Dissertations / Theses on the topic 'Biosourced polymer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Biosourced polymer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Heinrich, Lydia Alexandra. "Biosourced Coating Systems for Metallic Substrates." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1004.
Full textMoving away from petroleum and towards biobased materials not only leads to greater sustainability and lower dependence on diminishing fossil resources, but can also catalyse the discovery of new properties. Aliphatic polyesters based on renewable resources have already started to replace traditional products. Within the Sorago project, a fully biobased resin for interior coil coatings has recently been proposed on the market (Estetic® Bio Air, Arcelor Mittal). In order to extend the possible use of the biobased product to exterior applications, an improvement of its resistance to humidity and UV radiation is crucial. This presents two challenges: The limited availability of monomers which provide rigidity in the resin structure and the relationship between the resin composition and its weatherability. Vanillin was chosen as a possible extension to the range of rigid, biobased monomers for polyesterification reactions. The transformation of its aldehyde and its reactivity was studied in terms of catalytic activation and through a series of copolymerisations which revealed the influence of the reaction conditions on the composition of the product. A structure-property relationship concerning the coating glass transition temperature and visco-elastic behaviour of the coating was furthermore established for a series of renewable monomers and contrasted with petroleum based equivalents. Series of prototypes with a wide variety of properties were then subjected to accelerated weathering tests. Their degradation was followed directly by gloss retention and different mechanisms were revealed using FTIR, µ-hardness and film thickness measurements. While the performance of the biobased coating was subpar, no evidence linking its degradation to the presence of renewable monomers was found, suggesting that the creation of a sufficiently durable and renewable exterior coating will be possible
Abid, Marwa. "Développement d'une formulation céramique partiellement biosourcée pour la FA." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2023. http://www.theses.fr/2023MTLD0003.
Full textA new feedstock based on biobased polymers and zirconia was developed for use in the production of technical ceramic parts using a more environmentally friendly CIM-like (Ceramic Injection Molding-like) process (partially biobased formulation, solvent-free and low-temperature printing). In parallel, another feedstock based on polypropylene (PP) was developed and used as a reference. Each step of the process was optimized based on the available equipment. The mechanisms involved were identified and the associated obstacles were gradually overcome. Finally, satisfactory mechanical performance was achieved on the sintered parts, making it reasonable to consider patenting and commercializing the feedstock developed
Rivieres, Bastien. "Développement de résines ablatives biosourcées." Thesis, Reims, 2016. http://www.theses.fr/2016REIMS034.
Full textAblative thermal protection materials are key components of aerospace engineering. They provide insulation to vehicles exposed to severe heating conditions. Phenolic resins are widely used in such composite materials due to their outstanding thermal properties attributed to the three-dimensional network of aromatic structures arising from polycondensation reactions between phenol and formaldehyde. However, such chemicals exhibit a negative health, safety and environment profile which induces a high risk of obsolescence for any material involving such precursors. Therefore, highly processable ablative thermosetting polymers leading to char yields higher than 50 % (at 900 °C under inert atmosphere) were developed based on environmentally more favorable chemicals. Two solvent-free resins are proposed. The first option is a commercially available grade of poly(furfuryl alcohol). The manufacturing of composite materials demonstrated the high potential of the proposed formulations. The second option was obtained at the lab scale from the introduction of propargylic functions onto aromatic precursors which can be obtained from biomass conversion processes. The optimization of the formulations led to highly promising thermal and thermomechanical properties. The manufacturing of composite materials is required to demonstrate the ablative behaviour of the proposed new thermosetting formulations
Bru, François. "Hydrophobisation de matériaux biosourcés cellulosiques." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. https://thares.univ-grenoble-alpes.fr/2023GRALV004.pdf.
Full textThis PhD thesis have been made in the frame of a European project, where the objective is to produce a 100% cellulosic food packaging material that would be biobased, biodegradable and recyclable. Microfibrillated cellulose films, have shown interesting barrier properties to grease and oxygen. However, the barrier properties to water and water vapor of such film are very poor because of the hydrophilic nature of cellulose. A process of chemical modification named chromatogeny and used at pilot scale, consists to the deposition, diffusion and grafting of fatty acids at the surface of cellulosic materials to bring them hydrophobic properties. This technology has shown interesting results in the case of porous cellulosic substrates but present some grafting limitations when applied to dense structures such as microfibrillated cellulose film. In this PhD work, the objective was to bring a better understanding about the diffusion and grafting phenome in a dense microfibrillated cellulose film as well as the structure and water barrier property relationship. To do so, a gas phase process established at lab scale and already used for cellulose aerogel grafting have been investigated. In a first step, a new gas phase reactor has been designed in order to have temperature profiles to study the vaporization and condensation phenomena. Then, this process has been used to modify cellulose aerogel, using reagent with different chain length. One goal was to find the process parameters that allow to have a modification restricted to the surface or that modify the core of cellulose aerogel. In a second step, this gas phase process was used to modify microfibrillated cellulose films. Firstly, a structure modification protocol has been determined and has shown the increase of the specific surface area and the porosity of the microfibrillated cellulose film. Then, those structure modified films have been grafted using the gas phase process and different level of grafting have been reached. Different level of hydrophobic properties has also been reached and correlated with the substitution degree. Finally, a theoretical study has investigated the penetration depth of the grafting reagent in the microfibrillated cellulose film thickness. Molecular modeling and a calculation based on the volume expansion of the film are the tools that have been used. Those calculations have shown a very high increase of the thickness linked to the chemical modification with a fatty acid which have been confirmed by the measurements of the thickness of gas phase modified films. Also, a coloration technic was used to show the location of the grafting reagent in the thickness of a modified film
Goument, Caroline. "Caractérisation, mise en forme et recyclage de polymères biosourcés pour le développement d’un procédé de fabrication plastronique respectueux de l’environnement." Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0109.
Full textIn the majority of cases, electronic objects in our everyday life have a plastic casing made of petrochemical polymer materials. Today, replacing the petrochemical-based materials with more environmentally-friendly ones is a necessary transition. 3D plastronics is an emerging field of research than can overcome some of the limitations of conventional electronics, particularly as it requires to redefine the polymer substrates. This PhD is part of the BIOANTENNA project of the AURA Region's Ambition Research Pack, whose goal is to manufacture an innovative electronic device in terms of the materials used and the functionalities of the electronic circuit. In this thesis, we study a mass production process for electronic devices called In-Mold Electronics (IME). It comprises three main stages: screen printing, thermoforming and injection molding. In the state of the art, the reference polymer in IME is PolyCarbonate (PC). Our goal is to replace PC with a more environmentally-friendly material: Poly(Lactic Acid) (PLA). Over the last ten years, this polymer has been the subject of numerous studies in order to use it as an alternative to petrochemical-based engineering polymers. PLA is the most widely used biosourced polymer today. It is also biodegradable in industrial composting, which could provide a solution for end-of-life products and make it suitable for use in the circular economy. This manuscript is divided in two main parts : one regarding the manufacturing of a plastronic device using IME and PLA, and the other on the dismantling of the IME devices manufactured in the first part
Fache, Maxence. "Fonctionnalisation et polymérisation de dérivés phénoliques naturels : Vers des matériaux aromatiques biosourcés Vanillin, a key-intermediate of biobased polymers Vanillin, a promising biobased building-block for monomer synthesis Biobased epoxy thermosets from vanillin-derived oligomers Amine hardeners and epoxy cross-linker from aromatic renewable resources Epoxy thermosets from model mixtures of the lignin-tovanillin process." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2015. http://www.theses.fr/2015ENCM0014.
Full textThe background of this work is the synthesis of bio-based polymers, a very active area of research. Epoxy thermosets were chosen as target because of the double problematic of bisphenol A substitution and of renewable resources use. Thus, the aim of this work is to prepare bio-based epoxy thermosets and to evaluate their potential as substitutes of current formulations. In order to display good thermo-mechanical properties, these polymers have to be prepared from renewable aromatics. Indeed, aromatic cycles bring rigidity and thermal stability to the network. Vanillin is one of the only aromatic molecules available from biomass at an industrial scale. It is obtained from the alkaline oxidative depolymerization of lignin. Recently, the preparation of renewable polymers from vanillin has been intensively explored; a review on this subject was compiled. Vanillin served as a building-block to prepare a platform of derivatives bearing various functions. Di-amine, di-epoxy, or di-(cyclic carbonate) monomers – among others – were synthesized. The di-epoxy monomers prepared were cross-linked with a common amine hardener and the polymers obtained were characterized. Their thermo-mechanical properties were linked to the monomers structure. These potentially bio-based epoxy thermosets have properties comparable to the bisphenol A-based reference. In order to tune these properties, vanillin-based epoxy oligomers were synthesized by the same method as the one used industrially. The properties of these oligomers and of the thermosets prepared from them could indeed be modulated. Other means of controlling the properties were tested, like the preparation and polymerization of new bio-based amine hardeners, or of a vanillin-based, tri-functional epoxy monomer. The thermoset prepared from this last compound displayed better properties than the bisphenol A-based reference. Finally, a work more centered on the resource was performed. Mixtures of phenolic compounds modelling the products of the lignin-to-vanillin process were prepared. The use of such mixtures instead of pure vanillin could be advantageous both from an economic and an ecologic point of view. These mixtures were glycidylated, polymerized, and the materials obtained were characterized. The excellent properties displayed by these materials allow a potential integration of this strategy in a bio-refinery
Cousinet, Sylvain. "Evaluation de nouvelles matrices organiques biosourcées sans styrène pour composites SMC." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0149.
Full textDue to their good mechanical properties, low density, low cost and good surface properties, SMC composites (Sheet Molding Compound) are suitable for manufacturing half-structural automotive parts. These materials are mainly based on a unsaturated polyester resin (UPR), thermoplastics as low profile additives, calcium carbonate as filler and chopped glass fibers. Current environmental and socio-economic concerns motivate automotive manufacturers to use bio-based materials in order to reduce the use of crude oil reserves and to find an alternative to styrene (VOC, hazardous air pollutant, potential carcinogen) which is used as reactive diluents (RD) in UPR. The aim of this work was to develop a bio-based organic matrix (UPR and low profile additive) for SMC composites with a similar processability and same level of performances compared to petroleum-based analogs. The first part of this work describes the evaluation of new bio-based reactive diluents (MMA, BDDMA, BDDVE, EDI, IBOMA and LMA) as styrene substituents for UPR, taking into account SMC process requirements. Selected resins were polymerized and the obtained networks characterized. Copolymerization mechanism was studied and allowed to highlight the influence of the chemical nature of unsaturations and the functionality of reactive diluents on network properties. Due to its low viscosity, low volatility and high flashpoint, BDDMA is a good candidate to replace styrene in UPR. Next part was dedicated to the characterization of bio-based unsaturated polyester and low profile additives. Several organic matrices were formulated with different low profile additives, then polymerized and characterized. The influence of the low profile additive nature and content on the polymerization shrinkage and mechanical properties of the material was evaluated. SMC composites were manufactured at the pilot scale and characterized in order to study the final properties of bio-based composites. The best shrinkage control is obtained with low-Tg additive (bio-based saturated polyester). Nevertheless BDDMA-based network is very brittle, so a next step of our work was to introduce a monofunctional methacrylate (MMA, IBOMA and LMA) into the matrix in order to decrease the crosslink density of the network and improve its impact resistance. The influence of the methacrylate nature and content on the structure and mechanical properties of the polyester networks was highlighted. Finally, a new bio-based RD, vinyl levulinate, was evaluated to replace styrene in UPR. Its copolymerization mechanism with UP was studied and related to the structure and mechanical properties of the network
Rodier, Jean-David. "Nouveaux copolymères biosourcés à blocs polytriméthylène éther pour applications cosmétiques." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI053.
Full textThe aim of this project is to prepare some new hydrophilic biobased copolyethers for cosmetic applications, similar to those of polyethylene glycol (PEG). Synthesis of polytrimethylene ether glycol (PTEG) which has a chemical structure close to the PEG was studied by polymerizing 1,3-propanediol (PDO) with sulfuric acid as catalyst. This acid catalyst is appropriate to promote the polymerization of PDO without excessive degradation. We tried to increase the solubility of PTEG in water by combining to PDO units hydrophilic monomers, such as isosorbide and glycerol, to the PDO units. We showed that etherification of isosorbide and PDO (or PTEG), in the presence of acid catalyst, gives new copolyethers structures, deeply characterized by NMR and mass spectroscopy. These copolyethers are preferably ended by isosorbide units due to different reactivity between isosorbide and PDO. The etherification of the PDO and glycerol with sulfuric acid results in a cross-linked and degraded product. Basic catalytic route favored the polymerization of glycerol on itself rather than the etherification on PDO units. We also grafted glycerol carbonate on PTEG oligomer but obtained a complex composition mixture rich in polyglycerol. The most promising products of the study are PDO and isosorbide copolyethers with a molar mass of 600 g/mol, obtained by etherification with sulfuric acid as catalyst. These copolyethers have chain ends constituted by isosorbide units, are water soluble and have a higher thermal stability compared to PTEG
Hadj, kacem Yosra. "Synthèse, caractérisation et propriétés des oligoesters et composites sulfonés biosourcés." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI044/document.
Full textThe research conducted in this thesis was achieved in the context of vegetal biomass valorization. It aims to develop a new family of aliphatic oligoesters from biobased monomers and incorporating into their structure sulfonated groups. This choice is justified by the following three considerations. (i) This is a contribution to the valorization of vegetal biomass. (ii) The presence of sulfonated units in the structure of this type of polymers gives them specific physicochemical properties favoring their use in various industrial sectors. (iii) These oligoesters can be subsequently used for the preparation of poly (ester-urethane) networks and ionic liquid-based composites with potentially interesting thermomechanical properties and a great tendency towards hydrolytic degradation
Pin, Jean-Mathieu. "Matrices thermodurcissables époxydes et furaniques biosourcées – conception d’assemblages macromoléculaires." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4027/document.
Full textThe research work presented in this thesis was oriented on advanced thermoset materials and also on the conception of bio-based polymers and composites. This last topic has been investigated by the combination of different bio-based raw materials which are well-known to have a great potential to substitute the petroleum monomers. Firstly, a fundamental work has been done on the combination of epoxidized linseed oil (ELO) and anhydrides as cross-linkers, which links the polymerization reactivity with the network structure and thermomechanical properties. For being economically realistic, the bio-refineries are urged to valorize the sidestream products issued from biomass conversion. In that respect, a second study investigated successfully the incorporation and copolymerization of an important amount of humins (heterogeneous residues obtained during the sugar conversion into hydroxymethylfurfural (HMF)) with furfuryl alcohol (FA) in order to create new resins. Another proposed combination, focused on ELO and FA cationic copolymerization with the purpose to create new fully bio-based resins with tailored mechanical properties. Concerning the elaboration of advanced polymers and composites, a reflection around the hierarchically organized natural materials has been achieved in order to adapt the self-organization and structuration concepts to polymeric network
Ben, Achour Mohamed Aymen. "Etude des propriétés piézoélectriques du polymère biosourcé PLA pour la récupération d'énergie vibratoire." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2021. http://www.theses.fr/2021UPHF0025.
Full textThe potentiality of PLA films produced by extrusion and uniaxial stretching by MDO of industrial grades has been investigated for the energy harvesting by piezoelectric transformation. A piezoelectric coefficient characterization technique suitable for polymer films was tested and validated on a commercial PVDF piezoelectric film. It was then used to evaluate the d14 coefficient of PLA films. A study on the effect of structural parameters of the PLAs on their piezoelectric behaviour was carried out. An energy recovery test bench based on the application of dynamic tensile strains was used to assess the capability of PLAs to convert mechanical vibrations into electrical energy. A comparison with commercial PVDF was carried out. An equivalent electro-mechanical model was developed and made it possible to describe the evolution of power as a function of mechanical stress conditions for different grades of PLA as well as for PVDF. This model, was used to predict the effect of the variation of the various intrinsic parameters (mechanical and piezoelectric qualities of polymers) and extrinsic (characteristics of the vibratory source and electrical impedance matching). Finally, for future applications, we evaluated the potentiality of PLA (in film or textile form) for applications as a dynamic deformation, dynamic force and shock sensor and also for ultrasonic emission and reception
Freyermouth, Floriane. "Etude et modification des propriétés du poly(butylène succinate), un polyester biosourcé et biodégradable." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0009/document.
Full textWithin the frame of sustainable development, biobased and biodegradable polymers are going to play an important role according to economic and environmental perspectives. The polyolefins currently used in packaging and automotive industries will be replaced by biomaterials. The poly(butylene succinate), an “old” aliphatic polyester, has recently regained interest thanks to its biobased and biodegradable potential and mechanical properties similar to polyolefins. However, this polyester is very sensitive to degradation even at mild ambient conditions and, even though its flexibility is comparable to polyethylene or polypropylene, its modulus is too low. Some modifications of the chemical structure were considered to improve the long-term use of PBS. The synthesis of random copolymers using long-chain fatty acid Pripol 1009 or terephthalic acid allows to reduce significantly the hydrolysis rate and properties are maintained during a longer time. The incorporation of fillers like calcium carbonate and talc also enhance the PBS stability. The addition of calcium carbonate neutralizes carboxyl terminal group, which play an autocatalytic role in the hydrolytic degradation. High aspect ratio of talc increases the gas and liquid diffusion path, reducing permeability and providing better barrier properties to the material. In order to improve Young’s modulus, formulating blends with mineral fillers like calcium carbonate and talc, or with more rigid polyesters like polylactic acid or poly(butylene terephthalate) are efficient. The most interesting results are obtained by using calcium carbonate and polylactic acid, which allow the preservation of PBS’s flexibility. Processing parameters should be maximized to limit the degradation of PBS. Combinations of the most interesting solutions were investigated and lead to materials which fulfill the required specifications
Cousin, Thibault. "Synthesis and molecular modelling of bio-based polyamides." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00952848.
Full textDuaux, Gabriel. "Polymères biosourcés issus de LTTM {glucide polyacide carboxylique eau} : Élaboration et applications dans les matériaux carbonés réfractaires." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI119.
Full textRefractory carbon/carbon composite materials consist of carbonaceous granular fillers shaped with a carbonisable binder. Until now, the binder used has generally been coal tar pitch, which is carcinogenic and covered by REACH. In order to replace it with a product that is more respectful of the environment and of the health of handlers, we are proposing an innovative solution in this thesis work. Carbohydrates, and more particularly sugars, are carbonisable compounds with a low carbon yield. In the presence of polycarboxylic acid, they can form a low transition temperature mixtures characterised by a eutectic or a lower flow temperature than that of its constituents taken separately. This type of mixture is capable of reacting at temperatures of the order of 100°C, thus lower than those commonly required for esterification reactions. This behaviour is similar to that already described for BADES (Brønsted Acidic Deep Eutectic Solvent). Under these conditions, linear and branched (ester-co-oside) copolymers are obtained which lead to a poly(ester-co-oside) network by continuing the reaction under vacuum. By choosing the constituents and controlling the reaction time, it is possible to control the viscosity of the polymers for use as a binder in carbon/carbon composites with granular fillers. In this case, we have shown that the use of polycarboxylic acids has three advantages: i) when mixed with sugars, LTTMs (Low Transition Temperature Mixtures) that are liquid at room temperature are formed, which facilitates their use in the process, ii) they act as a reagent and catalyst for the polymerisation of sugars and iii) they make it possible to increase the carbon yield of the binders. These results are very promising for the manufacture of refractory carbon/carbon composites as an electrode for alumina electrolysis
Breilly, Damien. "Synthèse d'adjuvant pour l'industrie du béton via la fonctionnalisation de lignines industrielles et la conception de nouveaux polymères biosourcés." Electronic Thesis or Diss., Paris, AgroParisTech, 2022. http://www.theses.fr/2022AGPT0010.
Full textThe concrete industry is one of the most important, but also the most polluting industries of the 21st century due to the cement manufacturing. Many solutions exist in order to reduce its environmental impact, unfortunately they result in a significant drop of the properties of concrete in terms of fluidity, workability during time and mechanical resistance. The use of organic adjuvants allows recovering these properties, but these are petro-sourced and their synthesis is not currently sustainable. Here in, we have proposed prospects for replacing the petrochemical superplasticizers by biosourced (macro)molecules.These (macro)molecules must, at the same time, adsorb themselves on the cement but also possess a repulsive effect leading to the lowering of the critical stresses of the cement paste for the same quantity of water. To reach these performances, we presented here two strategies: (1) the chemical and enzymatic modification of an industrial lignin (i.e., sodium lignosulfonate), as well as (2) chemo-enzymatic synthesis routes for new bio-sourced monomers from vanillin, as well as their polymerization by the ADMET route, making it possible to obtain post-functionalizable polymers.The macromolecules resulting from these two strategies were then tested on cement slurry to determine their adsorption property as well as their fluidizing power. Although a non-negligible effect of these molecules on the rheology has been demonstrated, the preliminary results have not revealed properties comparable to those of the currently used superplasticizers. Nevertheless, the great flexibility of the developed synthetic routes and the structural design of the monomers should allow to modulate the properties of these new macromolecules, thus opening the way to future developments of adjuvants
Hammami, Nadia. "Synthèse et étude des propriétés physico-chimiques de polymères biosourcés à base d'isosorbide." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS127.
Full textThis research work aims to valorise isosorbide (IS) for biobased polymeric materials using original methods. After a short introduction of this molecule, we presented the different synthesis pathways and application fields of chemical and polymers already developed in scientific community. These compounds are classically obtained through many functionalization/synthesis steps with processes far away from green chemistry. Our first strategy based on the development of polyacetals derived from isosorbide (PAIS) was explained. A reaction scheme involving isosorbide with methylene halogenate in a non-toxic solvent (DMSO) was retained. The influence of different experimental parameters (stirring mode, reaction period and stoichiometry) was carefully analysed. Best results were achieved with high-speed mechanical stirring (more homogenous reactive solution, quantitative yield). The highest isosorbide concentrations led to the exclusive production of linear polyacetals (L-PAIS) whereas a low concentration under magnetic stirring conditions induced the formation of cyclic oligomers. Other macro-cycles (C-PAIS) with high molar weight were also produced. These different kinds of PAIS were characterised by various techniques (NMR, MALDI-TOF FTIR, SEC). Their physicochemical performances were also studied (TGA, DSC, rheology…) The length increase of polymer L-PAIS chains being challenged by cyclisation, we also explored lactide use (L- and racemic) as chain extender first by the reaction with IS then with L-PAIS. The La organometallic catalysis was more efficient than enzymatic pathway (PS lipase). Both chemical and physical analyses carried out with four polymeric grades derived from IS et lactide showed the added value of isosorbide molecule. Precise and reliable "structure-properties" relations including durability study were also led. Finally, similar approach could be applied for producing linear copolymers (PLLA-b-PAIS-b-PLLA and PRLA-b-PAIS-b-PRLA)
Gay, Swann. "Elaboration de matrices microcellulaires de polymère biosourcé par la technologie CO², supercritique." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0007.
Full textIn the present context, where the preservation of resources and sustainable development became the main issues of this century, the production of more efficient and environmentally friendly materials is essential. Thus, this work deals with thedevelopment of biobased polymeric porous matrix using SC-CO2. The use of PLA makes it possible to produce 100% biosourced and biodegradable matrices, while the use of CO2-SC reduces the ecological impact of the shaping processes. In a first step, a parametric study of PLA matrix shaping by a thermal induced phase separation (TIPS) method coupled to CO2 drying was performed. Low density microcellular matrices were obtained with tunable structural and mechanical properties. The whole process was analyze by life cycle assessment and the results showed that SC-CO2 replacing freeze drying has reduced the environmental impact between 50 and 90%. Secondly, a phase separation in situ study by tomography-X synchrotron radiation tomography allowed us to better understand the mechanics of our process. Finally, the last part of this work was devoted to the implementation of a solvent free process, using SC-CO2 as a blowing agent. The results obtained were used to carry out a comparative study of the two processes developed
Ghorbel, Inès. "Elaboration, caractérisation et mise en œuvre de matériaux polymères à base de polysemicarbazides et polyester furanique bio-sourcés." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0013.
Full textThis work aims at elaborating, characterising and processing polymer materials based on bio-sourced polysemicarbazides and furanic polyesters. The study has three main parts : Synthesis and optimisation of the synthesis of poly(acylsemicarbazide)s, elaboration of polymer blends based on furanic polymers (PEF or PSC) with PET, PLA and PHA and elaboration of new furano-aliphatic copolyesters by ring opening polymerisation (PEF/PCL) or by inter-exchange reactions between ’homopolymers (PEF/PCL, PEF/PLA et PEF/PHA) in the melt. The first chapter reports on the synthesis of a serie of bifuranic dihydrazides and on the study of their reactivity with several aromatic diisocyanates in order to elaborate furano-aromatic polyacylsemicarbazides. The behaviour of model monomer systems in various experimental conditions is studied in order to d’optimise the polycondensation processbefore transfering it to several monomer combinations. In the second chapter, we study the elaboration of new materials based on furanic polymers (PEF or PSC) blended with polyesters in the melt. 3 kinds of blends based on furanic polyesters / aliphatic and aromatic polyesters. The third chapter is devoted to the synthesis of furanic polyesters with controlled ends : dihydroxy-PEF (PEF di-OH), dicarboxylate-PEF (PEF di-COOH), diethylester-PEF (PEF di-COOEt) as well as PEF with mixed ends (PEF di-OH/COOEt). The latest have been used for the elaboration of new furano-aliphatic polyesters by ring opening polymerisation (PEF /PCL) or after interexchange reaction in melt homoplymer blends (PEF/PLA, PEF/PHA and PEF/PCL)
Raj, Amulya. "Development of Biobased Poly(L-Lactide)/Polyamide Blends with Improved Interfaces and Thermo-Mechanical Properties for High-Performance Applications." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2019. http://www.theses.fr/2019MTLD0011.
Full textThe major objective of this thesis is to enhance the (thermo)mechanical properties of biobased poly(lactic acid) (PLA) to reach high performance/durable applications. Polymer blending with engineering polymers is an effective approach to improve these properties and polyamides (PA) were selected for blending with PLA due to their inherent high ductilities, high impact toughnesses, high thermal resistances coupled with a potential production from renewable feedstocks. Various biobased polyamides such as polyamide10-10, polyamide10-12, polyamide11 and polyamide12 were blended with PLA in a twin-screw extruder. Thorough characterizations such as morphology, rheology, surface tension, mechanical testing and thermal properties of PLA/PA blends were performed to assess the apt polyamide for PLA. Polyamide12 (PA12) was found to be the ideal candidate for PLA with a low PLA/PA12 interfacial tension, very good PA12 dispersion into PLA and enhanced (thermo)mechanical properties for PLA/PA12 blends compared to other PLA/PA blends (higher ductility and impact strength with significant increase in thermal resistance). To further enhance (thermo)mechanical properties, two different strategies were attempted namely compatibilization with a reactive PLA-graft-maleic anhydride (PLA-g-MA) and optimization of the extrusion processing parameters. In the former classical compatibilization strategy, PLA-g-MA was incorporated as a compatibilizer in PLA/PA12 blends and PLA-g-MA content was optimized with respect to various properties such as morphology and (thermo)mechanical. It was observed that 1 – 2 wt.% PLA-g-MA could induce significant improvements of the PLA/PA12 ductility, impact strength and thermal resistance. The latter strategy involved the optimization of extrusion parameters such as screw speed and feed rate. PLA/PA12 blends were extruded at various screw speeds (200 - 1100rpm) and feed rate (2 - 5kg/hr) on a pilot twin-screw extrusion line. The screw speed has a profound impact on the blend properties. The best (thermo)mechanical properties were archieved for an optimal screw speed of 800 rpm followed by a dramatic deterioration of the blend properties at extreme screw speed. Such effects are discussed based on the generation of fibrillary PA12 structures and PLA macromolecular degradation during high shear extrusion. In conclusion, remarkable improvements in (thermo)mechanical properties were achieved by blending PLA with PA12. Amongst the strategies employed to further enhance the properties, the optimization of extrusion parameters represent a cost-effective approach compared to classical compatibilization. PLA/PA12 blends could be a potential candidate for the replacement of petrosourced counterparts used in high-performance applications, in particular electronic casing applications
Chrysanthos, Marie. "Novel biobased epoxy networks derived from renewable resources : Structure-property relationships." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00782119.
Full textBlache, Héloïse. "L'isosorbide en tant que composant pour les polyuréthanes." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI026.
Full textIn the recent years, renewable material design has become a key issue. Finding new bio-sourced monomers for plastics is a major concern for transition toward greener materials. Isosorbide (ISO), a bio-sourced and aliphatic secondary diol, is thus studied as a monomer for polyurethane composition synthesis, especially thermoplastics and coatings. It could be a valuable replacement for the use of 1,4-butanediol (BDO). In a first part, isosorbide is used as a chain extender for the synthesis of elastomeric materials, in combination to 4,4'-diphenylméthylenediisocyanate (MDI) and various macrodiols such as polytetrahydrofurane (PTMEG) and an oligoester derived from vegetable oils (FADM). Thermomechanical analysis of the obtained materials has shown that hard segments based on ISO and MDI are less favorable to crystallization than the one based on MDI and BDO, and are generally more miscible with the soft phase. However, this effect can be controlled by the proper choice of the soft phase combined to the hard segments based on MDI/ISO. In a second part, isosorbide was added in thermoplastic compositions based on isophorone diisocyanate (IPDI). Those materials have a different microstructure depending on the used macrodiol. Compositions based on FADM show phase segregation while those based on PTMEG are more homogeneous. However, mechanical properties of those materials were poor as a chain length allowing the appearance of chain entanglements was not reached. In a last part, cross-linkers were added to IPDI and ISO-based compositions in order to obtain cross-linked polyurethane coatings for steel substrates. Tests carried out in solvent-phase have allowed to design a composition with low ratio of volatile components, and the use of a non-toxic solvent. Obtained coatings were mechanically and thermally characterized, and ISO seems to enhance adhesion and impact resistance. This work shows that isosorbide could become a very useful building block for design of bio-polyurethanes, and that it can also be used with non-conventional building blocks to obtain innovative materials such as those made from IPDI. Applications in automotive, pharmacology, clothing or sport are possible
Saadaoui, Asma. "Développement de nouveaux monomères biosourcés à base d’Isosorbide et applications à la synthèse de matériaux à applications spécifiques." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1036.
Full textThe isosorbide and its derivatives are chiral diols obtained from cornstarch. The use of the latter as a monomer for the development of polymers has proved to be effective. The diols match the properties of conventional polymers. As part of this thesis, the diols are used to synthesize new platforms of bio based AA and AB from the 1,4: 3,6 - dianhydrohexitols monomers. The synthesis of intermediaries based on dinitriles or mononitrilies and their derivaties starting from the three isomers as well as the test results from one of these promising monomers polymerization which have been described. The resulting polymer revealed semi-cristallin through stereoregulier AB monomers layout. This work is also the first to describe the use of the reticulants chiral at base of 1.4: 3, 6-dianhydrohexitols participating in the formation of three-dimensional network for the development of polymers to footprints (MIP) Excelsior for detection of Methyltestosterone (MT). The polymers synthesized by polymerization have been characterized by precipitation. The properties of retention were evaluated in batch mode by HPLC-MS/MS. These MIPs present good properties of adsorption towards the MT with factors of footprint greater than 1 showing the effectiveness of printing. These materials have a good ability of adsorption compared to literature. Unprinted polymers (PIN) have shown even greater adsorption capacity than the conventional MIP. The high adsorption capacity was observed in cMIP-Is based on isosorbide for the concentrations (500 mg L-1). The experimental data have been studied according to Langmuir and Freundlich adsorption models to interpret the phenomena of adsorption these developed cMIP have been adapted for the methyltestoterone on the phase of extraction (SPE) solid. An extraction procedure has been developed leading through a full optimization finalized by an application in wastewater
Vo, Van Son. "Élaboration, caractérisation et simulation de nanocomposites argile-polymère : des nouveaux matériaux pour l'éco-conception." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1162/document.
Full textClay nanoparticles (CNP) are abundantly available low-cost natural resources with numerous positive attributes such as large surface area, impermeability to gas, superior mechanical and thermal properties so that they have attracted over the last three decades significant attention, notably for the reinforcement of polymer-based materials. However, CNP suffer from incompatibility, hence weak interfacial interactions and poor dispersion with/in most of organic polymeric materials because of their intrinsic hydrophilicity and strong interlayer interactions. This limitation is one of the major reasons why polymer nanocomposites have to date remained mainly in laboratories. Thus, one of the key challenges in developing clay-based polymer nanocomposites (PCNs) with advanced thermo-mechanical, gas barrier...properties relies on the control at the molecular level of the interface properties of clay nanoplatelets-filled polymer resins. Taking into account the criteria for sustainable development, civil engineering and green economy, we have developed, in the first part of this thesis, reactive and pre-exfoliated clay nanofillers that may be further incorporated in a diverse set of biopolymer matrices and giving rise to strong energy interactions with the said matrices for improved mechanical behavior. To ensure a closer fit of these specifications we have implemented green approaches for the preparation of these generic nanofillers, namely photopolymerisation was used as a low energy consumption and fast method for the surface functionalization of native clays, solvent-free protocols were applied to prepare polymer nanocomposites, while biopolymers (starch, cellulose) or bio-based precursors (epoxidized vegetal oils) served as dispersion media. By controlling the preparation conditions, reactive clay nanofillers with adjustable interlayer spacing and chemical surface reactivity were prepared. Of particular interest is that the layered-like structure of the clay nano ller is preserved while the d-interlayer spacing can be increased though increasing the photopolymerization time, i.e. amount of polymer within the clay nanosheets. Our major results from the the first part can be summarized as follows: Morphology and reactivity of clay nanofillers are easily controlled though adjusting the photopolymerization time and selecting adequate vinyl monomer. - The newly preparation methods allow preparation of samples beyond the gram-scale. - Reactive and surface chemistry of pre-exfoliated clay nanofillers can be tuned to provide compatibility with both conventional preformed biopolymers and bio-based epoxy resins. - The mechanical properties of the resulting polymer nanocomposites are improved as compared to the neat polymeric matrices owing to the strong interface interaction between fillers and dispersion matrices
Bougarech, Abdelkader. "Nouveaux copolyesters furaniques sulfonés : Synthèse caractérisation propriétés." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0074.
Full textThe research conducted for the preparation of this thesis is devoted to develop a new family of furanic copolyesters incorporating in their structure sulfonated and pyridinic units. This choice is justified mainly by the following three considerations: (i) the presence of sulfonated units in the poly(ethylene-terephthalate) structure gives to this kind of polymer a specific physicochemical properties favoring its use in various industrial sectors in a detergents and in textiles domains (ii) the presence of furanic unit could lead to the biodegradability of these materials (iii) Pyridinic units confer to these polymers an optoelectronic properties (electrical conductivity, photoconductivity and luminescent properties) favoring its use in various applications , in the space and aeronautics fields
Tremblay-Parrado, Khantutta-Kim. "Synthesis by click chemistry of biobased polyurethane networks with advanced properties." Thesis, Strasbourg, 2020. https://publication-theses.unistra.fr/restreint/theses_doctorat/2020/TREMBLAY-PARRADO_Khantutta-Kim_2020_ED182.pdf.
Full textThe modern era was revolutionized by the invention of plastics and as such have gained prevalence in most aspects of our daily lives, causing an increasing appearance in landfills and oceans. For this reason, sustainable polymer design should not only require the use of renewable resources, but also factor in advanced properties to manage the end-of-life materials for the reduction of energy use, resources and waste. Developing covalent adaptable networks (CANs) has emerged as an interesting alternative to address this problematic, but with little to no application in the domain of biobased polyurethanes. In this work, we utilize the thermoreversible Diels-Alder reaction of the furan-maleimide coupling for the synthesis of vegetable oil derived polyurethanes (PUs) with thermo-reversible cross-linking points. Two new building blocks derived from sunflower oil, bearing furan and maleimide moieties, were obtained and incorporated into the synthesis of biobased PU networks. The obtained PU networks yield promising results in terms of polymer properties, thermal recyclability and heat-induced self-healing. The synthesized PU networks provide a stepping-stone in the development of biobased CANs
Sliwa, Fabien. "Etude de nouveaux composites de source renouvelable à base de copolyamide et de farine de bois." Thesis, Pau, 2011. http://www.theses.fr/2011PAUU3020.
Full textThe physical properties and thermal stability of a new family of wood polymer composites (WPC) using a bio-based thermoplastic elastomer matrix (pebax® copolymers) were studied. The matrix is a polyether-b-amide thermoplastic elastomer which presents an important elongation at break, a melting point below 200°C which helps prevent degradation of wood fibres. The hydrophilic character of pebax® leads to a good interaction with wood fibres. We have chosen several types of wood flour as reinforcement agent, focusing on wood flour from maritime pine. Composites compounds were made using a laboratory twin screw extruder prior to injection molding to obtain tensile test samples. We have demonstrated the good quality of the interface between wood fibres and matrix, without using any specific compatibilizing agent. Most importantly, we have pointed out a strong improvement of thermal stability of composites under air atmosphere, compared with the behaviour of the matrix or wood separately. We have also characterized the mechanical properties of these composites. The resulting data show an improvement of the tensile modulus with increasing wood content and a decrease of elongation at break, with a behaviour change from elastomeric to less stretchable solid behaviour between 20% and 30% of wood content.The last part of our work was dedicated to the evaluation of water absorption of thecomposites at different wood content. We have shown an increase of water absorption withincreasing wood content and we demonstrated a Fickian diffusion process at the onset ofwater absorption
Wendels, Sophie. "Synthesis and elaboration of new biobased hemostatic adhesives from bacterial polymers." Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAE006.
Full textPolyurethanes (PUs) are a major family of polymers used in a large range of fields. Moreover, they display a wide spectrum of physico-chemical, mechanical and structural properties. In this regard, they have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties. Nowadays, there is a need for more environmentally friendly and effective solutions for tissue adhesive purposes. In this frame, new renewably sourced PU-based hemostatic adhesives have been successfully designed. Chosen biomasses were mainly from bacterial ressources and vegetable oils, but not only. Many different adhesive formulations were obtained and characterized, and the developed adhesives offer a broad range of specific properties such as viscosity, curing time, tissue adhesion and exothermy. PUs, corresponding to the final adhesives chemical state in contact with the tissue, were also prepared and studied. They exhibited tailored physico-chemical, thermal and mechanical properties, close to diverse tissue native mechanical properties. Cytotoxicity and degradation, which are key parameters for biomedical applications, were also investigated
Muralidhara, Anitha. "Physico-chemical safety issues pertaining to biosourced furanics valorization with a focus on humins as biomass resource." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2508.
Full textThe present research work was integrated as part of the EU-funded project named HUGS (HUmins as Green and Sustainable precursors for eco-friendly building blocks and materials), involving 5 main partners (Institut national de l'environnement industriel et des risques - France, Avantium - the Netherlands, Institut de Chimie de Nice - France, Universidad De Cordoba- Spain and Leibniz - Institut Fur Katalyse Ev An Der Universitat Rostock- Germany). The project is essentially supported through five European Industrial Doctorate fellowships put in place when the HUGS-MSCA-ITN-2015 program was launched in 2016. The primary objective of the HUGS project was to explore several valorization pathways of so-called “humins” in order to add value and create better business cases. Humins (and similarly lignins) are the side products that may become low-cost feedstock resulting from a number of future biorefineries and sugar conversion processes. Humins are complex residues resulting from the Acid-Catalyzed Dehydration and condensation of sugars, having furan-rings in their polymeric structures. The work presented in this specific part of the HUGS project is essentially focusing on safety-related topics of all components and subsequent applications related to sugar dehydration technology. Priority actions were devoted to a first insight on the characterization of physicochemical safety profiles of the side-product humins and main (parent) furanic products. Some members of this large family of compounds (e.g. RMF and FDCA) have high volume potential which results in opening new doors towards the development of furanbased building blocks and a bio-based economy. Humins are residues or side products which can be burnt for energy. However, its safe and sustainable use in high-value applications could also become a key milestone in the so-called circular economy. In practice, the work has been developed in two main locations: primarily at the INERIS lab, located in Verneuil-en-Halatte and at Avantium, located in Amsterdam. Nearly all experimental research after the production of the components at Avantium was performed at INERIS. This involved the evaluation of physicochemical hazards of both humins (crude industrial humins and humin foams obtained by thermal curing) and a series of furanic compounds. Avantium is involved in the commercialization of humins, furanics and furanic polymers/materials as novel chemicals and materials. The work has encompassed: An extensive bibliographical review of humins, furanics, and their related products (polymers, composites) resulted in the following main conclusions o A lack of physicochemical safety-oriented studies for many furanic compounds and for humins was observed as these products are still in the early stage of development and only a few may be commercialized in the next 5 years.o Despite the limited availability of safety-related data, more studies on toxicity aspects have been conducted for a selected number of furanics than physicochemical safety-related aspects. o A few furanic family members that have been evaluated as biofuel components were found to have given better emphasis on addressing some physicochemical safety attributes. o Every modification of the process for acid-catalyzed sugar dehydration (such as solvent, temperature, residence time and sugar concentration) will result in different humins, which would certainly demand further characterization and safety profiling of the resulting humins. • Analytical development integrating the first examination of flash point distribution versus the Net Heating Values, and analysis of total heats of combustion of furanic compounds. • Design and development of experimental plan addressing the safety-related key parameters such as thermal stability, self-heating risks, fire-risk-assessment and flammability limits depending on the need for specific tests and availability of the test samples
Giraud, Lauriane. "Bis-vanillin substrates as source of π-conjugated polymers for organic electronic." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0404.
Full textThe objective of this PhD is to synthesize π-conjugated bio-based polymers from vanillin, with potential applications in the field of organic electronic (photovoltaic, Organic Light Emitting Diode, OLED). Polyazomethines with high molar masses were obtained via the copolymerization of divanillin with various diamines. This polycondensation was performed in 5 minutes under microwave irradiation, followed by solvent removal using a rotary evaporator. Divanillin-based polyazomethines absorb in the near-UV range but have a short conjugation pathway, as revealed investigations on model compounds. To improve this conjugated pathway, a divanillin-based molecule bearing aldehyde functions in para positions with respect to the link between the rings, was designed. This so-called para-divanillin, never reported before, was copolymerized to yield polyazomethines. These latter polymers also have a short conjugation pathway due to steric hindrance between the two aromatic rings of the para-divanillin skeleton. A last family of divanillin-based polymers was thus investigated: polythiazolothiazoles. The latter exhibit specific emission properties as they emit in the blue range in solution and in the yellow range in films. Benzothiazole-based model compounds were also synthesized and exhibited a fluorescence quantum yield of 20% and “herringbone-like” π-stacking, giving them a strong potential for various organic electronic applications
Hanafia, Amira. "Étude des mécanismes interdépendants d’élaboration d’une membrane polymère sans solvant organique par une méthode originale de séparation de phase (TIPS-LCST), à partir d’un polymère biosourcé : l’hydroxypropylcellulose." Electronic Thesis or Diss., Montpellier 2, 2014. http://www.theses.fr/2014MON20045.
Full textPhase separation of polyer/solvent system is the most widespread industrial process to manufacture membranes. Large solvent quantity is usually used whatever the process, hence leading to environmental (coagulation and washing baths treatment) and health (industrial and plant safety) problems.This study focuses on the development of new porous membranes made from hydroxypropylcellulose (HPC), a water soluble polymer, avoiding the use of any organic solvent. Moreover, the thermo-sensitive character of this polymer, characterized by a Lower Critical Solution Temperature (LCST) in water of about 40 °C, enabled to design an original thermally induced phase separation process by temperature increase above the LCST. This study aims (i) to find the ideal polymer solution composition to produce insoluble HPC membrane, (ii) to approach and understand the link between phase separation mechanism by spinodal decomposition, crosslinkig reaction and water extraction by evaporation, (iii) characterize pure water permeability under pressure. On-line monitoring of phase sepration dynamics by phase contrast optical microscopy, crosslinking reaction by rheology and water evaporation by thermogravimetric analysis of the system HPC/water/cross-linking agent ± porogen (PEG200) allowed an understanding of simultaneous and related mechanisms occurring during elaboration (phase separation / cross-linking / water evaporation) and a correlation with HPC membrane morphologies and characteristics in relation with phase separation process parametres. Pure water permeability characterization demonstrated the efficiency of cross-linking and structural strength during several filtration cycles. Furthermore, it has been shown that water permeability of HPC membranes could be controlled in part by the temperature and the applied pressure
Hanafia, Amira. "Étude des mécanismes interdépendants d’élaboration d’une membrane polymère sans solvant organique par une méthode originale de séparation de phase (TIPS-LCST), à partir d’un polymère biosourcé : l’hydroxypropylcellulose." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20045.
Full textPhase separation of polyer/solvent system is the most widespread industrial process to manufacture membranes. Large solvent quantity is usually used whatever the process, hence leading to environmental (coagulation and washing baths treatment) and health (industrial and plant safety) problems.This study focuses on the development of new porous membranes made from hydroxypropylcellulose (HPC), a water soluble polymer, avoiding the use of any organic solvent. Moreover, the thermo-sensitive character of this polymer, characterized by a Lower Critical Solution Temperature (LCST) in water of about 40 °C, enabled to design an original thermally induced phase separation process by temperature increase above the LCST. This study aims (i) to find the ideal polymer solution composition to produce insoluble HPC membrane, (ii) to approach and understand the link between phase separation mechanism by spinodal decomposition, crosslinkig reaction and water extraction by evaporation, (iii) characterize pure water permeability under pressure. On-line monitoring of phase sepration dynamics by phase contrast optical microscopy, crosslinking reaction by rheology and water evaporation by thermogravimetric analysis of the system HPC/water/cross-linking agent ± porogen (PEG200) allowed an understanding of simultaneous and related mechanisms occurring during elaboration (phase separation / cross-linking / water evaporation) and a correlation with HPC membrane morphologies and characteristics in relation with phase separation process parametres. Pure water permeability characterization demonstrated the efficiency of cross-linking and structural strength during several filtration cycles. Furthermore, it has been shown that water permeability of HPC membranes could be controlled in part by the temperature and the applied pressure
Le, Delliou Benjamin. "Design of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based films for flexible food packaging in contact with fatty food and under frozen conditions." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASB033.
Full textThe main objective of the present thesis is to design a bio-based and biodegradable packaging material suitable for frozen French fries using the by-products of their fabrication. Two strategies were investigated. The first strategy was the fabrication of polymer blends based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which could be obtained by fermentation of by-products. PHBV-poly(butylene succinate-co-adipate) (PBSA) blends were designed with the aim to increase the processability and ductility of PHBV. Both polymers are immiscible, therefore the interfacial compatibility needed to be optimized. Reactive compatibilization using dicumyle peroxide (DCP) was successful and allowed the fabrication of PHBV/PBSA films by film blowing extrusion at the laboratory scale. The effect of DCP on morphological, thermal, mechanical and rheological properties was evaluated in the aim to optimize the composition at laboratory scale. To improve the mechanical properties of the films, the plasticizer acetyl tri-butyl citrate (ATBC) was used. The improved melt strength and extensional viscosity of the optimized blends allowed to perform a successful film blowing scale-up experiment to the small pilot scale using ATBC and an alternative organic peroxide LUPEROX® 101, both molecules being admitted for food contact materials. The second strategy was the direct use of waste starch and potato peels. For that, the biochemical characterization of potato peels was carried out, and the potential of extraction of high added value molecules coming was assessed. The possibility to produce potato peels and starch-based materials suitable for the fabrication of items with very short service life was investigated
Deleage, Fanny. "Formulations et modifications par extrusion réactive d'un mélange de polymères biodégradable et partiellement biosourcé." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES030.
Full textBiodegradable plastics need to be more and more competitive. This work, conducted between IMP@UJM laboratory and LCI company had the main objective of increasing the content of renewable materials in the biodegradable blend of poly(butylene adipate-co-terephthalate) (PBAT)/ thermoplastic flour (TPF), without decreasing its mechanical properties. The blend was obtained by a single step extrusion, including flour thermoplastification and blending with the polyester. The scientific challenge was to understand the relationship between processing parameters, the morphology establishment, the concentration of each phase of the blend and its mechanical properties. Then, these results were exploited in order to increase the mechanical properties of the mixture. The influence of the concentration of TPF and the viscosity ratio between the phases was highlighted over the entire concentration range. This highlighted the importance of controlling the interfacial tension of the blend. Mechanisms of the morphology establishment were proposed, as well as interpretations about its effect on the mechanical properties of the blend. Then, a study of the PBAT modification by reactive extrusion was proposed. The evolution of the polyester structure was characterized by size exclusion chromatography, according to various parameters including the mixing time. Finally, various modifications of PBAT/TPF mixture were tested. Modifying the PBAT, the TPF phase or the interface via the compatibilizers were studied in order to tailor the rheological, morphological and mechanical properties
Quitadamo, Alessia. "Influence of wood flour and cellulose on the properties and the stability of formulations based on polyolefins and bio-based polymers." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI015.
Full textThe objective of this research is the development of high-added value materials, with high amount of bio-derived fillers, resulting in a more eco-friendly product. The pursued strategy is based on both the introduction of natural fibres and the use of oil-based and bio-derived polymer blends as matrices, reducing the non-biodegradable amount in the material. The thesis project is based on the development of HDPE/PLA blends filled with natural fillers, such as wood flour and recycled paper fibres. High-density polyethylene has been chosen because it is one of the most representative recycled polymers on the market. Poly(lactic) acid has been selected as it is an important bio-degradable polymer on the market. The methodology developed here can be extended to other bio-degradable polymers, such as Soy Protein Isolate (SPI). Wood flour is a diffuse waste material, that can be used for production of Wood Plastic Composites. Recycled paper fibres are derived from industrial paper waste, which cannot be subjected to traditional recycling processes. Additives have been introduced in order to face the problem of different hydrophilicity between oil-based/bio-derived polymers with natural fillers. The optimal composition and production processes are challenges, not only for the use of these materials, but also for their disposal. The end-of-life of these samples can be evaluated through controlled bio-degradability and compostability, correlating material structure with the ability to biodegrade. The production of a material at reduced environmental impact with properties consistent with their applications is a first environmental advantage. Obtaining a controlled biodegradability, as a function of the applications, would give enhanced value to our materials. Several characterizations have been performed in order to analyse the effect of different compatibilizers and treatments such as: tensile tests, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analyses, infrared spectroscopy, size exclusion chromatography and composting tests
Falco, Guillaume. "Huiles végétales époxydées et alcool furfurylique : deux types de monomères pour l’élaboration de thermodurcissables et de composites biosourcés." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4155/document.
Full textThe work presents the elaboration of biobased thermosets and composites synthesized from epoxidized vegetable oils (linseed and soybean) and furfuryl alcohol (FA). A first area of research focused on the study of the polymerisation of FA into polyfurfuryl alcohol (PFA) (i) in protic polar solvents, (ii) in combination with wood and (iii) in the presence of new reaction initiators. In presence of solvents, the observed structural changes have been linked to the thermomechanical properties. Another PFA structure modification was obtained with 2,5 dimethylfuran. This work allowed a better understanding of the reactivity of FA within the wood and shows that the obtained wood/PFA composites have higher density and resistance than their non-modified equivalents. Finally, the initiation of FA polymerization by levulinic acid and p-toluene sulfonylhydrazine, respectively biobased and « latent » initiators has been studied. The second topic of thesis concerns a new type of fully bio-based epoxy resin synthesized from epoxidized vegetable oils. Linseed and soybean oils have both been copolymerized with a dicarboxylic acid as curing agent. A first fundamental work was to correlate the reactivity of copolymerization with the polymer structure and to link them with thermomechanical properties. The obtained thermosets have been used to prepare nanocomposites with sepiolite. Different methods of dispersion and/or modification of sepiolite conduct to diverse morphologies of nanofiller dispersions into the matrix
Otsuka, Yoko. "Films minces nanostructurés de domaines sub-10 nm à partir de copolymères biosourcés pour des applications dans le photovoltaïque organique." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV024/document.
Full textNanoscale patterning through self-assembly of block copolymers is one of the promising bottom-up strategies for controlling active layer morphology in organic photovoltaics. In this thesis, a new class of carbohydrate-based semiconducting block copolymers consisting of π-conjugated regioregular poly(3-hexylthiophene) (P3HT) and oligosaccharides were synthesized and self-organized into sub-10 nm scale periodic nanostructures. Two different diblock copolymers, i.e. P3HT-block-peracetylated maltoheptaose (P3HT-b-AcMal7) and P3HT-block-maltoheptaose (P3HT-b-Mal7) were synthesized via "click" reaction between end-functionalized oligosaccharide and P3HT moieties. A comprehensive investigation of their self-assembly behavior by AFM, TEM, and X-ray scattering analyses revealed that the P3HT-b-AcMal7 diblock copolymer has the ability to self-assemble into sub-10 nm scale lamellar structure, which is the ideal morphology of the active layer in organic photovoltaics and one of the smallest domain sizes achieved by self-assembly of P3HT-based block copolymers, via thermal annealing. Nano-patterned film made of P3HT was attained by selective chemical etching of AcMal7 block from microphase-separated P3HT-b-AcMal7 template without affecting the original lamellar structure. The resultant void where the etched-out AcMal7 block existed will be filled with electron acceptor compounds such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) for photovoltaic application as a perspective of this thesis. The results and knowledge obtained in this study are expected to provide further advances and innovation in organic photovoltaics
Hanani, Zouhair. "Conception de composite flexible céramique sans plomb/biopolymère pour des applications de stockage et de récupération d'énergie." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0288.
Full textThe existing energy storage and harvesting devices suffer from the moderate performances, low flexibility and the use of toxic compounds. This is how ceramic/polymer nanocomposite approach is highly promising for high-efficiency energy storage and harvesting applications, due to the high dielectric constant of the ceramic and the high breakdown strength, the flexibility and the ease of processing of the polymer. This thesis focuses on designing ceramic (BCZT)/polymer (PLA) nanocomposites for these applications. First, controlled syntheses of BCZT ceramics with different particle sizes, size distributions and shapes were performed and discussed. The effects of grain size and grain shape of BCZT ceramics on the dielectric properties were studied. It was found that the BCZT ceramic with near-spherical particles elaborated by low-temperature hydrothermal processing at 160 °C revealed enhanced dielectric and ferroelectric properties compared to the BCZT ceramics synthesized by other methods. Second, BCZT near-spherical particles BCZT nanorods and HZTO nanowires were embedded in the biodegradable PLA polymer matrix. The effects of the ceramic shape, arrangement, dielectric constant and aspect ratio on the dielectric constant of the nanocomposite were explored using the effective dielectric constant of the nanocomposite models. It was found that for improving the dielectric properties of the composite, it is important to control the ceramic fillers geometry rather the use of high-k ceramics. Afterwards, the energy storage properties of PLA-based nanocomposites were evaluated by D−E hysteresis loops, and high-energy storage performances were obtained in the nanocomposites based on rod-like fillers. The energy harvesting aspect was investigated by designing a bio-flexible piezoelectric nanogenerator (BF-PNG) based on BCZT/PLA nanocomposite film to convert the ambient mechanical energy to electrical energy. This BF-PNG could generate open-circuit voltage and short-circuit current of 14.4 V and 0.55 µA, respectively, and large power density of 7.54 mW/cm3 at a low resistive load of 3.5 MΩ, under gentle finger tapping. The feasibility of the BF-PNG was tested by driving commercial electronics (charging capacitors and lighting an LED). Accordingly, this work demonstrates that BCZT lead-free ceramic in combination with PLA biopolymer can lead to flexible nanocomposite with enhanced energy storage and energy harvesting performances for application in self-powered devices
Codou, Amandine. "La cellulose et le poly(ethylene 2,5-furandicarboxylate) comme précurseurs biosourcés de matériaux thermoplastiques et thermodurcissables : les transitions physiques des biopolymères et l'élaboration des composites." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4123/document.
Full textThe cellulose and the poly(ethylene 2,5-furandicarboxylate) (PEF) were the two main biobased polymeric precursors employed in this thesis work. Two complementary investigation pathways were explored which respectively focus on the fundamental aspects and on elaboration of composites from these precursors. First, the glass transition and both the melt/glass non-isothermal crystallization of PEF were investigated. A kinetic approach of these transitions revealed a peculiar behavior of PEF which is useful to better understand its processing. In addition, the high-temperature transition of cellulose Iβ was for the first time explored by means of complementary thermo-analytical and spectroscopic techniques. On the other hand, the controlled periodate oxidation of one single cellulose source was employed to generate thermoset-like “all-cellulose composites” marked by their high mechanical performances. Finally, combination of PEF and cellulose nanocrystals allows to obtain transparent thermoplastic composites in which the cellulosic entities might have nucleating effects
Gérard, David. "Etude de la réaction Carbamate / Aldéhyde et son application vers de nouveaux matériaux thermodurcissables." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI105.
Full textThe vast majority of the crosslinking systems currently involved in the synthesis of thermosetting resins require the use of hazardous components for the environment as well as for the operators. Polyurethanes (PU), which are among the most important polymer materials thanks to their versatile properties, are not an exception to this issue. Polyurethanes are indeed classically obtained by polyaddition between a polyol and a polyisocyanate, the synthesis of the latter involving the use of highly toxic phosgene derivatives. The development of safer and more eco-friendly alternatives to those already existing crosslinking systems are thus of particular interest for both academic and industrial research teams. The aim of this project is to explore a new alternative for the synthesis of crosslinked polyurethanes via the reaction between primary carbamate and aldehyde functions. Although being known since the 19th century, this reaction hasn’t been used to make crosslinked polymers until very recently, without exploring biobased alternatives. This work starts with the comprehensive study of the carbamate / aldehyde reaction through model reactions in order to validate the feasibility of this new route. A proposed mechanism completes this fundamental study aiming to understand the key parameters of this reaction. In the next part of our work, we applied this knowledge to multifunctionnal systems, in order to obtain linear PU oligomers and PU networks using biobased precursors
Pion, Florian. "L'acide férulique, un synthon naturel pour la préparation de nouveaux polymères aromatiques." Electronic Thesis or Diss., Paris, AgroParisTech, 2014. http://www.theses.fr/2014AGPT0007.
Full textLignin is the most abundant component of wood after cellulose and is separated from whilepaper production. Within this lingo-cellulosic biomass, in case of graminous, ferulic acid is a crosslinkingagent binding lignin to polysaccharide fibers to increase its mechanical properties. If lignin iscomplex and poorly degradable, ferulic acid, as it is present free, is extractible in alkali media frommany resources (beetroot pulp, wheat, corn, rice...).By its aromatic nature, this p-hydroxycinnamic acid seems interesting to prepare new polymersincorporating biobased aromatic units. Indeed, if biobased polymers are more and more nowadays,today biobased aromatic units are still missing.In this aim, into the APSYNTH team, we developed a new class of biobased bisphenols obtainedthrough enzymatic catalysis. These bisphenols were then implicated in different strategies to developnew copolyesters, polyurethanes and polyphenolic oligomers. This work describes the synthesis andcharacterization of this new bisphenols derived from ferulic acid, as well as the resulting polymers
Prandato, Emeline. "Relations structure-propriétés et résistance à l’endommagement de vernis acrylate photo-polymérisables pour substrats thermoplastiques : évaluation de monomères bio-sourcés et de nano-charges." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0103/document.
Full textThe aim of this work was to develop 100% solids photo-polymerizable acrylate coatings, intended to protect thermoplastic pieces made of polycarbonate against mechanical damage, in particular scratches. The relationships between the composition, the structure and the properties of these coatings were examined. For this purpose the morphology, the thermomechanical properties and the scratch resistance of the materials, assessed by micro-scratch tests, were studied. The kinetics of the polymer network formation was also studied by photo-DSC experiments. All the materials feature a high elastic modulus and a broad mechanical relaxation in dynamic thermomechanical analysis. A 100% solids petro-based coating (standard) constituted the starting point of this work. First it was compared to a commercial photo-polymerizable coating containing solvents, specially designed to protect thermoplastic pieces. This commercial coating turned out to be more efficient against scratches. In a second time was studied the influence of the percentage of a multicyclic monomer, taking part in the composition of the standard petro-based coating, on the properties of the latter. The modification of its proportion does not bring any advantage concerning the scratch resistance. Silica, alumina and zirconia nanoparticles, dispersed in an acrylate monomer, were then incorporated in the standard petro-based coating. A particular organization of the silica or alumina nanoparticles in the materials could be observed by transmission electron microscopy. A high filler content is required to observe an increase in the elastic modulus and an enhancement of the scratch resistance of the coating (≥15% by weight for the nano-silica). Moreover, no change of the photo-polymerization kinetics was noticed through the addition of 5% by weight of nano-silica in the coating. Finally, some of the petro-based acrylate compounds of the standard coating were substituted by commercially available bio-based acrylate monomers. Both types of coatings feature similar polymerization kinetics. The conclusions concerning the comparison of the scratch resistance of the bio-based and standard petro-based coatings depend on their thickness. The incorporation of a bio-based monoacrylate compound in low thickness coatings tends to improve the elastic recovery. Isobornyl acrylate is particularly interesting since it also tends to delay the apparition of cracks along the scratch
Dellière, Pierre. "Résines furaniques modulables et durables." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4106.
Full textThis doctoral project was conducted within the ANR FUTURES (FUranic TUnable REsins for Sustainable materials) project.Poly(furfuryl alcohol) is a bio-based thermoset with excellent chemical and thermal properties. Yet, it may mechanically behave in a brittle manner. The aim of the project was to pave the way for new applications of poly(furfuryl alcohol) by exploiting side reactions occurring during polymerization. This leads to additional functionalities that could be exploited to, among others, reduce the brittleness of the material.First, the reactive carbonyl resulting from the furan ring opening side reaction were quantified by potentiometry and quantitative NMR. The key factors that were influencing the carbonyl content were assessed and water proved to be the main one. The chemical nature of the carbonyls was thoroughly investigated by 2D NMR and a new surface crosslinking phenomenon was identified and explained. The impact of this surface crosslinking on the materials' properties was evaluated. Finally, the presence of carbonyls due to the ring-opening side reaction was exploited to functionalize the polymer. The use of large flexible amines allowed to shift the materials properties from brittle to ductile therefore paving to way to new applications for poly(furfuryl alcohol). Finally, factors governing the properties of the amine-functionalized materials were studied
Buono, Pietro. "Chemical modification of lignin for the elaboration of novel biobased aromatic polymers and additives." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE015/document.
Full textAmong biomass components, lignin is considered one of the most promising natural polymers suitable for the conversion of biomass into renewable added-value chemicals and materials. However, large amount of lignin generated from wood pulping industry is burn as low cost energy source, and only 2% is exploited in the chemical industry. The presence of sulphur moieties and the large molecular diversity are the most reasons impeding the use of lignin as building blocks for the production of chemicals and materials. Chemical modifications have been acknowledged to be an important tool to circumvent these limitations. In the current work, taking advantage of the high hydroxyl groups content of a sulphur free soda lignin (SL), different synthetic strategies have been applied to introduce new chemical groups and used either to produce lignin derivatives suitable for “click” polymerization either to increase lignin hydrophobicity, facilitating its processing in polymeric matrices
Royer, Alexandre. "Etude, caractérisations et développement de mélanges de polymères biosourcés chargés de poudre d'Inconel 718 pour l'élaboration de composants et micro-composants via moulage par injection de poudres métalliques." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2058/document.
Full textThe works done during this PhD focuses on the study of the thermo-physical behavior of bio sourced polymer blends loaded with Inconel 718 powder (feedstock) to be shaped by the Metal Injection Molding process (MIM). First, a review of the researches related to the MIM process was conducted to identify innovative materials and processes that can improve the MIM process. Thus, the use of polyethylene glycol (PEG), selected for its properties of solubility in water, and bio sourced polymers, in order to reduce the environmental impact, were selected. The bio sourced polymers have been selected in accordance with the conditions of the injection molding process, and the choice was made to use polylactic acid (PLA) and polyhydroalkanoates (PHA and PHBV). Similarly, the supercritical CO2 as solvent was chosen to reduce the time of binder removal as well as increasing the quality of components produced. Thermo-physical, mechanical and rheological characterizations were made to determine the behavior of the different feedstock formulations. The results showed a degradation of the PEG and of the stearic acid under the conditions of use of the biopolymers, during the mixing and the injection stages. The use of feedstock made of bio sourced polymers have improved the homogeneity of the injected components, but they have generated defects during the debinding step. These defects have been eliminated by the use of CO2 in the supercritical state as solvent of the PEG. This method has significantly decrease the time of binder removal and improved the quality of the final components. Finally, densified components have the mechanical properties corresponding to Inconel 718
Tran, Kelly. "Hybride associant polymère biosourcé et un système renforçant les propriétés de tenues au feu : analyse de la morphologie des mélanges et de leur structure pour l'optimisation des propriétés fonctionnelles." Electronic Thesis or Diss., Lyon, 2021. http://www.theses.fr/2021LYSES017.
Full textThe objective of this research is to develop a biopolymer / geopolymer hybrid material with good fire resistance and reaction properties, obtained by a continuous extrusion process. For, it was necessary to carry out a rheokinetic study in order to better understand the geopolymerization reaction and thus to avoid the risks of crosslinking in the twin screw extruder. The principle of reaction time - temperature superposition was developed in order to predict both the setting time as well as the moduli of the geopolymer paste during the reaction. The Takayanagi parallel series model was also used to describe the evolution of the network structure during geopolymer formation. This study highlights a process allowing to combine both the processing of the thermoplastic hybrid material based on thermoplastic starch (TPS) and the generation of geopolymer in situ of a twin-screw extruder. This thesis led to the development of a new hybrid material exhibiting improved fire resistance properties either in terms of the heat release rate or the retardation of the ignition of the material. The presence of geopolymer within the TPS matrix allows the formation of a calcination residue with an alveolar, expanded and cohesive structure that can act as a physical barrier to the heat diffusion
Fu, Yang. "Morphologie des mélanges ternaires PLA/PBAT/PA." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM068/document.
Full textThis work aims at achieving direct core-shell morphologies in ternary PLA/PBAT/PA polymer blends by melt mixing. The final goal is to improve the toughness of polylactic acid (PLA). The morphology of multi-phase polymer blends is controlled by the thermodynamics of the system. The morphology of ternary blends can be predicted from the relative values of the three spreading coefficients characterizing the triplet of polymers. Spreading coefficients are calculated from the values of interfacial tensions between binary components. The determination of interfacial tensions between a PLA, a poly(butylene adipate-co-terephthalate) (PBAT) and a copolyamide (PA) predicts a complex dispersed morphology in the PLA matrix where PA subinclusions are partly encapsulated in the PBAT phase. This morphology was obtained by melt mixing the three components, as observed by scanning electron microscopy. In a second step, selective compatibilization was used to modify the PA sub-inclusion location. To this end, PBAT-b-PLA and PA-b-PBAT di-block copolymers were synthesized. The presence of the di-block copolymers enabled to modify the interfacial tension in PLA/PBAT and PA/PBAT. The modification of the interfacial tension balance was shown to successfully change the morphology from semi-encapsulation to full encapsulation of PA sub-inclusions in the PBAT drops. The mechanical performance of this ternary blend was evaluated
Alves, Margot. "Carbon dioxide and vegetable oil for the synthesis of bio-based polymer precursors." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0129/document.
Full textAlthough it is a thermodynamically and kinetically stable molecule, carbon dioxide can beconverted into five- and six-membered cyclic carbonates by coupling with epoxides or oxetanes, respectively, using appropriate catalysts. Cyclic carbonates are used as green solvents, electrolytes for Liion batteries or intermediates for the synthesis of polymers. However, the catalytic performance must be further enhanced in particular for the coupling of CO2 with epoxidized vegetable oils or oxetanes. In this context, we developed a new highly efficient bicomponent homogeneous organocatalyst composed of anammonium salt as the catalyst and fluorinated single or double hydrogen bond donors as co-catalysts. First,a screening of onium-based catalysts and hydrogen-bond donors was performed. Performances of thecatalysts and optimization of the reaction was realized through detailed kinetics studies using in-situ FTIR/Raman spectroscopy under pressure. We demonstrated that fluorinated alcohols showed unexpected co-catalytic activity due to synergisms between the onium salt and fluorinated co-catalysts enabling the fast and selective addition of CO2 on to model epoxides and epoxidized vegetable oils under solvent-free and mild experimental conditions. The use of this powerful dual catalyst was then extended to the first organocatalytic coupling of CO2 with less reactive oxetanes to produce hydroxyl telechelic oligocarbonates that were used asprecursor of CO2-based polyurethanes by chain-extension with a diisocyanate. In addition, a fine comprehension of the mechanisms was investigated by DFT calculations highlighting that the co-catalytic performance of the onium salt/fluorinated alcohol binary catalyst arose from the strong stabilization of the intermediates and transitions states by hydrogen-bonding. To date, through comparative studies, we evidenced that this new catalyst is one
Nasr, Kifah. "Enzyme-catalyzed synthesis of polyesters by step-growth polymerization : a promising approach towards a greener synthetic pathway." Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR030.
Full textEnzyme-catalyzed polymerization have been witnessing a growing attention in recent years as an eco-friendly substitute to metal-based catalysis. The objective of our work is to synthesize a series of polyesters via enzymatic catalysis based on different aliphatic and aromatic diols and diesters, where we focused on the influence of reaction parameters, monomer structures, and depicted the advantages and limitation of enzymatic catalysis in polymer synthesis. The enzyme used throughout our work was Novozym 435, a lipase from Candida antarctica, immobilized on an acrylic resin. In Chapter 1, we reviewed the different methods and approaches used in the literature to synthesize polymers via enzymatic catalysis. In Chapter 2, we performed the reaction between hexane-1,6-diol and diethyl adipate via a two-step polycondensation approach where we monitored the effect of certain parameters on the number average molecular weight (Mn). The influence of temperature, vacuum, and the amount of enzyme loading were determined using a central composite design. Other factors such as the reaction media, oligomerization time, and catalyst recyclability were also assessed. In Chapter 3 furan-based copolyesters were synthesized, where we showed that we can incorporate higher amounts of furan when using aliphatic diols with longer chains such as dodecane-1,12-diol. In Chapter 4, levoglucosan, an anhydrous 6-carbon ring structure and a pyrolysis product of carbohydrates such as starch and cellulose, was reacted against different chain length diesters in the presence of aliphatic diols and Novozym 435 as a catalyst. The polyesters produced were limited in their number average molecular weight (Mn) and the amount of levoglucosan that was successfully incorporated into the polymeric structure. Nevertheless, by increasing the chain length of the diester, we were able to produce a copolymer containing higher amounts of levoglucosan and a higher molecular weight
Panwiriyarat, Wannarat. "Preparation and properties of bio-based polyurethane made from natural rubber and poly(ε-caprolactone)." Thesis, Le Mans, 2012. http://www.theses.fr/2012LEMA1022/document.
Full textThe aim of this research work was to prepare a novel bio-based polyurethane (PU) composed by chemically modified natural rubber (NR) and poly(ε-caprolactone) diol (PCL), with and without isocyanate. Hydroxyl telechelic natural rubber (HTNR) was synthesized via epoxidized and carbonyl telechelic natural rubber. The parameters studied included type and relative amount of diisocyanate, molar ratio between diisocyante and diol (NCO:OH), molecular weight of HTNR and PCL diol, 1,4-butane diol (BDO, chain extender) content and molar ratio between HTNR:PCL diols. Three types of diisocyanate were employed: isophorone diisocyanate (IPDI), toluene-2,4-diisocyanate (TDI) and hexamethylene diisocyanate (HDI). The number average molecular weights of HTNR and PCL diol were selected: 1700, 2800 and 2900 g/mol for HTNR and 530 and 2000 g/mol for PCL diol. The NCO:OH molar ratio was in the range 0.75:1.00 – 2.85:1.00. PU was prepared by one-shot method. The chemical structure of HTNR, PCL and PU were identified by 1H-NMR FTIR and Raman spectroscopy. Tensile properties and tear resistance of PU were investigated. Characterization of mechanical and thermal properties was carried out using DSC, DMTA and TGA. A preliminary study showed that the molecular weight of PU increased with increasing NCO:OH molar ratio and reaction time, and chloroform was not a good solvent for polymer casting. Tetrahydrofuran was an appropriate solvent as it allowed film formation and it was used in all the other experiments. The NCO:OH molar ratio of 1.25:1.00 was suitable for preparing good PU films. FTIR analysis verified the presence of urethane linkages and crosslinking or chain branching. PU demonstrated excellent mechanical properties, which depended on the chemical composition. Excluding the use of PCL2000 and HDI, the tensile behavior seemed to have typical elastomeric characteristics. PU became amorphous except in the case of HDI, which was able to crystallize leading to the crystalline PU. The crystallinity increased the Young’s modulus, the tear strength, the hardness and the thermal stability of PU. PU showed a phase separation between the PCL and HTNR segments. The longer and more flexible chain and non-polarity of HTNR were responsible of a decrease of the mechanical properties and transition temperatures. The very high molar ratio of NCO:OH (2.85:1.00) changed the tensile characteristics from an elastomer to a plastic. The high crosslinking was attributed to there being no phase separation between the hard and the soft segment. Hydrogen bonding between the PCL diol and the hard segment produced a high Tg. Raman spectra were able to identify the urethane linkage of PU containing different diisocyanates by showing the relative absorbance peaks. Synthesis of PU without isocyanate was successfully obtained via a polyaddition polymerization between a cyclic carbonate telechelic PCL/NR and 1,4-butylenediamine. The cyclic carbonate telechelic NR and cyclic carbonate telechelic PCL were prepared via the modification of the hydroxyl end groups of HTNR and PCL diols to carboxylic acid end groups by reacting with succinic anhydride. Then, the carboxylic acid end groups were changed to the cyclic carbonate end groups by using glycerol carbonate
Bouzouita, Amani. "Élaboration des matériaux à base de l'acide polylactique pour application automobile : étude des interactions entre structure-process-propriétés." Thesis, Valenciennes, 2016. http://www.theses.fr/2016VALE0027/document.
Full textThe interest to use polymeric materials derived from renewable resources increases continuously due to considerably improved environmental awareness and the expected depletion of petrochemical ressources. In this regard, Poly(lactic acid), PLA, is a biopolymer that can respond to the demand for such materials for a wide range of applications, thanks to interesting mechanical properties such as high tensile/flexural strength and rigidity, in particular. However, in many cases, durable applications of PLA have been significantly limited by its inherent brittleness and limited thermal stability. In this dissertation, we focused on the design of new biobased PLA materials for automotive parts subjected to severe loading and environmental conditions, by improving thermal and mechanical properties, including under high strain rate loadings. Thus, the most promising compound is selected as the one that offers the best balance between different properties (ductility, strength and stiffness, impact toughness, good thermal stability…) with a content of bio-sourced polymer in the blend at least equal to 50%. Other strategies to improve crystallinity of PLA-based compounds are also studied. In all those developments, a particular attention is paid to the study of structure-process-properties interactions