Mikityuk, L. A. Shcherbakova, and V. G. Dzhavakhiya. "Inhibition of the biosynthesis of polyketide mycotoxins by microbial metabolites." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.065.

Full text
Abstract:
6-Demethylmevinoliin, a secondary metabolite of Penicillum citrinum, is able to efficiently inhibit the biosynthesis of two polypeptide mycotoxins, aflatoxin B1 and zearalenone, by 92 and 78% of the control, respectively.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Biosynthesis in plants"

1

Benning, Christoph, Peter Dormann, Heiko Hartel, Koichiro Awai, Changcheng Xu, Rebecca Roston, Patrick Horn, et al. Regulation of Thylakoid Lipid Biosynthesis in Plants (Final Technical Report). Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1503862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Author, Not Given. Gene-Enzyme Relationships of Aromatic Amino Acid Biosynthesis in Higher Plants. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/834384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lamb, C. J. Biosynthesis of plant plasmamembrane polypeptides. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5688524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lamb, C. J. Biosynthesis of plant plasmamembrane polypeptides. [Final technical report]. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10134950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hazen, Samuel. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1094975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Azadi, Paratoo. 8th Annual Glycoscience Symposium: Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1221374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Control of triacylglycerol biosynthesis in plants. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5745525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Control of triacylglycerol biosynthesis in plants. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6573166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Control of triacylglycerol biosynthesis in plants. Technical progress report. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10151571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Control of triacylglycerol biosynthesis in plants. Technical progress report, [June 1, 1991--May 31, 1992]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10125737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography