Academic literature on the topic 'Biosensors devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biosensors devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biosensors devices"

1

Vinay Kumar, Javalkar, Shylashree N, Seema Srinivas, Ajit Khosla, Hari Krishna R, and Manjunatha C. "Review on Biosensors: Fundamentals, Classifications, Characteristics, Simulations, and Potential Applications." ECS Transactions 107, no. 1 (April 24, 2022): 13005–29. http://dx.doi.org/10.1149/10701.13005ecst.

Full text
Abstract:
Biosensor is a device which combines a physical transducer and biological active elements. The biological active element recognizes the specific analyte and produces biorecognized signal, which is further converted into a measurable signal by using an appropriate physical transducer. This review paper attempts in providing a comprehensive survey of the topic biosensor and due to its selectivity and sensitivity, biosensors are mostly widely used than other diagnostic devices. Because of its important features like selectivity, sensitivity, stability, reproducibility, linearity, and low cost, biosensors have a wide range of applications. This range includes their usage in disease detection, environmental monitoring, drug discovery, prosthetic devices, food safety, agricultural industry, and many more. Furthermore, this review discusses the various biosensors and its operations. Afterwards, with a summarized history of biosensors, further prospects have been described to present the usage of nanomaterials in biosensors. Various simulation software used to design the biosensor model are discussed in the end of the review.
APA, Harvard, Vancouver, ISO, and other styles
2

Insawang, Mekhala, Kongphope Chaarmart, and Tosawat Seetawan. "Development of Biosensors for Ethanol Gas Detection." Instrumentation Mesure Métrologie 21, no. 2 (April 30, 2022): 49–57. http://dx.doi.org/10.18280/i2m.210203.

Full text
Abstract:
This work developed a biosensor for the measurement of ethanol gas in the air. The biosensors were synthesized by mixing signal layer materials containing SiO2 and polyimide (PI) substrates using the enzyme Alcohol Dehydrogenase (ADH) and coenzyme Nicotinamide Adenine Dinucleotide (NAD+) as a biosensor. The electrodes were coated on biosensors by DC magnetron sputtering method for test the response performance of the developed biosensors. The ADH/NAD+ was immobilized on the Ag electrode by Glutaric dialaehyde 25 wt. % cross-linking procedure. It was found that, alcohol biosensors can be exhibited sensing ethanol gas at even low concentrations from 300 ppb to very high concentrations up to 1900 ppm, response time 3 s, recovery times 1-2 minutes and good sensitivity. The SiO2 substrate has excellent, which provides significant advantages for wearable electronic device that compact, easy to use and reduce direct contact with alcoholics. The alcohol biosensors can adoption in next generation to other electronic devices, because easy to integrate, such as a module alcohol biosensor with wireless or the fabrication of the RCL circuit. Furthermore, the alcohol biosensors based on SiO2/Ag/ADH, PI/Ag/ADH is artificial intelligence strategy for stable practical wearable electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
3

Kulkarni, Madhusudan B., Narasimha H. Ayachit, and Tejraj M. Aminabhavi. "Biosensors and Microfluidic Biosensors: From Fabrication to Application." Biosensors 12, no. 7 (July 20, 2022): 543. http://dx.doi.org/10.3390/bios12070543.

Full text
Abstract:
Biosensors are ubiquitous in a variety of disciplines, such as biochemical, electrochemical, agricultural, and biomedical areas. They can integrate various point-of-care applications, such as in the food, healthcare, environmental monitoring, water quality, forensics, drug development, and biological domains. Multiple strategies have been employed to develop and fabricate miniaturized biosensors, including design, optimization, characterization, and testing. In view of their interactions with high-affinity biomolecules, they find application in the sensitive detection of analytes, even in small sample volumes. Among the many developed techniques, microfluidics have been widely explored; these use fluid mechanics to operate miniaturized biosensors. The currently used commercial devices are bulky, slow in operation, expensive, and require human intervention; thus, it is difficult to automate, integrate, and miniaturize the existing conventional devices for multi-faceted applications. Microfluidic biosensors have the advantages of mobility, operational transparency, controllability, and stability with a small reaction volume for sensing. This review addresses biosensor technologies, including the design, classification, advances, and challenges in microfluidic-based biosensors. The value chain for developing miniaturized microfluidic-based biosensor devices is critically discussed, including fabrication and other associated protocols for application in various point-of-care testing applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Rodrigues, Daniela, Ana I. Barbosa, Rita Rebelo, Il Keun Kwon, Rui L. Reis, and Vitor M. Correlo. "Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review." Biosensors 10, no. 7 (July 21, 2020): 79. http://dx.doi.org/10.3390/bios10070079.

Full text
Abstract:
Biosensors devices have attracted the attention of many researchers across the world. They have the capability to solve a large number of analytical problems and challenges. They are future ubiquitous devices for disease diagnosis, monitoring, treatment and health management. This review presents an overview of the biosensors field, highlighting the current research and development of bio-integrated and implanted biosensors. These devices are micro- and nano-fabricated, according to numerous techniques that are adapted in order to offer a suitable mechanical match of the biosensor to the surrounding tissue, and therefore decrease the body’s biological response. For this, most of the skin-integrated and implanted biosensors use a polymer layer as a versatile and flexible structural support, combined with a functional/active material, to generate, transmit and process the obtained signal. A few challenging issues of implantable biosensor devices, as well as strategies to overcome them, are also discussed in this review, including biological response, power supply, and data communication.
APA, Harvard, Vancouver, ISO, and other styles
5

Fogel, Ronen, Janice Limson, and Ashwin A. Seshia. "Acoustic biosensors." Essays in Biochemistry 60, no. 1 (June 30, 2016): 101–10. http://dx.doi.org/10.1042/ebc20150011.

Full text
Abstract:
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.
APA, Harvard, Vancouver, ISO, and other styles
6

Ozkan-Ariksoysal, Dilsat. "Current Perspectives in Graphene Oxide-Based Electrochemical Biosensors for Cancer Diagnostics." Biosensors 12, no. 8 (August 6, 2022): 607. http://dx.doi.org/10.3390/bios12080607.

Full text
Abstract:
Since the first commercial biosensor device for blood glucose measurement was introduced in the 1970s, many “biosensor types” have been developed, and this research area remains popular worldwide. In parallel with some global biosensor research reports published in the last decade, including a great deal of literature and industry statistics, it is predicted that biosensor design technologies, including handheld or wearable devices, will be preferred and highly valuable in many areas in the near future. Biosensors using nanoparticles still maintain their very important place in science and technology and are the subject of innovative research projects. Among the nanomaterials, carbon-based ones are considered to be one of the most valuable nanoparticles, especially in the field of electrochemical biosensors. In this context, graphene oxide, which has been used in recent years to increase the electrochemical analysis performance in biosensor designs, has been the subject of this review. In fact, graphene is already foreseen not only for biosensors but also as the nanomaterial of the future in many fields and is therefore drawing research attention. In this review, recent and prominent developments in biosensor technologies using graphene oxide (GO)-based nanomaterials in the field of cancer diagnosis are briefly summarized.
APA, Harvard, Vancouver, ISO, and other styles
7

Antonova, Hanna, Yevgenia Babenko, Oleksandr Voronenko, Igor Galelyuka, Anna Kedych, and Oleksandra Kovyrova. "Biosensor Devices in the Production of Alcoholic and Non-Alcoholic Beverages." Cybernetics and Computer Technologies, no. 3 (September 30, 2021): 103–14. http://dx.doi.org/10.34229/2707-451x.21.3.9.

Full text
Abstract:
"Smart" multisensors and biosensor systems based on modern information and communication technologies make it possible to qualitatively improve the parameters of testing systems for biologically active, chemical and toxic substances and biological or biophysical objects, improve parameter control, data processing and analysis in digital agriculture, food industry, environmental monitoring and other areas of human activity. These next-generation devices combine biologically sensitive elements with converters of biophysical signals into electrical digital signals. The article reveals the basic principles of construction of biosensor devices, their practical implementation and application. The own results of development of a wireless network of "smart" multisensors and biosensor devices for express diagnostics of a condition of grape and fruit crops and control of process of production of wine are presented. In order to test the capabilities of the unit of measurement, a number of experimental works were performed. To perform such work, it was first necessary to develop a new embedded software for the microprocessor of Analog Devices ADuCM350, and the corresponding user software for the OS Windows 10. Experiments were performed using disposable sensors based on the enzyme glucose oxidase to measure the sugar content in glucose and wine solution. A review and analysis of modern biosensor devices used in the production of alcoholic and Non-Alcoholic Beverages were done. The comparative table of analyzers for different studies based on biosensors is made. Development and preparation for mass production of "smart" biosensors, biosensor devices and networks based on them is in line with global scientific and technological trends of today and, of course, the near future. Keywords: biosensors, ammetric transducers, wireless sensor network, express diagnostics of grape and berry crops.
APA, Harvard, Vancouver, ISO, and other styles
8

Gosai, Agnivo, Kamil Reza Khondakar, Xiao Ma, and Md Azahar Ali. "Application of Functionalized Graphene Oxide Based Biosensors for Health Monitoring: Simple Graphene Derivatives to 3D Printed Platforms." Biosensors 11, no. 10 (October 10, 2021): 384. http://dx.doi.org/10.3390/bios11100384.

Full text
Abstract:
Biosensors hold great potential for revolutionizing personalized medicine and environmental monitoring. Their construction is the key factor which depends on either manufacturing techniques or robust sensing materials to improve efficacy of the device. Functional graphene is an attractive choice for transducing material due to its various advantages in interfacing with biorecognition elements. Graphene and its derivatives such as graphene oxide (GO) are thus being used extensively for biosensors for monitoring of diseases. In addition, graphene can be patterned to a variety of structures and is incorporated into biosensor devices such as microfluidic devices and electrochemical and plasmonic sensors. Among biosensing materials, GO is gaining much attention due to its easy synthesis process and patternable features, high functionality, and high electron transfer properties with a large surface area leading to sensitive point-of-use applications. Considering demand and recent challenges, this perspective review is an attempt to describe state-of-the-art biosensors based on functional graphene. Special emphasis is given to elucidating the mechanism of sensing while discussing different applications. Further, we describe the future prospects of functional GO-based biosensors for health care and environmental monitoring with a focus on additive manufacturing such as 3D printing.
APA, Harvard, Vancouver, ISO, and other styles
9

Giorgi, Giada, and Sarah Tonello. "Wearable Biosensor Standardization: How to Make Them Smarter." Standards 2, no. 3 (August 2, 2022): 366–84. http://dx.doi.org/10.3390/standards2030025.

Full text
Abstract:
The availability of low-cost plug-and-play devices may contribute to the diffusion of methods and technologies for the personalized monitoring of physiological parameters by wearable devices. This paper is focused on biosensors, which represent an interesting enabling technology for the real-time continuous acquisition of biological or chemical analytes of physio-pathological interest, e.g., metabolites, protein biomarkers, and electrolytes in biofluids. Currently available commercial biosensors are usually referred to as customized and proprietary solutions. However, the efficient and robust development of e-health applications based on wearable biosensors can be eased from device interoperability. In this way, even if the different modules belong to different manufacturers, they can be added, upgraded, changed or removed without affecting the whole data acquisition system. A great effort in this direction has already been made by the ISO/IEC/IEEE 21451 standard that introduces the concept of smart sensors by defining the main and essential characteristics that these devices should have. Following the guidelines provided by this standard, here we propose a set of characteristics that should be considered in the development of a smart biosensor and how they could be integrated into the existing standard.
APA, Harvard, Vancouver, ISO, and other styles
10

Ahsan, Muhammad. "BIOSENSORS FOR THE ENVIRONMENTAL POLLUTION DETECTION AND MONITORING." Agricultural Sciences Journal 4, no. 1 (June 30, 2022): 39–51. http://dx.doi.org/10.56520/asj.004.01.0131.

Full text
Abstract:
The discharge of dangerous contaminants like pesticides, chemicals and heavy metals into the natural ecosystem is a worldwide issue. Therefore, it is important to identify fast-moving and recyclable contaminants. Biosensors are highly sensitive devices for detecting environmental pollution. Various biosensor types have been developed to detect environmental contamination. Biosensor is the most recent breakthrough in environmental pollution detection and monitoring. Biosensors are widely used in the detection of pesticides, heavy metals, surfactants, biological oxygen demand, phenolic compounds, pharmaceutical compounds, and pathogenic organisms. This paper mainly focuses on the principle, working, characteristics, and uses of biosensors, which are constructed for the detection of pollution.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biosensors devices"

1

Tsai, Long-Fang. "Microfluidic Devices and Biosensors." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5821.

Full text
Abstract:
My research broadly covers various important aspects of microfluidic devices and biosensors. Specifically, this dissertation reports: (1) a new and effective room temperature method of bonding polydimethylsiloxane (PDMS) microfluidics to substrates such as silicon and glass, (2) a new microfluidic pump concept and implementation specifically designed to repeatedly drive a small sample volume (<1 µL) very rapidly (~500 µL/min) through a sensor-containing flow channel to significantly decrease sensor response time through advection-driven rather than diffusion-driven mass transport, (3) use of a new microfluidic material based on polyethylene glycol diacrylate (PEGDA) to implement impedance-based dynamic nanochannel sensors for protein sensing, and (4) an investigation of galvanoluminescence and how to avoid it for conditions important to fluorescence-based dielectrophoresis (DEP) microfluidic biosensors. Over the last decade, the Nordin research group has developed a lab-on-a-chip (LOC) biosensor based on silicon photonic microcantilever arrays integrated with polydimethylsiloxane (PDMS) microfluidics for protein biomarker detection. Integration requires reliable bonding at room temperature with adequate bond strength between the PDMS element and microcantilever sensor substrate. The requirement for a room temperature process is particularly critical because microcantilevers must be individually functionalized with antibody-based receptor molecules prior to bonding and cannot withstand significant heating after functionalization. I developed a new room temperature bonding method using PDMS curing agent as an intermediate adhesive layer. Two curing agents (Sylgard 184 and 182) were compared, as well as an alternate UV curable adhesive (NOA 75). The bond strength of Sylgard 184 was found to be stronger than Sylgard 182 under the same curing conditions. Overnight room temperature curing with Sylgard 184 yields an average burst pressure of 433 kPa, which is more than adequate for many PDMS sensor devices. In contrast, UV curable epoxy required a 12 hour bake at 50 °C to achieve maximum bond strength, which resulted in a burst pressure of only 124 kPa. In many biosensing scenarios it is desirable to use a small sample volume (<1 µL) to detect small analyte concentrations in as short a time as possible. I report a new microfluidic pump to address this need, which we call a reflow pump. It is designed to rapidly pump a small sample volume back and forth in a flow channel. Ultimately, the flow channel would contain functionalized sensor surfaces. The rapid flow permits use of advection-driven mass transport to the sensor surfaces to dramatically reduce sensor response times compared to diffusion-based mass transport. Normally such rapid flow would have the effect of decreasing the fraction of analyte molecules in the volume that would see the sensor surfaces. By configuring the pump to reflow fluid back and forth in the flow channel, the analyte molecules in the small sample volume are used efficiently in that they have many opportunities to make it to the sensor surfaces. I describe a 3-layer PDMS reflow pump that pumps 300 nL of fluid at 500 µL/min for 15 psi actuation pressure, and demonstrate a new two-layer configuration that significantly simplifies pump fabrication. Impedance-based nanochannel sensors operate on the basis of capturing target molecules in nanochannels such that impedance through the nanochannels is increased. While simple in concept, the response time can be quite long (8~12 hours) because the achievable flow rate through a nanochannel is very limited. An approach to dramatically increase the flow rate is to form nanochannels only during impedance measurements, and otherwise have an array of nanotrenches on the surface of a conventional microfluidic flow channel where they are exposed to normal microfluidic flow rates. I have implemented such a dynamic nanochannel approach with a recently-developed microfluidic material based polyethylene glycol diacrylate (PEGDA). I present the design, fabrication, and testing of PEGDA dynamic nanochannel array sensors, and demonstrate an 11.2 % increase in nanochannel impedance when exposed to 7.2 µM bovine serum albumin (BSA) in phosphate buffered saline (PBS). Recently, LOC biosensors for cancer cell detection have been demonstrated based on a combination of dielectrophoresis (DEP) and fluorescence detection. For fluorescence detection it is critical to minimize other sources of light in the system. However, reported devices use a non-noble metal electrode, indium tin oxide (ITO), to take advantage of its optical transparency. Unfortunately, use of non-noble metal electrodes can result in galvanoluminescence (GL) in which the AC voltage applied to the electrodes to achieve DEP causes light emission, which can potentially confound the fluorescence measurement. I designed and fabricated two types of devices to examine and identify conditions that lead to GL. Based on my observations, I have developed a method to avoid GL that involves measuring the impedance spectrum of a DEP device and choosing an operating frequency in the resistive portion of the spectrum. I also measure the emission spectrum of twelve salt solutions, all of which exhibited broadband GL. Finally, I show that in addition to Au, Cr and Ni do not exhibit GL, are therefore potentially attractive as low cost DEP electrode materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Parra, Cabrera César Alejandro. "Microfluidic devices with integrated biosensors for biomedical applications." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/284758.

Full text
Abstract:
In recent years, the LOC community has focused most of its research in the biomedical and biotechnology fields, due to the need of portable, low power consumption and low cost theranostics microdevices. Some developing countries do not have suitable medical diagnostics technologies and the supply and storage of the reagents is in many cases limited as well as the access to energy. Furthermore, developed countries are experimenting population aging needing novel low cost efficient disease-screening technologies. The introduction of LOC and microfluidics allow the integration of complex functions that could lead to the developing of more accurate, cheap and reliable theranostic tools. Current focus of application is focused mostly in drug delivery 1, cellular analysis 2, and disease diagnosis 3. Microfluidics is improving the developing of novel point-of-care devices, but there are some challenges that are slowing down the massive production of these LOC. These areas include new methods for sample collection, world-to-chip interfaces, sample pre-treatment, improvement of long-term stability of reagents, working with complex sample specimens, multiple detection of biomarkers and simplify the read-out 4. The main aim of this thesis work was to create novel, cheap and with a high degree of automatization miniaturized biosensing devices with the objective to facilitate Point-of-Care diagnostics in the near future. Our efforts have been focused into developing a LOC system with electrochemical sensing capabilities adjustable to any biomarker, depending only on sample volumes and required analysis times. The devices integrate low-cost label-free biosensors exploiting microfluidics-based self-functionalization, or specialization. The biosensor functionalization takes place in situ and selectively, just before the sensing, and their area keeps dry and inactive until the test starts. The reagents and the sensing parts are kept separated and brought into contact just before the test, avoiding the need of complex fabrication and storage methods to guarantee functionalization integrity. The novel design reduces the cost of the final instrumentation, by simplifying the measurements, while keeping sensitivities and LODs relevant for the application. Furthermore, since the interaction of antibody and protein is time and concentration dependent, our device has the capability to adjust its sensitivity. We have tuned and characterized our system sensitivity using different biomarkers. The development of our novel devices was possible by exploiting synergies in disciplines previously studied in our group. Particularly, in fields such as microfluidics 5-8, surface functionalization 9-14 and electrochemical biosensors 15-19. Summarizing, we are proposing novel microfluidic devices with integrated biosensors. The systems are based on the principle of laminar co-flow in order to perform an on-chip selective surface bio-functionalization of LOC integrated biosensors. This method has the advantage of performing the surface modification protocols “in situ” before the detection. The system can be easily scaled to incorporate several sensors with different biosensing targets in a single chip. We are proposing a novel voltage and impedance differential measurements; that allow us to simplify the read-out. As biomedical application we focus our attention on the detection of prostate cancer biomarkers. Bibliography 1. I. U. Khan, C. A. Serra, N. Anton and T. Vandamme, Journal of Controlled Release, 2013, 172, 1065-1074. 2. H. Andersson and A. Van den Berg, Sensors and Actuators B: Chemical, 2003, 92, 315-325. 3. M. J. Cima, Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 355-378. 4. C. D. Chin, V. Linder and S. K. Sia, Lab on a Chip, 2012, 12, 2118-2134. 5. R. Rodriguez-Trujillo, C. A. Mills, J. Samitier and G. Gomila, Microfluidics and Nanofluidics, 2007, 3, 171-176. 6. R. Rodriguez-Trujillo, O. Castillo-Fernandez, M. Garrido, M. Arundell, A. Valencia and G. Gomila, Biosensors and Bioelectronics, 2008, 24, 290-296. 7. O. Castillo-Fernandez, R. Rodriguez-Trujillo, G. Gomila and J. Samitier, Microfluidics and Nanofluidics, 2014, 16, 91-99. 8. J. Comelles, V. Hortigüela, J. Samitier and E. Martínez, Langmuir, 2012, 28, 13688-13697. 9. E. Prats-Alfonso, F. García-Martín, N. Bayo, L. J. Cruz, M. Pla-Roca, J. Samitier, A. Errachid and F. Albericio, Tetrahedron, 2006, 62, 6876-6881. 10. J. Vidic, M. Pla-Roca, J. Grosclaude, M.-A. Persuy, R. Monnerie, D. Caballero, A. Errachid, Y. Hou, N. Jaffrezic-Renault, R. Salesse, E. Pajot-Augy and J. Samitier, Analytical Chemistry, 2007, 79, 3280-3290. 11. Y. Hou, S. Helali, A. Zhang, N. Jaffrezic-Renault, C. Martelet, J. Minic, T. Gorojankina, M.-A. Persuy, E. Pajot-Augy, R. Salesse, F. Bessueille, J. Samitier, A. Errachid, V. Akimov, L. Reggiani, C. Pennetta and E. Alfinito, Biosensors and Bioelectronics, 2006, 21, 1393-1402. 12. S. Rodríguez Seguí, M. Pla, J. Minic, E. Pajot‐Augy, R. Salesse, Y. Hou, N. Jaffrezic‐Renault, C. A. Mills, J. Samitier and A. Errachid, Analytical Letters, 2006, 39, 1735-1745. 13. A. Lagunas, J. Comelles, E. Martínez and J. Samitier, Langmuir, 2010, 26, 14154-14161. 14. A. Lagunas, J. Comelles, S. Oberhansl, V. Hortigüela, E. Martínez and J. Samitier, Nanomedicine: Nanotechnology, Biology and Medicine, 2013, 9, 694-701. 15. M. Castellarnau, N. Zine, J. Bausells, C. Madrid, A. Juárez, J. Samitier and A. Errachid, Materials Science and Engineering: C, 2008, 28, 680-685. 16. M. Castellarnau, N. Zine, J. Bausells, C. Madrid, A. Juárez, J. Samitier and A. Errachid, Sensors and Actuators B: Chemical, 2007, 120, 615-620. 17. M. Kuphal, C. A. Mills, H. Korri-Youssoufi and J. Samitier, Sensors and Actuators B: Chemical, 2012, 161, 279-284. 18. D. Caballero, E. Martinez, J. Bausells, A. Errachid and J. Samitier, Analytica Chimica Acta, 2012, 720, 43-48. 19. M. Barreiros dos Santos, J. P. Agusil, B. Prieto-Simón, C. Sporer, V. Teixeira and J. Samitier, Biosensors and Bioelectronics, 2013, 45, 174-180.
En años recientes, la comunidad de LOC ha enfocado todos sus esfuerzos en la investigación de nuevas aplicaciones para la biomedicina y biotecnología. Algunos países en vías de desarrollados no tienen tecnologías de diagnóstico adecuadas, además el suministro y almacenamiento de los reactivos es en muchos casos limitado, y en ocasiones cuentan con un acceso limitado al consumo de energía. Por otra parte, los países desarrollados se han encontrado con una población envejecida, y por lo tanto se ha generado la necesidad de contar con nuevas tecnologías para el diagnóstico de enfermedades las cuales sean accesibles y orientadas a una terapia más personalizada. Tanto la microfluídica como los LOC han permitido la integración de funciones de análisis complejas capaces de desarrollar herramientas de diagnostico más precisas, de bajo coste y confiables. Actualmente toda la atención se ha centrado en el diseño de aplicaciones para administración de fármacos 1, análisis celular 2 y diagnostico de enfermedades 3. La introducción de la microfluídica ha servido para mejorar el desarrollo de nuevos dispositivos point-of-care, pero todavía existen algunos problemas que han evitado la producción masiva de estos LOC. Las áreas en las que se pretende conseguir una mejora son la recolección de la muestra, mejora de la interfaz entre el chip y el usuario, tratamiento previo de la muestra, mejorar la estabilidad de los reactivos, trabajo con muestras complejas, detección múltiple de biomarcadores y simplificación del sistema de medida 4. Nuestros esfuerzos se han dedicado en desarrollar un sistema LOC con capacidad de detección electroquímica ajustable a cualquier biomarcador, dependiendo únicamente en la cantidad de muestra y los tiempos de análisis. Nuestros dispositivos microfluídicos cuentan con biosensores integrados de bajo coste con capacidad de auto-funcionalización. La funcionalización de los biosensores se realiza in-situ y selectivamente, antes de la detección, manteniendo el área de detección inerte hasta el inicio de la prueba. Los reactivos y el área de detección se almacenan por separado y entran en contacto hasta el inicio del experimento, lo cual facilita el método de fabricación. Se ha podido desarrollar este trabajo gracias a los estudios previos realizados en nuestro grupo en distintas disciplinas, tales como: microfluídica 5-8, funcionalización de superficies 9-14 y biosensores electroquímicos 15-19. Bibliografía 1. I. U. Khan, C. A. Serra, N. Anton and T. Vandamme, Journal of Controlled Release, 2013, 172, 1065-1074. 2. H. Andersson and A. Van den Berg, Sensors and Actuators B: Chemical, 2003, 92, 315-325. 3. M. J. Cima, Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 355-378. 4. C. D. Chin, V. Linder and S. K. Sia, Lab on a Chip, 2012, 12, 2118-2134. 5. R. Rodriguez-Trujillo, C. A. Mills, J. Samitier and G. Gomila, Microfluidics and Nanofluidics, 2007, 3, 171-176. 6. R. Rodriguez-Trujillo, O. Castillo-Fernandez, M. Garrido, M. Arundell, A. Valencia and G. Gomila, Biosensors and Bioelectronics, 2008, 24, 290-296. 7. O. Castillo-Fernandez, R. Rodriguez-Trujillo, G. Gomila and J. Samitier, Microfluidics and Nanofluidics, 2014, 16, 91-99. 8. J. Comelles, V. Hortigüela, J. Samitier and E. Martínez, Langmuir, 2012, 28, 13688-13697. 9. E. Prats-Alfonso, F. García-Martín, N. Bayo, L. J. Cruz, M. Pla-Roca, J. Samitier, A. Errachid and F. Albericio, Tetrahedron, 2006, 62, 6876-6881. 10. J. Vidic, M. Pla-Roca, J. Grosclaude, M.-A. Persuy, R. Monnerie, D. Caballero, A. Errachid, Y. Hou, N. Jaffrezic-Renault, R. Salesse, E. Pajot-Augy and J. Samitier, Analytical Chemistry, 2007, 79, 3280-3290. 11. Y. Hou, S. Helali, A. Zhang, N. Jaffrezic-Renault, C. Martelet, J. Minic, T. Gorojankina, M.-A. Persuy, E. Pajot-Augy, R. Salesse, F. Bessueille, J. Samitier, A. Errachid, V. Akimov, L. Reggiani, C. Pennetta and E. Alfinito, Biosensors and Bioelectronics, 2006, 21, 1393-1402. 12. S. Rodríguez Seguí, M. Pla, J. Minic, E. Pajot‐Augy, R. Salesse, Y. Hou, N. Jaffrezic‐Renault, C. A. Mills, J. Samitier and A. Errachid, Analytical Letters, 2006, 39, 1735-1745. 13. A. Lagunas, J. Comelles, E. Martínez and J. Samitier, Langmuir, 2010, 26, 14154-14161. 14. A. Lagunas, J. Comelles, S. Oberhansl, V. Hortigüela, E. Martínez and J. Samitier, Nanomedicine: Nanotechnology, Biology and Medicine, 2013, 9, 694-701. 15. M. Castellarnau, N. Zine, J. Bausells, C. Madrid, A. Juárez, J. Samitier and A. Errachid, Materials Science and Engineering: C, 2008, 28, 680-685. 16. M. Castellarnau, N. Zine, J. Bausells, C. Madrid, A. Juárez, J. Samitier and A. Errachid, Sensors and Actuators B: Chemical, 2007, 120, 615-620. 17. M. Kuphal, C. A. Mills, H. Korri-Youssoufi and J. Samitier, Sensors and Actuators B: Chemical, 2012, 161, 279-284. 18. D. Caballero, E. Martinez, J. Bausells, A. Errachid and J. Samitier, Analytica Chimica Acta, 2012, 720, 43-48. 19. M. Barreiros dos Santos, J. P. Agusil, B. Prieto-Simón, C. Sporer, V. Teixeira and J. Samitier, Biosensors and Bioelectronics, 2013, 45, 174-180.
APA, Harvard, Vancouver, ISO, and other styles
3

Olubi, Omotunde Eniola. "Electroactive polymeric materials for electronic devices and biosensors." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2014. http://digitalcommons.auctr.edu/dissertations/2262.

Full text
Abstract:
Conjugated polymers have brought about a revolution in the world of polymers and hence, opened up new possibilities in the utilization of polymers in ways hitherto unknown. As a result of the conjugated bonds present, they are able to carry electrons and therefore mimic metals. One of the objectives of this work is the syntheses of processable conductive polymers in a cost effective manner that would still have desired physical and chemical properties. A series of electroative polymers have been prepared and most of these are intrinsically conductive. A semiconducting filler, single-walled carbon nanotubes, was added to impart conductivity to the functional polymer, α,ω-bi[2,4-dinitrophenyl caproic] [poly(ethyleneoxide)-b-poly(2-methoxystyrene)-b-poly(ethylene oxide)] which is non-conducting. Composites of this polymer with polystyrene and SWCNTs were electrospun to form nanofiber mats which had mixed morphologies but predominantly beaded. The nanofibers ranged in diameter form ~ 65 to ~ 500 nm. These functional nanofibers were incubated in fluorescently (FITC) tagged Immunoglobulin E, IgE and they showed biospecificity towards IgE. The current-voltage characteristics indicated a change in behavior when bound to IgE and otherwise. The intrinsically conductive polymers of 3-alkylthiophenes were prepared using the Grignard metathesis reaction, oxidative coupling with ferric chloride as well as copolymerization via ATRP with conductive P3DT as the macroinitiator. These environmentally stable polymers show a glass transition mostly between 48 to 50 °C and the π to π* transition of the conjugated polymers is evidenced in wavelength of their absorption in the UV/Vis/NIR as the spectra indicated. The particle sizes obtained by light scattering showed average diameter between 28 to 40 nm for the different polymers. Electrochemical studies on the block copolymer and random polymer series by cyclic voltammetry show the species are redox active in solution. Conductivity of multiwall nanotubes/ P3MT composite series showed conductivity values between 1.3 x 10-7 to 2.5 x 10-4 S/cm as determined from the bulk resistance measurements of pressed pellets of the composites. The biofunctional polymers investigated are highly promising in the biotechnology/biomedical industry as potential biosensors. The non-biofunctional polymers too are applicable in photovoltaics, optoelectronics, energy storage, solar cells, the semiconductor industry and many more.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Ting. "Effect of surface conditions on DNA detection sensitivity by silicon based bio-sensing devices /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?ECED%202007%20WANGT.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ruano-Lopez, Jesus M. "Optical devices for biochemical sensing in flame hydrolysis deposited glass." Thesis, University of Glasgow, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Castaing, Ambroise. "An investigation of epitaxial graphene growth and devices for biosensor applications." Thesis, Swansea University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoon, Sang Hoon Kim Dong Joo. "Growth and characterization of ZNO and PZT films for micromachined acoustic wave devices." Auburn, Ala, 2009. http://hdl.handle.net/10415/1719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peláez, Gutiérrez Enelia Cristina. "Nanoplasmonic biosensors for clinical diagnosis, drug monitoring and therapeutic follow-up." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/672028.

Full text
Abstract:
Aquesta tesi doctoral té com a objectiu el desenvolupament de diversos biosensors que operen sense necessitat de marcatge addicional basats en dispositius plasmònics òptics per a la detecció directa de medicaments o biomarcadors relacionats amb diferents malalties i que són analitzats directament en mostres humanes com plasma, sèrum, orina o esput. Aquests dispositius biosensors ofereixen un sens fi de beneficis com és la seva alta sensibilitat, facilitat d’operació, l’obtenció de dades quantitatives, detecció sense marcatge en temps real, i comunament només necessiten d’un petit volum de mostra. Tot això converteix els biosensors plasmònics en eines analítiques molt adequades per al diagnòstic de malalties, el control de la medicació o el seguiment de teràpies personalitzades. El nostre grup d’investigació ha demostrat amb èxit la implementació de biosensors òptics basats en plasmònica i en fotònica de silici, inclòs el desenvolupament complet de bioaplicaciones, el que ha aplanat el camí de la seva futura transferència tecnològica per a la seva implementació com a dispositius Point-of-Care ( POC). Els biosensors desenvolupats en aquesta Tesi inclouen la seva optimització i validació completa amb mostres reals, exemplificant alguns desafiaments clínics en els quals aquests biosensors plasmònics poden superar importants limitacions de les tècniques d’anàlisi convencionals actuals, mostrant el seu potencial i versatilitat com a futurs dispositius POC per ser usats en les unitats d’atenció primària en salut o fins i tot en l’entorn domèstic per al propi autocontrol per part dels pacients. La tesi està organitzada en sis capítols. El capítol 1 conté la introducció dels conceptes bàsics i l’estat de l’art sobre els avenços actuals en les tècniques de diagnòstic i control de malalties i / o teràpies i el paper que exerceixen els biosensors per millorar-los. El capítol 2 inclou una descripció detallada de les plataformes biosensoras emprades i una descripció general dels processos metodològics. El Capítol 3 descriu el desenvolupament d’un dispositiu nanoplasmónico per al control terapèutic de l’medicament acenocumarol, un anticoagulant comunament administrat directament en plasma humà. El Capítol 4 es centra en el desenvolupament d’un biosensor plasmónico que serveixi com a control de la dieta lliure de gluten que han de portar els pacients celíacs. El Capítol 5 descriu les estratègies desenvolupades per a la detecció de dos biomarcadors per al diagnòstic primerenc de tuberculosi en mostres d’esput. Finalment, el Capítol 6 explora la detecció de quatre autoanticossos específics associats amb l’aparició de l’tumor directament en el sèrum humà com biomarcadors potencials per al diagnòstic primerenc de el càncer colorectal.
Esta Tesis Doctoral tiene como objetivo el desarrollo de diversos biosensores que operan sin necesidad de marcaje adicional basados en dispositivos plasmónicos ópticos para la detección directa de medicamentos o biomarcadores relacionados con diferentes enfermedades y que son analizados directamente en muestras humanas como plasma, suero, orina o esputo. Estos dispositivos biosensores ofrecen un sinnúmero de beneficios como es su alta sensibilidad, facilidad de operación, la obtención de datos cuantitativos, detección sin marcaje en tiempo real, y comúnmente sólo necesitan de un pequeño volumen de muestra. Todo esto convierte a los biosensores plasmónicos en herramientas analíticas muy adecuadas para el diagnóstico de enfermedades, el control de la medicación o el seguimiento de terapias personalizadas. Nuestro grupo de investigación ha demostrado exitosamente la implementación de biosensores ópticos basados en plasmónica y en fotónica de silicio, incluido el desarrollo completo de bioaplicaciones, lo que ha allanado el camino de su futura transferencia tecnológica para su implementación como dispositivos Point-of-Care (POC). Los biosensores desarrollados en esta Tesis incluyen su optimización y validación completa con muestras reales, ejemplificando algunos desafíos clínicos en los que dichos biosensores plasmónicos pueden superar importantes limitaciones de las técnicas de análisis convencionales actuales, mostrando su potencial y versatilidad como futuros dispositivos POC para ser usados en las unidades de atención primaria en salud o incluso en el entorno doméstico para el propio autocontrol por parte de los pacientes. La tesis está organizada en seis capítulos. El Capítulo 1 contiene la introducción de los conceptos básicos y el estado del arte sobre los avances actuales en las técnicas de diagnóstico y control de enfermedades y/o terapias y el papel que desempeñan los biosensores para mejorarlos. El Capítulo 2 incluye una descripción detallada de las plataformas biosensoras empleadas y una descripción general de los procesos metodológicos. El Capítulo 3 describe el desarrollo de un dispositivo nanoplasmónico para el control terapéutico del medicamento acenocumarol, un anticoagulante comúnmente administrado directamente en plasma humano. El Capítulo 4 se centra en el desarrollo de un biosensor plasmónico que sirva como control de la dieta libre de gluten que deben llevar los pacientes celíacos. El Capítulo 5 describe las estrategias desarrolladas para la detección de dos biomarcadores para el diagnóstico temprano de tuberculosis en muestras de esputo. Finalmente, el Capítulo 6 explora la detección de cuatro autoanticuerpos específicos asociados con la aparición del tumor directamente en el suero humano como biomarcadores potenciales para el diagnóstico temprano del cáncer colorrectal.
This Doctoral Thesis aims to the development of several label-free biosensing analytical strategies integrated within optical plasmonic devices for the direct detection of drugs or biomarkers related to different diseases in biological samples such as plasma, serum, urine, and sputum. These biosensor devices offer several benefits like their high sensitivity, ease of operation, quantitative data, label-free operation, and real-time detection, and commonly require a small sample volume. All this turn plasmonic biosensors into well-suited analytical tools for diagnosing diseases, monitoring medication, or for personalized therapies follow-up. Our research group has extensively demonstrated the successful conjunction of novel in-house optical biosensor configurations (like plasmonic and photonic-based designs) with the full demonstrations of bioapplications, which has paved the way for their potential technological transfer as Point-of-Care devices (POC) for clinical diagnostics. The biosensor assays here implemented, which include their full optimization and validation with real samples, exemplify clinical challenges where such biosensors can overcome limitations of current conventional analytical techniques. The results show the potential and versatility that plasmonic biosensors can offer as future POC devices placed in primary healthcare units or even in the household environment for patients’ self-monitoring. This thesis is organized into six chapters. Chapter 1 is the introductory one, which explains the basic concepts and the state of the art of the current advances in diagnosis and monitoring techniques of diseases and/or therapies and the role of biosensors to improve them. Chapter 2 includes a detailed description of the biosensor platforms employed and a general description of the methodological processes. Chapter 3 is related to the development of a nanoplasmonic device for the therapeutic monitoring of the drug acenocoumarol, a commonly administered anticoagulant, directly in human plasma. Chapter 4 focuses on the implementation of a plasmonic biosensor that monitors the gluten-free diet in urine in celiac patients. Chapter 5 describes the biosensing strategies developed for the detection of two biomarkers for the early diagnosis of tuberculosis in sputum samples. Finally, Chapter 6 explores the detection of four specific autoantibodies associated with the tumor onset directly in human serum as potential biomarkers for the early detection of colorectal cancer.
Universitat Autònoma de Barcelona. Programa de Doctorat en Química
APA, Harvard, Vancouver, ISO, and other styles
9

McGovern, John-Paul Shih Wan Y. Shih Wei-Heng. "Flow-enhanced detection of biological pathogens using piezoelectric microcantilever arrays /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

deSa, Johann Lec Ryszard. "Manipulation of microparticles using a piezoelectric actuator /." Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/3197.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biosensors devices"

1

Lambrechts, Marc. Biosensors: Microelectrochemical devices. Bristol: Institute of Physics Publishing, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lambrechts, M. Biosensors: Microelectrochemical devices. Bristol: Institute of Physics Pub., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

IEEE/EMBS, International Summer School on Medical Devices and Biosensors (4th 2007 Cambridge England). 2007 4th IEEE/EMBS international summer school and symposium on medical devices and biosensors. Piscataway, NJ: IEEE, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

IEEE/EMBS International Summer School on Medical Devices and Biosensors (3rd 2006 Cambridge, Mass.). 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, Cambridge, MA, 4-6 September 2006. Piscataway, N.J: IEEE, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Shea Kenneth, Yan Mingdi 1967-, Roberts M. Joseph, Cremer Paul S, Crooks Richard M, Sailor Michael J, Materials Research Society Meeting, and Symposium O, "Chemical and Biological Sensors--Materials and Devices" (2002 : San Francisco, Calif.), eds. Molecularly imprinted materials--sensors and other devices: Symposia held April 2-5, 2002, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sheng wu yi xue guang zi xue xin ji shu ji ying yong: Biomedical photonics new technology and application. Beijing: Ke xue chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

name, No. Microfluidics, bioMEMS, and medical microsystems: 27-29 January 2003, San Jose, California, USA. Bellingham, WA: SPIE, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Europe, SPIE, SPIE (Society), and Great Britain. Ministry of Defence. Electro-Magnetic Remote Sensing Defence Technology Centre, eds. Electro-optical remote sensing, photonic technologies, and applications II: 15-16 September 2008, Cardiff, Wales, United Kingdom. Bellingham, Wash: SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Europe, SPIE, SPIE (Society), Great Britain. Ministry of Defence. Electro-Magnetic Remote Sensing Defence Technology Centre, and OPTHER, eds. Electro-optical remote sensing, photonic technologies, and applications III: 1-3 September 2009, Berlin, Germany. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Becker, H., and Wanjun Wang. Microfluidics, bioMEMS, and medical microsystems VIII: 25-27 January 2010, San Francisco, California, United States. Bellingham, Wash: SPIE, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biosensors devices"

1

Hébert, Clément, Sébastien Ruffinatto, and Philippe Bergonzo. "Diamond Biosensors." In Carbon for Sensing Devices, 227–64. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08648-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santos, Bruno Jesus dos, and Henrique Stelzer Nogueira. "Biosensors." In Bioengineering and Biomaterials in Ventricular Assist Devices, 297–323. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003138358-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lambrechts, M., and W. Sansen. "Planar Technologies for Microelectrochemical Sensors." In Biosensors: Microelectrochemical Devices, 98–155. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208907-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lambrechts, M., and W. Sansen. "Thick-Film Voltammetric Sensors." In Biosensors: Microelectrochemical Devices, 246–77. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208907-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lambrechts, M., and W. Sansen. "Basic Electrochemical Principles." In Biosensors: Microelectrochemical Devices, 20–75. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208907-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lambrechts, M., and W. Sansen. "Case Studies on Microelectrochemical Sensors." In Biosensors: Microelectrochemical Devices, 156–245. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208907-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lambrechts, M., and W. Sansen. "Concluding Remarks." In Biosensors: Microelectrochemical Devices, 278–80. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208907-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lambrechts, M., and W. Sansen. "An Introduction to Microelectrochemical Sensors." In Biosensors: Microelectrochemical Devices, 1–19. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208907-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lambrechts, M., and W. Sansen. "Measuring Techniques for Sensor Evaluation." In Biosensors: Microelectrochemical Devices, 76–97. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208907-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Yanjun, and Edwin Kan. "CMOS Biosensors." In Non-logic Devices in Logic Processes, 237–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48339-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biosensors devices"

1

Schulz, Mark J., Amos Doepke, Xuefei Guo, Julia Kuhlmann, Brian Halsall, William Heineman, Zhongyun Dong, et al. "Responsive Biosensors for Biodegradable Magnesium Implants." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13101.

Full text
Abstract:
A biosensor is an electronic device that measures biologically important parameters. An example is a sensor that measures the chemicals and materials released during corrosion of a biodegradable magnesium implant that impact surrounding cells, tissues and organs. A responsive biosensor is a biosensor that responds to its own measurements. An example is a sensor that measures the corrosion of an implant and automatically adjusts (slows down or speeds up) the corrosion rate. The University of Cincinnati, the University of Pittsburgh, North Carolina A&T State University, and the Hannover Medical Institute are collaborators in an NSF Engineering Research Center (ERC) for Revolutionizing Metallic Biomaterials (RBM). The center will use responsive sensors in experimental test beds to develop biodegradable magnesium implants. Our goal is to develop biodegradable implants that combine novel bioengineered materials based on magnesium alloys, miniature sensor devices that monitor and control the corrosion, and coatings that slow corrosion and release biological factors and drugs that will promote healing in surrounding tissues. Responsive biosensors will monitor what is happening at the interface between the implant and tissue to ensure that the implant is effective, biosafe, and provides appropriate strength while degrading. Corrosion behavior is a critical factor in the design of the implant. The corrosion behavior of implants will be studied using biosensors and through mathematical modeling. Design guidelines will be developed to predict the degradation rate of implants, and to predict and further study toxicity arising from corrosion products (i.e., Mg ion concentrations, pH levels, and hydrogen gas evolution). Knowing the corrosion rate will allow estimations to be made of implant strength and toxicity risk throughout the degradation process.
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Wei, Hnin Y. Y. Nyein, Ziba Shahpar, Li-Chia Tai, Eric Wu, Mallika Bariya, Hiroki Ota, Hossain M. Fahad, Kevin Chen, and Ali Javey. "Wearable sweat biosensors." In 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016. http://dx.doi.org/10.1109/iedm.2016.7838363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bienstman, Peter, Katrien De Vos, Tom Claes, Peter Debackere, Roel Baets, Jordi Girones, and Etienne Schacht. "Biosensors in silicon on insulator." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Joel A. Kubby and Graham T. Reed. SPIE, 2009. http://dx.doi.org/10.1117/12.806608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"MODELLING OF SAW BIOSENSORS." In International Conference on Biomedical Electronics and Devices. SciTePress - Science and and Technology Publications, 2009. http://dx.doi.org/10.5220/0001544203760379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zuppella, P., F. Gerlin, S. Zuccon, A. J. Corso, E. Tessarolo, M. Nardello, D. Bacco, and M. G. Pelizzo. "Graphene-like coatings for biosensors devices." In SPIE Optics + Optoelectronics, edited by Francesco Baldini, Jiri Homola, and Robert A. Lieberman. SPIE, 2015. http://dx.doi.org/10.1117/12.2178462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zuppella, Paola, Francesca Gerlin, Davide Bacco, Alain J. Corso, Enrico Tessarolo, Marco Nardello, Simone Silvestrini, Michele Maggini, and Maria G. Pelizzo. "Graphene-metal interfaces for biosensors devices." In SPIE Nanoscience + Engineering, edited by Akhlesh Lakhtakia, Tom G. Mackay, and Motofumi Suzuki. SPIE, 2015. http://dx.doi.org/10.1117/12.2190656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Wei. "Self-powered wearable biosensors." In Energy Harvesting and Storage: Materials, Devices, and Applications XI, edited by Achyut K. Dutta, Palani Balaya, and Sheng Xu. SPIE, 2021. http://dx.doi.org/10.1117/12.2588899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitra, Sushanta K., and Prasanna S. Gandhi. "Micro-Scale Analysis, Fabrication and Characterization of Devices in SMAµL IIT Bombay." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96028.

Full text
Abstract:
Experimental and numerical investigations of liquid flows in the microchannels (50 150 μm) have been carried out for straight and serpentine geometry. CFD-ACE+ is used as numerical tool for analyzing flow through channels with designed roughness elements. μ-PIV is used for characterizing the flow through straight and serpentine sections of the channels. Such laser-based non-intrusive measurement technique is also used to characterize a microfluidic device meant for detection of multiple species. This device is fabricated from a mask using Excimer laser and species detection is achieved by balancing the pressure driven flow with the applied electric field. This device can be used for separation of biological species. In a parallel effort, experimental and numerical investigation of mechanics of affinity cantilevers for biosensor application has been carried out. A new model based on electrostatic repulsion between charged antigens has been proposed. Fabrication of biosensor is carried out on our Excimer laser. A characterization tool, micromap 5010, is used to measure static displacements resulting from bioactivity. A microfabrication facility to fabricate three-dimensional microstructures based on microstereolithography principles has been developed here. This facility will be useful for fabrication and further analysis (using μ-PIV) of flow through complex biological structures. Overall the SMAμL has a solid foundation laid for investigation of complex microchannel flow, heat transfer, biosensors and other MEMS devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Densmore, A., S. Janz, D. X. Xu, M. Vachon, P. Waldron, J. H. Schmid, J. Lapointe, et al. "Optoelectronic integration of silicon photonic wire biosensors." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2009. http://dx.doi.org/10.1117/12.811602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dagenais, Mario, A. N. Chryssis, Hyunmin Yi, Sang Mae Lee, S. S. Saini, and William E. Bentley. "Optical biosensors based on etched fiber Bragg gratings." In Integrated Optoelectronic Devices 2005, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2005. http://dx.doi.org/10.1117/12.591206.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Biosensors devices"

1

Song, X. Z., J. A. Shelnutt, J. D. Hobbs, and J. Cesarano. Designed supramolecular assemblies for biosensors and photoactive devices. LDRD final report. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/461263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Delwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz, and Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, February 2001. http://dx.doi.org/10.32747/2001.7573998.bard.

Full text
Abstract:
The original objectives of this research project were to: (1) develop immunoassays, photometric sensors, and electrochemical sensors for real-time measurement of progesterone and estradiol in milk, (2) develop biosensors for measurement of caseins in milk, and (3) integrate and adapt these sensor technologies to create an automated electronic sensing system for operation in dairy parlors during milking. The overall direction of research was not changed, although the work was expanded to include other milk components such as urea and lactose. A second generation biosensor for on-line measurement of bovine progesterone was designed and tested. Anti-progesterone antibody was coated on small disks of nitrocellulose membrane, which were inserted in the reaction chamber prior to testing, and a real-time assay was developed. The biosensor was designed using micropumps and valves under computer control, and assayed fluid volumes on the order of 1 ml. An automated sampler was designed to draw a test volume of milk from the long milk tube using a 4-way pinch valve. The system could execute a measurement cycle in about 10 min. Progesterone could be measured at concentrations low enough to distinguish luteal-phase from follicular-phase cows. The potential of the sensor to detect actual ovulatory events was compared with standard methods of estrus detection, including human observation and an activity monitor. The biosensor correctly identified all ovulatory events during its testperiod, but the variability at low progesterone concentrations triggered some false positives. Direct on-line measurement and intelligent interpretation of reproductive hormone profiles offers the potential for substantial improvement in reproductive management. A simple potentiometric method for measurement of milk protein was developed and tested. The method was based on the fact that proteins bind iodine. When proteins are added to a solution of the redox couple iodine/iodide (I-I2), the concentration of free iodine is changed and, as a consequence, the potential between two electrodes immersed in the solution is changed. The method worked well with analytical casein solutions and accurately measured concentrations of analytical caseins added to fresh milk. When tested with actual milk samples, the correlation between the sensor readings and the reference lab results (of both total proteins and casein content) was inferior to that of analytical casein. A number of different technologies were explored for the analysis of milk urea, and a manometric technique was selected for the final design. In the new sensor, urea in the sample was hydrolyzed to ammonium and carbonate by the enzyme urease, and subsequent shaking of the sample with citric acid in a sealed cell allowed urea to be estimated as a change in partial pressure of carbon dioxide. The pressure change in the cell was measured with a miniature piezoresistive pressure sensor, and effects of background dissolved gases and vapor pressures were corrected for by repeating the measurement of pressure developed in the sample without the addition of urease. Results were accurate in the physiological range of milk, the assay was faster than the typical milking period, and no toxic reagents were required. A sampling device was designed and built to passively draw milk from the long milk tube in the parlor. An electrochemical sensor for lactose was developed starting with a three-cascaded-enzyme sensor, evolving into two enzymes and CO2[Fe (CN)6] as a mediator, and then into a microflow injection system using poly-osmium modified screen-printed electrodes. The sensor was designed to serve multiple milking positions, using a manifold valve, a sampling valve, and two pumps. Disposable screen-printed electrodes with enzymatic membranes were used. The sensor was optimized for electrode coating components, flow rate, pH, and sample size, and the results correlated well (r2= 0.967) with known lactose concentrations.
APA, Harvard, Vancouver, ISO, and other styles
3

Dickherber, Anthony J., Christopher D. Corso, and William D. Hunts. Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada510112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography