To see the other types of publications on this topic, follow the link: Bioreactors.

Journal articles on the topic 'Bioreactors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bioreactors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Feyereisen, Gary W., Ehsan Ghane, Todd W. Schumacher, Brent J. Dalzell, and M. R. Williams. "Can Woodchip Bioreactors Be Used at a Catchment Scale? Nitrate Performance and Sediment Considerations." Journal of the ASABE 66, no. 2 (2023): 367–79. http://dx.doi.org/10.13031/ja.15496.

Full text
Abstract:
Highlights Novel three-bed, cascading-inlet bioreactor treated agricultural drainage from a 249-ha catchment. Nitrate removal rates and load reduction efficiencies were similar to those of traditional single-field bioreactors. Sedimentation problems reduced bed life; a sediment sensing and exclusion system solved them. This scale provides opportunities for centralized management and nutrient reduction verification. Abstract. Denitrifying bioreactors, a structural practice deployed at the field scale to meet water quality goals, have been underutilized and require additional evaluation at the small catchment scale. The objective of this study was to quantify the performance of a large, multi-bed denitrifying bioreactor system sized to treat agricultural drainage runoff (combined drainage discharge and surface runoff) from a 249-ha catchment. Three woodchip bioreactor beds, 7.6 m wide by 41 m long by 1.5 m deep, with cascading inlets, were constructed in 2016 in southern Minnesota, U.S. The beds received runoff for one water year from a catchment area that is 91% tile-drained row crops, primarily maize and soybeans. Initial woodchip quality differed among the three beds, affecting flow and nitrate removal rates. Bioreactor flow was unimpeded by sediment for twelve events from September 2016 to July 2017, during which time 55% of the discharge from the catchment was treated in the bioreactor beds. Average daily nitrate removal rates ranged from 2.5 to 6.5 g-N m-3 d-1 for the three bioreactor beds, with nitrate-N load removal of flow through the beds between 19% and 27%. When accounting for untreated by-pass flow, the overall nitrate-N removal of the multi-bed system was 12.5% (713 kg N). During high-flow events, incoming sediment clogged the reactor beds, decreasing their performance. There was 4,520 kg of sediment trapped in one bed, and evidence suggests the other two trapped a similar load. To solve this problem and prolong the bioreactor’s lifespan, we installed a shutoff gate that activated when inflow turbidity exceeded a threshold value. Finally, the findings indicate that catchment-scale denitrifying bioreactors can successfully remove nitrate load from agricultural runoff, but sediment-prevention measures may be required to extend the bioreactor's lifespan. Keywords: Bioreactor, Denitrification, Nitrate removal, Sedimentation, Subsurface drainage.
APA, Harvard, Vancouver, ISO, and other styles
2

Ritonja, Jozef, Andreja Gorsek, and Darja Pecar. "Control of Milk Fermentation in Batch Bioreactor." Elektronika ir Elektrotechnika 26, no. 1 (February 16, 2020): 4–9. http://dx.doi.org/10.5755/j01.eie.26.1.23377.

Full text
Abstract:
In this paper, modelling and control of a batch bioreactor is studied. A main disadvantage of batch bioreactors compared to other types of bioreactors is their inability to introduce biological or/and chemical substances during operation. Therefore, possibility of bioreactor’s control by means of changing temperature was proposed, analyzed, and implemented. A new supplementary input/output dynamical mathematical model, which considers influence of heating and cooling on a bioprocess, was developed. On a basis of this model, a control system was designed and a method for tuning of the controller was suggested. Results show characteristics, applicability, and advantages of the presented approach.
APA, Harvard, Vancouver, ISO, and other styles
3

Oktiawan, Wiharyanto, Irawan Wisnu Wardhana, Endro Sutrisno, Domuanri Gorat, and Alfian Rizky Rizaldianto. "Municipal Solid Waste Management Using Bioreactor Landfill in the Treatment of Organic Waste from Jatibarang Landfill, Semarang-Indonesia." E3S Web of Conferences 125 (2019): 07002. http://dx.doi.org/10.1051/e3sconf/201912507002.

Full text
Abstract:
Landfilling is one of the easiest methods to be applied in the management of municipal solid waste (MSW). In its development, bioreactor landfill methods that have various advantages over conventional landfill emerge. This experiment aims to study the use of bioreactor landfills for the management of organic waste in Jatibarang Landfill, Semarang-Indonesia. There are 4 bioreactor landfills operated: 2 anaerobic bioreactors with leachate recirculation and addition of water, and 2 aerobic bioreactors. Different results are shown from these two types of bioreactor, where aerobic bioreactors reach peak temperatures (55oC each) faster even though anaerobic bioreactors reach higher temperatures (60oC and 61oC respectively). Anaerobic bioreactors reach a higher final pH value than aerobes while the accumulation of nitrogen content from an aerobic bioreactor is 2 times higher than anaerobes.
APA, Harvard, Vancouver, ISO, and other styles
4

Christianson, Laura E., Richard A. Cooke, Christopher H. Hay, Matthew J. Helmers, Gary W. Feyereisen, Andry Z. Ranaivoson, John T. McMaine, et al. "Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas." Transactions of the ASABE 64, no. 2 (2021): 641–58. http://dx.doi.org/10.13031/trans.14011.

Full text
Abstract:
HighlightsDenitrifying woodchip bioreactors treat nitrate-N in a variety of applications and geographies.This review focuses on subsurface drainage bioreactors and bed-style designs (including in-ditch).Monitoring and reporting recommendations are provided to advance bioreactor science and engineering.Abstract. Denitrifying bioreactors enhance the natural process of denitrification in a practical way to treat nitrate-nitrogen (N) in a variety of N-laden water matrices. The design and construction of bioreactors for treatment of subsurface drainage in the U.S. is guided by USDA-NRCS Conservation Practice Standard 605. This review consolidates the state of the science for denitrifying bioreactors using case studies from across the globe with an emphasis on full-size bioreactor nitrate-N removal and cost-effectiveness. The focus is on bed-style bioreactors (including in-ditch modifications), although there is mention of denitrifying walls, which broaden the applicability of bioreactor technology in some areas. Subsurface drainage denitrifying bioreactors have been assessed as removing 20% to 40% of annual nitrate-N loss in the Midwest, and an evaluation across the peer-reviewed literature published over the past three years showed that bioreactors around the world have been generally consistent with that (N load reduction median: 46%; mean ±SD: 40% ±26%; n = 15). Reported N removal rates were on the order of 5.1 g N m-3 d-1 (median; mean ±SD: 7.2 ±9.6 g N m-3 d-1; n = 27). Subsurface drainage bioreactor installation costs have ranged from less than $5,000 to $27,000, with estimated cost efficiencies ranging from less than $2.50 kg-1 N year-1 to roughly $20 kg-1 N year-1 (although they can be as high as $48 kg-1 N year-1). A suggested monitoring setup is described primarily for the context of conservation practitioners and watershed groups for assessing annual nitrate-N load removal performance of subsurface drainage denitrifying bioreactors. Recommended minimum reporting measures for assessing and comparing annual N removal performance include: bioreactor dimensions and installation date; fill media size, porosity, and type; nitrate-N concentrations and water temperatures; bioreactor flow treatment details; basic drainage system and bioreactor design characteristics; and N removal rate and efficiency. Keywords: Groundwater, Nitrate, Nonpoint-source pollution, Subsurface drainage, Tile.
APA, Harvard, Vancouver, ISO, and other styles
5

Ghosh, Subhrojyoti, Nainika Srivastava, Shreya Jha, and Nandan Kumar Jana. "Spinner Flask Bioreactor in Tissue Engineering." YMER Digital 21, no. 06 (June 20, 2022): 611–26. http://dx.doi.org/10.37896/ymer21.06/61.

Full text
Abstract:
Spinner Flask Bioreactors are usually made up of glass or plastic vessel which have been widely used in Tissue Engineering from production of articular cartilage to production of osteoblast cells that help in bone regeneration. Cartilage grown in spinner flask bioreactors had more cells and less GAG than the other types of bioreactors in tissue engineering. In recent years, these bioreactors have also been used for the invitro cultivation of human tenocytes and MSCs. In this type of bioreactor, the cell/scaffold constructs are connected to vertical needles striking from pinnacle of the vessel and immersed inside the culture medium. The pinnacle or the top part of this bioreactor is used for gas exchange and medium oxygenation. Mixing of the medium is maintained with a stir bar at the lowest of the vessel or different blending mechanisms. Spinner Flask Bioreactors have grabbed increased attention in recent years due to its wide range of Tissue Engineering applications. In this review, we have tried to explore the different domains where these bioreactors have found enhanced applications. Keywords: Spin Flask Bioreactor Tissue Engineering, Cell Seeding, Bone Tissue Engineering, Articular Cartilage
APA, Harvard, Vancouver, ISO, and other styles
6

Wiharyanto, Oktiawan, Sutrisno Endro, and Hadiwidodo Mochtar. "Performance of Semi-Aerobic Solid Waste Bioreactor in relation to Decomposition Process and Biogas Production." E3S Web of Conferences 73 (2018): 07021. http://dx.doi.org/10.1051/e3sconf/20187307021.

Full text
Abstract:
Solid waste which is sent to Jatibarang landfill in Semarang City can reach up to 4000 m3/day. The composition of solid waste consists of 61.95% of organic waste and 38.05% of inorganic waste. The environmental impacts of solid waste can be reduced using bioreactor methods which being able to accelerate the solid waste decomposition. Large amount of solid waste which is sent to Jatibarang landfill certainly has great potential to environment pollution. Therefore, a technology such as landfill bioreactor is needed to speed up the decomposition process of organic solid waste. Landfill bioreactors are characterized using a range of technologies in order to create an suitable environment for degradation processes. In this study four bioreactors simulated landfills that consist of hybrid bioreactors and anaerobic control bioreactors. The result shows that hybrid bioreactor has increases the decomposition process of organic solid waste. The hybrid bioreactor also produce more methane in subsequent anaerobes.
APA, Harvard, Vancouver, ISO, and other styles
7

Malhotra, Neeraj. "Bioreactors Design, Types, Influencing Factors and Potential Application in Dentistry. A Literature Review." Current Stem Cell Research & Therapy 14, no. 4 (May 23, 2019): 351–66. http://dx.doi.org/10.2174/1574888x14666190111105504.

Full text
Abstract:
Objectives:A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.Methods:Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.Results:Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.Conclusions:Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.
APA, Harvard, Vancouver, ISO, and other styles
8

Dzianik, František, and Štefan Gužela. "Basic Technological Parameters of the Activation Process for Two Bioreactor Configurations." Strojnícky časopis - Journal of Mechanical Engineering 73, no. 1 (May 1, 2023): 43–54. http://dx.doi.org/10.2478/scjme-2023-0004.

Full text
Abstract:
Abstract Technological parameters of the activation process in wastewater treatment plant activation systems are analyzed for basic bioreactor configurations, for the chemostat and for the plug flow, both with the recirculation of concentrated activated sludge. The first type of bioreactors represents conventional aerated tanks, but also loop bioreactors. The second type of bioreactors includes, for example, oxidation ditches. The paper presents an evaluation of the basic technological parameters of the activation process for the two mentioned configurations of bioreactor systems with recirculation of concentrated activated sludge. In addition, a new relation for sludge age evaluation is proposed for an activation system with a plug flow bioreactor. The article also provides examples of connections between the values of the technological parameters of the activation process for the two analyzed types of bioreactor systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Catapano, Gerardo, Juliane K. Unger, Elisabetta M. Zanetti, Gionata Fragomeni, and Jörg C. Gerlach. "Kinetic Analysis of Lidocaine Elimination by Pig Liver Cells Cultured in 3D Multi-Compartment Hollow Fiber Membrane Network Perfusion Bioreactors." Bioengineering 8, no. 8 (July 23, 2021): 104. http://dx.doi.org/10.3390/bioengineering8080104.

Full text
Abstract:
Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state. In this study, we characterized the intrinsic kinetics of lidocaine elimination and adsorption by porcine liver cells cultured in 3D four-compartment hollow fiber membrane network perfusion bioreactors. Models of lidocaine transport and biotransformation were used to extract intrinsic kinetic information from response to lidocaine bolus of bioreactor versus adhesion cultures. Different from 2D adhesion cultures, cells in the bioreactors are organized in liver-like aggregates. Adsorption on bioreactor constituents significantly affected lidocaine elimination and was effectively accounted for in kinetic analysis. Lidocaine elimination and cellular monoethylglicinexylidide biotransformation featured first-order kinetics with near-to-in vivo cell-specific capacity that was retained for times suitable for clinical assist and drug screening. Different from 2D cultures, cells in the 3D bioreactors challenged with lidocaine were exposed to close-to-physiological lidocaine and monoethylglicinexylidide concentration profiles. Kinetic analysis suggests bioreactor technology feasibility for preclinical drug screening and patient assist and that drug adsorption should be accounted for to assess cell state in different cultures and when laboratory bioreactor design and performance is scaled-up to clinical use or toxicological drug screening.
APA, Harvard, Vancouver, ISO, and other styles
10

Nokhbatolfoghahaei, Hanieh, Mahboubeh Bohlouli, Kazem Adavi, Zahrasadat Paknejad, Maryam Rezai Rad, Mohammad Mehdi khani, Nasim Salehi-Nik, and Arash Khojasteh. "Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, no. 12 (July 21, 2020): 1397–408. http://dx.doi.org/10.1177/0954411920944039.

Full text
Abstract:
Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in order to alleviate the time and material consuming for evaluating bioreactor parameters and effect of fluid flow hydrodynamics (various amounts of shear stress) on osteogenesis. Also, biological assessments were performed in order to validate similar parameters under implementing the perfusion or rotating and perfusion fluid motions in bioreactors’ prototype. Finite element method was used to investigate the effect of hydrodynamic of fluid flow inside the bioreactors. The equations used in the simulation to calculate the velocity values and consequently the shear stress values include Navier–Stokes and Brinkman equations. It has been shown that rotational fluid motion in rotating and perfusion bioreactor produces more velocity and shear stress compared with perfusion bioreactor. Moreover, implementing the perfusion together with rotational force in rotating and perfusion bioreactors has been shown to have more cell proliferation and higher activity of alkaline phosphatase enzyme as well as formation of extra cellular matrix sheet, as an indicator of bone-like tissue formation.
APA, Harvard, Vancouver, ISO, and other styles
11

Baihaqi, Rifqi Ahmad, Kencana Ayudya Prabahandari, Yogi Hariyono, Novita Indah Pratiwi, Heri Sutanto, and Yoyon Wahyono. "Application of anaerobic and aerobic bioreactors in detergent wastewater treatment: A review." IOP Conference Series: Earth and Environmental Science 1098, no. 1 (October 1, 2022): 012034. http://dx.doi.org/10.1088/1755-1315/1098/1/012034.

Full text
Abstract:
Abstract The laundry business sector is expanding quickly nowadays. However, the laundry industry is still dealing with the issue of processing detergent wastewater. Anaerobic and aerobic bioreactors may efficiently solve this problem. This narrative review aims to assess the feasibility of using anaerobic and aerobic bioreactors for detergent wastewater treatment. Its advantages and disadvantages and the idea of combining multi-media filtration and UV light in detergent wastewater treatment using an aerobic and aerobic bioreactor. The anaerobic bioreactor can reduce chemical and biological oxygen demand to 89.8 % and 94.0 %, respectively. At the same time, aerobic bioreactors can reduce chemical and biological oxygen demand to 99.1% and 71%, respectively. However, some challenges still need to be addressed to make anaerobic ad aerobic bioreactors can be implemented. Suspended solid production, dissolved methane, and temperature-dependent effectiveness are challenges that must be solved. Multi-media filtration can reduce suspended solids and provide ion exchange, while UV light kills excess microorganisms from the bioreactor.
APA, Harvard, Vancouver, ISO, and other styles
12

Grün, Christoph, Brigitte Altmann, and Eric Gottwald. "Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020." Processes 8, no. 12 (December 15, 2020): 1656. http://dx.doi.org/10.3390/pr8121656.

Full text
Abstract:
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. In this systematic review we analyze the literature in the field of eukaryotic 3D cell culture in micro-bioreactors within the last 20 years. For this, we define complexity levels with regard to the cellular 3D microenvironment concerning cell–matrix-contact, cell–cell-contact and the number of different cell types present at the same time. Moreover, we examine the data with regard to the micro-bioreactor design including mode of cell stimulation/nutrient supply and materials used for the micro-bioreactors, the corresponding 3D cell culture techniques and the related cellular microenvironment, the cell types and in vitro models used. As a data source we used the National Library of Medicine and analyzed the studies published from 2000 to 2020.
APA, Harvard, Vancouver, ISO, and other styles
13

Etienne, Hervé, E. Dechamp, D. Barry-Etienne, and Bernóit Bertrand. "Bioreactors in coffee micropropagation." Brazilian Journal of Plant Physiology 18, no. 1 (March 2006): 45–54. http://dx.doi.org/10.1590/s1677-04202006000100005.

Full text
Abstract:
In coffee, bioreactors are the most promising way for scaling-up micropropagation processes, particularly somatic embryogenesis. The availability of an efficient somatic embryogenesis process would allow the rapid mass production of heterozygous materials such as selected Coffea canephora clones and F1 Arabica hybrid varieties. For the last fifteen years, bioreactors (mechanically or pneumatically agitated bioreactors, temporary immersion bioreactors) have mostly been used on coffee to optimize the mass regeneration of somatic embryos from embryogenic tissues. This review presents the main results, obtained with several bioreactor models, concerning the different steps of the micropropagation process : i) the multiplication of embryogenic tissues, ii) the somatic embryo mass regeneration and iii) the production of pre-germinated embryos and plantlets in bioreactors. The literature shows that scaling-up can be successful, since very efficient embryo production has been achieved for both C. arabica and C. canephora. Moreover, it was proven that the pre-germinated coffee embryos - i.e. embryonic axis elongation (10-12 mm), root tip formation, cotyledon expansion and greening - obtained in temporary immersion bioreactors were photoautotrophic and able to regenerate vigorous plantlets after sowing under nursery conditions. The feasibility to apply the bioreactor technology in an industrial micropropagation procedure is also discussed in the particular socio-economic context of coffee growing.
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, Yixuan, Weisi Li, Yanlu Qiao, Fangying Yu, Bowen Wang, Jianliang Xue, Mianmian Wang, Qing Jiang, and Zhibin Zhou. "Study on the Changes in Immobilized Petroleum–Degrading Bacteria Beads in a Continuous Bioreactor Related to Physicochemical Performance, Degradation Ability, and Microbial Community." International Journal of Environmental Research and Public Health 19, no. 18 (September 9, 2022): 11348. http://dx.doi.org/10.3390/ijerph191811348.

Full text
Abstract:
Continuous bioreactors for petroleum degradation and the effect factors of these bioreactors have rarely been mentioned in studies. In addition, indigenous bacteria living in seawater could influence the performance of continuous bioreactors with respect to petroleum degradation in practice. In this paper, a bioreactor fitted with immobilized petroleum–degrading bacteria beads was designed for further research. The results indicated that the diesel degradation rate of the bioreactor could remain above 50% over 27 days, while degradation performance decreased with bioremediation time. Intriguingly, the diameters of immobilized petroleum–degrading bacteria beads were reduced by 32.49% after 45 days remediation compared with the initial size of the immobilized petroleum–degrading bacteria beads. Change in immobilized petroleum–degrading bacteria beads was considered to correlate remarkably with reduced degradation efficiency. Therefore, this paper will be helpful for further study and improvement of bioreactors in the practical context of oil-spill accident recovery.
APA, Harvard, Vancouver, ISO, and other styles
15

Thanapornsin, Thanawat, Likit Sirisantimethakom, Lakkana Laopaiboon, and Pattana Laopaiboon. "Effectiveness of Low-Cost Bioreactors Integrated with a Gas Stripping System for Butanol Fermentation from Sugarcane Molasses by Clostridium beijerinckii." Fermentation 8, no. 5 (May 8, 2022): 214. http://dx.doi.org/10.3390/fermentation8050214.

Full text
Abstract:
The effectiveness of column bioreactors for butanol fermentation from sugarcane molasses by Clostridium beijerinckii TISTR 1461 was investigated. This fermentation was operated at an initial pH of 6.5 and temperature of 37 °C under anaerobic conditions. A 1-L bubble column bioreactor was used with various gas circulation rates ranging from 0.2 to 1.0 L/min. The highest butanol concentration (PB, 8.72 g/L), productivity (QB, 0.24 g/L∙h) and yield (YB/S, 0.21 g/g) were obtained with a gas circulation of 0.2 L/min. To improve butanol production efficiency, gas-lift column bioreactors with internal and external loops at 0.2 L/min of circulating gas were used. Higher PB (10.50–10.58 g/L), QB (0.29 g/L∙h) and YB/S (0.22–0.23 g/g) values were obtained in gas-lift column bioreactors. These values were similar to those using a more complex 2-L stirred-tank bioreactor (PB, 10.10 g/L; QB, 0.28 g/L h and YB/S, 0.22 g/g). Hence, gas-lift column bioreactors have potential for use as low-cost fermenters instead of stirred-tank bioreactors for butanol fermentation. When the gas-lift column bioreactor with an internal loop was coupled with a gas stripping system, it yielded an enhanced PB and sugar consumption of approximately 9% and 7%, respectively, compared to a system with no gas stripping.
APA, Harvard, Vancouver, ISO, and other styles
16

Deng, Zhi Hua, Ping Ning, Cheng Zhou, Jian Hong Huang, and Kui Yang. "The Biotechnology for Odours-A Review." Advanced Materials Research 403-408 (November 2011): 1432–37. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.1432.

Full text
Abstract:
This article provides an overview about the microbes selecting, types of bioreactors, the treatment condition, etc. which influence the odors abatement effect. In the recent past, many highly efficiency microorganisms on the actual governance of malodorous gases have been selected and trained. Among different bioreactor configurations, biofilters, biotrickling filters and bioscrubbers are most common ones. The membrane bioreactor and the three phase fluidised bed bioreactor as new bioreactors have broad development prospects. Finally, this review also provides how to insights into future R&D needs in this area.
APA, Harvard, Vancouver, ISO, and other styles
17

Mancilla-Álvarez, Eucario, Juan Antonio Pérez-Sato, Rosalía Núñez-Pastrana, José L. Spinoso-Castillo, and Jericó J. Bello-Bello. "Comparison of Different Semi-Automated Bioreactors for In Vitro Propagation of Taro (Colocasia esculenta L. Schott)." Plants 10, no. 5 (May 19, 2021): 1010. http://dx.doi.org/10.3390/plants10051010.

Full text
Abstract:
Taro is important for its nutritional content, medicinal use, and bioethanol production. The aim of the present study was to compare different semi-automated bioreactors (SABs) during in vitro multiplication of C. esculenta. The SABs used were temporary immersion bioreactors (TIBs), SETIS™ bioreactors and ebb-and-flow bioreactors; semi-solid culture medium was used as a control treatment. At 30 d of culture, different developmental variables, determination of chlorophyll, stomatal content, and survival percentage during acclimatization were evaluated. SABs increased the shoot multiplication rate relative to the semi-solid medium; however, the SETIS™ bioreactor showed the highest shoot production, with 36 shoots per explant, and the highest chlorophyll content. The stomatal index was higher in the semi-solid medium compared to the SABs, while the percentage of closed stomata was higher in the SABs than in the semi-solid culture medium. The survival rate during acclimatization showed no differences among the culture systems assessed, obtaining survival rates higher than 99%. In conclusion, the SETIS™ bioreactor showed the highest multiplication rate; however, other bioreactor alternatives are available for semi-automation and cost reduction for micropropagation of C. esculenta.
APA, Harvard, Vancouver, ISO, and other styles
18

Licata, Joseph P., Kyle H. Schwab, Yah-el Har-el, Jonathan A. Gerstenhaber, and Peter I. Lelkes. "Bioreactor Technologies for Enhanced Organoid Culture." International Journal of Molecular Sciences 24, no. 14 (July 13, 2023): 11427. http://dx.doi.org/10.3390/ijms241411427.

Full text
Abstract:
An organoid is a 3D organization of cells that can recapitulate some of the structure and function of native tissue. Recent work has seen organoids gain prominence as a valuable model for studying tissue development, drug discovery, and potential clinical applications. The requirements for the successful culture of organoids in vitro differ significantly from those of traditional monolayer cell cultures. The generation and maturation of high-fidelity organoids entails developing and optimizing environmental conditions to provide the optimal cues for growth and 3D maturation, such as oxygenation, mechanical and fluidic activation, nutrition gradients, etc. To this end, we discuss the four main categories of bioreactors used for organoid culture: stirred bioreactors (SBR), microfluidic bioreactors (MFB), rotating wall vessels (RWV), and electrically stimulating (ES) bioreactors. We aim to lay out the state-of-the-art of both commercial and in-house developed bioreactor systems, their benefits to the culture of organoids derived from various cells and tissues, and the limitations of bioreactor technology, including sterilization, accessibility, and suitability and ease of use for long-term culture. Finally, we discuss future directions for improvements to existing bioreactor technology and how they may be used to enhance organoid culture for specific applications.
APA, Harvard, Vancouver, ISO, and other styles
19

Vanags, J., and A. Suleiko. "Oxygen Mass Transfer Coefficient Application in Characterisation of Bioreactors and Fermentation Processes." Latvian Journal of Physics and Technical Sciences 59, no. 5 (October 1, 2022): 21–32. http://dx.doi.org/10.2478/lpts-2022-0038.

Full text
Abstract:
Abstract This review article covers the topics of evaluation and experimental determination of oxygen mass transfer coefficients (kLa) for their application in characterising bioreactors and fermentations processes. The article provides a comparison of different experimental approaches for determining kLa in bioreactors. Additionally, the influence of bioreactor design and fermentation parameters on kLa is discussed. The aim of the article is to provide useful information regarding the approaches for selecting bioreactors and their working regimes to achieve optimal fermentation results.
APA, Harvard, Vancouver, ISO, and other styles
20

Hartfiel, Lindsey M., Michelle L. Soupir, and Kurt A. Rosentrater. "Techno-Economic Analysis of Constant-Flow Woodchip Bioreactors." Transactions of the ASABE 64, no. 5 (2021): 1545–54. http://dx.doi.org/10.13031/trans.14300.

Full text
Abstract:
HighlightsTechno-economic analysis was performed for multiple scales of bioreactors operated under a variety of conditions.The unit cost decreased as the bioreactor size increased.The unit cost increased in bioreactors with longer HRTs and bypass flow due to reduced treatment capacity.One large bioreactor was more cost-effective than multiple smaller bioreactors.Abstract. Woodchip denitrification bioreactors are a relatively new, edge-of-field technology used to reduce nitrate-nitrogen (NO3-N) from subsurface tile drainage. The removal rate of nitrate is influenced by many factors, including temperature, dissolved oxygen, and hydraulic residence time (HRT). The objective of this study was to conduct a techno-economic analysis (TEA) for four scales of woodchip denitrification bioreactors operating at three HRTs (2, 8, and 16 h), designed with bypass flow or with a low probability of bypass flow, to determine the cost to remove 1 kg of NO3-N at each bioreactor scale and at each HRT. Several assumptions were made: the flow rate required to achieve a 2 h HRT on a per m3 basis could be achieved at all scales, the same mass removal of NO3-N was achieved on a per cubic meter basis, and the 2 h HRT did not have any bypass flow at each scale. With these assumptions, the lowest unit cost was observed for the large-scale bioreactor sized to have a low probability of bypass flow at 16 h HRT, with a resulting cost of $0.74 kg-1 NO3-N removed. The highest unit cost was observed for the pilot-scale bioreactor designed with bypass flow to achieve a 16 h HRT at a cost of $60.13 kg-1 NO3-N removed. At longer HRTs with bypass flow, a greater percent removal of nitrate has been observed with a lower mass removal rate. By having a low probability of bypass flow in the design, a higher mass removal and percent removal of nitrate were observed, leading to the above results. Contrasting this trend, the total and annual costs were highest for the large-scale bioreactor and lowest for the pilot-scale bioreactor. However, it was determined that 783%, 280%, and 54% increases in total cost for the pilot-, small-, and medium-scale bioreactors would be incurred to implement the number of bioreactors (66, 24, and 4, respectively) required to treat the same volume of flow as one large bioreactor. These results can be used to inform future design decisions and inform stakeholders of the approximate unit cost of installing a denitrifying woodchip bioreactor over a range of expected field conditions. While a larger bioreactor with a low probability of bypass flow may represent a more cost-effective investment, the potential for unintended, negative byproducts needs to be considered in the design. Keywords: Denitrification, Nitrate, Tile drainage, Water quality, Woodchip bioreactor.
APA, Harvard, Vancouver, ISO, and other styles
21

Kırdök, Onur, Berker Çetintaş, Asena Atay, İrem Kale, Tutku Didem Akyol Altun, and Elif Esin Hameş. "A Modular Chain Bioreactor Design for Fungal Productions." Biomimetics 7, no. 4 (October 27, 2022): 179. http://dx.doi.org/10.3390/biomimetics7040179.

Full text
Abstract:
Plastic bag bioreactors are single-use bioreactors, frequently used in solid culture fermentation. This study developed plastic bag bioreactors with more effective aeration conditions and particular connection elements that yield sensors, environmental control, and modular connectivity. This bioreactor system integrates the bags in a chain that circulates air and moisture through filtered connections. Within the present scope, this study also aimed to reveal that cultures in different plastic bags can be produced without affecting each other. In this direction, biomass production in the modular chain bioreactor (MCB) system developed in this study was compared to traditional bag systems. In addition, contamination experiments were carried out between the bags in the system, and it was observed that the filters in the developed system did not affect the microorganisms in different bags.
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Chengyue, Tahir Maqbool, Hongyu Kang, and Zhenghua Zhang. "In-Situ Sludge Reduction in Membrane-Controlled Anoxic-Oxic-Anoxic Bioreactor: Performance and Mechanism." Membranes 12, no. 7 (June 27, 2022): 659. http://dx.doi.org/10.3390/membranes12070659.

Full text
Abstract:
Conventional and advanced biological wastewater treatment systems generate excess sludge, which causes socio-economic and environmental issues. This study investigated the performance of membrane-controlled anoxic-oxic-anoxic (AOA) bioreactors for in-situ sludge reduction compared to the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol). The membrane units in the AOA bioreactors were operated as anoxic reactors at lower sludge recirculation rates to achieve hydrolysis of extracellular polymeric substances (EPS) and extensive endogenous respiration. Compared to MBRcontrol, the AOA bioreactors operated with 90%, and 80% recirculation rates reduced the sludge growth up to 19% and 30%, respectively. Protein-like components were enriched in AOA bioreactors while fulvic-like components were dominant in MBRcontrol. The growth of Dechloromonas and Zoogloea genra was promoted in AOA bioreactors and thus sludge reduction was facilitated. Metagenomics analysis uncovered that AOA bioreactors exhibited higher proportions of key genes encoding enzymes involved in the glycolysis and denitrification processes, which contributed to the utilization of carbon sources and nitrogen consumption and thus sludge reduction.
APA, Harvard, Vancouver, ISO, and other styles
23

Conroy, Kristen M., Feng Chen, Olli H. Tuovinen, and Karen M. Mancl. "Effect of Sodium Chloride Concentration on Removal of Chemical Oxygen Demand and Ammonia from Turkey Processing Wastewater in Sand Bioreactors." Applied Engineering in Agriculture 36, no. 1 (2020): 33–37. http://dx.doi.org/10.13031/aea.13632.

Full text
Abstract:
HighlightsSand bioreactors can effectively treat organic matter at salt levels at least up to 13 g L-1 NaCl.Acclimation of the systems for ammonia removal can take >4 weeks.Clogging and reduction in treatment efficacy can be alleviated through resting of sand bioreactors. Abstract. The treatment of high salt (>1%) wastewater is an issue in several food industries, including meat curing, vegetable pickling, and fish processing. Novel solutions involving biological treatment of saline wastewaters are increasingly important as companies strive to minimize waste production. Sand bioreactors are a secondary treatment option that do not produce secondary sludge. The purpose of this study was to assess the feasibility of treating high salt content poultry processing wastewater with sand bioreactors. Twelve laboratory-scale sand bioreactors consisted of 14.5-cm diameter columns with three layers composed of 15 cm of gravel, 15 cm of coarse sand, and 46 cm of fine sand. The columns were dose fed at 4 cm day-1 turkey processing wastewater with 0, 6, and 13 g L-1 NaCl. Removal of chemical oxygen demand (COD) and ammonia were monitored for over an 11-month period. Each bioreactor successfully removed >90% COD and ammonia during steady state after 4 to 5 week of acclimatization. Clogging caused a decrease in treatment in three sand bioreactors after 6 to 7 months, but was alleviated with rest periods. Keywords: Ammonia removal, Clogging, High salt wastewater, Organic matter removal, Sand bioreactor, Turkey processing wastewater.
APA, Harvard, Vancouver, ISO, and other styles
24

Burton, Stephanie G. "Development of bioreactors for application of biocatalysts in biotransformations and bioremediation." Pure and Applied Chemistry 73, no. 1 (January 1, 2001): 77–83. http://dx.doi.org/10.1351/pac200173010077.

Full text
Abstract:
Biotransformation systems, whether used for environmentally benign biocatalysis of synthetic reactions, or bioremediation of pollutants, require suitable biocatalysts and suitable bioreactor systems with particular characteristics. Our research focuses on the bioconversion of organic compounds, many of which are industrial residues, such as phenols, poly-aromatic hydrocarbons, heterocyclic compounds, and polychlorinated biphenyls. The purpose of such biotransformations can be twofold: firstly, to remove them from effluents and convert them to less toxic forms, and secondly, to convert them into products with economic value. We conduct research in utilizing various isolated-enzyme and whole-cell biological agents; bioreactors, including novel membrane bioreactors, are used as a means of supporting/immobilizing, and hence applying, these biocatalysts in continuous systems. In addition, the enzyme systems are characterized biochemically, to provide information which is required in modification, adaptation, and scale-up of the bioreactors. The paper summarizes research on application of biofilms of fungal and bacterial cells and their enzymes, including hydrolases, polyphenol oxidase, peroxidase and laccase, in bioreactor systems including continuously operating membrane bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
25

Bernemann, Vincent, Jürgen Fitschen, Marco Leupold, Karl-Heinz Scheibenbogen, Marc Maly, Marko Hoffmann, Thomas Wucherpfennig, and Michael Schlüter. "Characterization Data for the Establishment of Scale-Up and Process Transfer Strategies between Stainless Steel and Single-Use Bioreactors." Fluids 9, no. 5 (May 16, 2024): 115. http://dx.doi.org/10.3390/fluids9050115.

Full text
Abstract:
The reliable transfer of bioprocesses from single-use bioreactors (SUBs) of different scales to conventional stainless steel stirred-tank bioreactors is of steadily growing interest. In this publication, a scale-up study for SUBs with volumes of 200 L and 2000 L and the transfer to an industrial-scale conventional stainless steel stirred-tank bioreactor with a volume of 15,000 L is presented. The scale-up and transfer are based on a comparison of mixing times and the modeling of volumetric mass transfer coefficients kLa, measured in all three reactors in aqueous PBS/Kolliphor solution. The mass transfer coefficients are compared with the widely used correlation of van’t Riet at constant stirrer tip speeds. It can be shown that a van’t Riet correlation enables a robust and reliable prediction of mass transfer coefficients on each scale for a wide range of stirrer tip speeds and aeration rates. The process transfer from single-use bioreactors to conventional stainless steel stirred-tank bioreactors is proven to be uncritical concerning mass transfer performance. This provides higher flexibility with respect to bioreactor equipment considered for specific processes.
APA, Harvard, Vancouver, ISO, and other styles
26

Titova, Maria, Elena Popova, and Alexander Nosov. "Bioreactor Systems for Plant Cell Cultivation at the Institute of Plant Physiology of the Russian Academy of Sciences: 50 Years of Technology Evolution from Laboratory to Industrial Implications." Plants 13, no. 3 (February 1, 2024): 430. http://dx.doi.org/10.3390/plants13030430.

Full text
Abstract:
The cultivation of plant cells in large-scale bioreactor systems has long been considered a promising alternative for the overexploitation of wild plants as a source of bioactive phytochemicals. This idea, however, faced multiple constraints upon realization, resulting in very few examples of technologically feasible and economically effective biotechnological companies. The bioreactor cultivation of plant cells is challenging. Even well-growing and highly biosynthetically potent cell lines require a thorough optimization of cultivation parameters when upscaling the cultivation process from laboratory to industrial volumes. The optimization includes, but is not limited to, the bioreactor’s shape and design, cultivation regime (batch, fed-batch, continuous, semi-continuous), aeration, homogenization, anti-foaming measures, etc., while maintaining a high biomass and metabolite production. Based on the literature data and our experience, the cell cultures often demonstrate cell line- or species-specific responses to parameter changes, with the dissolved oxygen concentration (pO2) and shear stress caused by stirring being frequent growth-limiting factors. The mass transfer coefficient also plays a vital role in upscaling the cultivation process from smaller to larger volumes. The Experimental Biotechnological Facility at the K.A. Timiryazev Institute of Plant Physiology has operated since the 1970s and currently hosts a cascade of bioreactors from the laboratory (20 L) to the pilot (75 L) and a semi-industrial volume (630 L) adapted for the cultivation of plant cells. In this review, we discuss the most appealing cases of the cell cultivation process’s adaptation to bioreactor conditions featuring the cell cultures of medicinal plants Dioscorea deltoidea Wall. ex Griseb., Taxus wallichiana Zucc., Stephania glabra (Roxb.) Miers, Panax japonicus (T. Nees) C.A.Mey., Polyscias filicifolia (C. Moore ex E. Fourn.) L.H. Bailey, and P. fruticosa L. Harms. The results of cell cultivation in bioreactors of different types and designs using various cultivation regimes are covered and compared with the literature data. We also discuss the role of the critical factors affecting cell behavior in bioreactors with large volumes.
APA, Harvard, Vancouver, ISO, and other styles
27

Sirirak, Khanoksinee, Sorawit Powtongsook, Sudarat Suanjit, and Somtawin Jaritkhuan. "Effectiveness of various bioreactors for thraustochytrid culture and production (Aurantiochytruim limacinum BUCHAXM 122)." PeerJ 9 (May 27, 2021): e11405. http://dx.doi.org/10.7717/peerj.11405.

Full text
Abstract:
This study aimed to develop bioreactors for cultivation of thraustochytrid, Aurantiochytrium limacinum BUCHAXM 122, that are low in cost and simple to operate. Obtaining maximum biomass and fatty acid production was a prerequisite. Three bioreactor designs were used: stirred tank bioreactor (STB), bubble bioreactor (BB) and internal loop airlift bioreactor (ILAB). The bioreactors were evaluated for their influence on oxygen mass transfer coefficient (kLa), using various spargers, mixing speed, and aeration rates. Biomass and DHA production from STB, BB, ILAB were then compared with an incubator shaker, using batch culture experiments. Results showed that a bundle of eight super-fine pore air stones was the best type of aeration sparger for all three bioreactors. Optimal culture conditions in STB were 600 rpm agitation speed and 2 vvm aeration rate, while 2 vvm and 1.5 vvm aeration provided highest biomass productivity in BB and ILAB, respectively. Antifoam agent was needed for all reactor types in order to reduce excessive foaming. Results indicated that with optimized conditions, these bioreactors are capable of thraustochytrid cultivation with a similar efficiency as cultivation using a rotary shaker. STB had the highest kLa and provided the highest biomass of 43.05 ± 0.35 g/L at 48 h. BB was simple in design, had low operating costs and was easy to build, but yielded the lowest biomass (27.50 ± 1.56 g/L). ILAB, on the other hand, had lower kLa than STB, but provided highest fatty acid productivity, of 35.36 ± 2.51% TFA.
APA, Harvard, Vancouver, ISO, and other styles
28

Kareem, Zana Jamal, Ling Su, Anna Rathgeb, Anke Sirrenberg, Franz Hadacek, Ahmad Hama Ameen H. Rashid, and Petr Karlovsky. "Small-Scale Bioreactor for Sterile Hydroponics and Hairy Roots: Metabolic Diversity and Salicylic Acid Exudation by Hairy Roots of Hyoscyamus niger." Applied Sciences 9, no. 15 (July 28, 2019): 3044. http://dx.doi.org/10.3390/app9153044.

Full text
Abstract:
The volume and complexity of commercial bioreactors for sterile hydroponics and hairy roots are too large for comparative analysis of many cultures. Here a small-scale bioreactor fabricated from standard glass materials and suitable for both airlift and bubble aeration mode is described. The performance of the bioreactor was tested by growing oilseed rape (Brassica napus L.) and rose plants (Rosa canina L.) in sterile hydroponics and by cultivating hairy roots of henbane (Hyoscyamus niger L.) and sesame (Hyoscyamus niger L.). Plants grown in hydroponics for up to six weeks did not show chloroses or necroses. Hairy roots grew faster or comparably fast in bioreactors as compared to shaking flasks. Root exudates of roses and exudates of hairy roots of henbane were subjected to targeted and nontargeted analysis by HPLC coupled with optical and mass spectrometric detectors. The diversity and concentration of hairy root exudates were higher in bioreactors than in shaking flasks. The composition of hairy root exudates of three accessions of H. niger did not match the genetic relatedness among the accessions. Hairy roots of Hyoscyamus niger exuded salicylic acid in amounts varying among plant accessions and between bioreactors and shaking flask cultures.
APA, Harvard, Vancouver, ISO, and other styles
29

Kordas, Marian, Maciej Konopacki, Bartłomiej Grygorcewicz, Adrian Augustyniak, Daniel Musik, Krzysztof Wójcik, Magdalena Jędrzejczak-Silicka, and Rafał Rakoczy. "Hydrodynamics and Mass Transfer Analysis in BioFlow® Bioreactor Systems." Processes 8, no. 10 (October 19, 2020): 1311. http://dx.doi.org/10.3390/pr8101311.

Full text
Abstract:
Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied during bioprocesses conducted in bioreactors. Establishing optimum hydrodynamics conditions for the realized process with microorganisms maximizes the yield of desired products. Therefore, our main objective was to analyze and define the main operational hydrodynamic parameters (including flow field, power consumption, mixing time, and mixing energy) and mass transfer process (in this case, gas–liquid transfer) of two different commercial bioreactors (BioFlo® 115 and BioFlo® 415). The obtained results are allowed using mathematical relationships to describe the analyzed processes that can be used to predict the mixing process and mass transfer ratio in BioFlo® bioreactors. The proposed correlations may be applied for the design of a scaled-up or scaled-down bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
30

Fatehi Pouladi, S., B. C. Anderson, B. Wootton, and L. Rozema. "Evaluation of passive reduction of nitrate from greenhouse effluent by planted bioreactors." Water Supply 17, no. 6 (May 9, 2017): 1764–73. http://dx.doi.org/10.2166/ws.2017.080.

Full text
Abstract:
Abstract A number of pilot-scale gravel and wood-chip hybrid bioreactors planted with select species, together with unplanted units, were evaluated for their nutrient removal capabilities from the typical greenhouse effluent with high levels of nitrate and salts. Two levels of nutrient solution (high and low loading: HL/LL) were prepared to simulate the typical characteristics of the greenhouse effluent. The wood-chip bioreactor with Typha angustifolia exhibited the highest consistent nutrient treatment with an average nitrate reduction in the LL phase of 88.4% (28.2 g N m−3 media day−1) and phosphate reduction of 34.4%. The nitrate reduction in this bioreactor was the highest among the values reported in the literature. The near-complete denitrification developed provided a nitrate-limiting environment as evidenced by an average 21.5% sulfate reduction. The distinct increase in the outflow organic carbon (as BOD5) from the wood chips in the bioreactor planted with T. angustifolia appeared to be the key explanation for the efficient denitrification, while the other vegetated bioreactors resulted in 19.0%–36.5% nitrate reduction and low outflow BOD5 near the end of the experiment, indicating carbon limitation in these bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
31

Kushkevych, Ivan, Monika Vítězová, Tomáš Vítěz, and Milan Bartoš. "Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms." Open Life Sciences 12, no. 1 (April 20, 2017): 82–91. http://dx.doi.org/10.1515/biol-2017-0009.

Full text
Abstract:
AbstractThe production of high-quality methane depends on many factors, including temperature, pH, substrate, composition and relationship of the microorganisms. The qualitative and quantitative composition of methanogenic and sulfate-reducing microorganisms and their relationship in the experimental bioreactors has never been studied. The aim of this research was to characterize, for the first time, the diversity of the methanogenic microorganisms and sulfate-reducing bacteria, and study their relationship and biogas production in experimental bioreactors. Amplification of 16S rRNA gene fragments was carried out. Purified amplicons were paired-end sequenced on an Illumina Mi-Seq platform. The dominant morphotypes of these microorganisms in the bioreactor were homologous (99%) by the sequences of 16S rRNA gene to theMethanosarcina,Thermogymnomonas,Methanoculleusgenera andArchaeondeposited in GenBank. Three dominant genera of sulfate-reducing bacteria,Desulfomicrobium,DesulfobulbusandDesulfovibrio, were detected in the bioreactor. The phylogenetic trees showing their genetic relationship were constructed. The diversity and number of the genera, production of methane, hydrogen sulfide and hydrogen in the bioreactor was investigated. This research is important for understanding the relationship between methanogenic microbial populations and other bacterial physiological groups, their substrate competition and, in turn, can be helpful for controlling methanogenesis in bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
32

van Dijk, L., and G. C. G. Roncken. "Membrane bioreactors for wastewater treatment: the state of the art and new developments." Water Science and Technology 35, no. 10 (May 1, 1997): 35–41. http://dx.doi.org/10.2166/wst.1997.0353.

Full text
Abstract:
The combination of membrane separation technology and bioreactors has lead to a new focus on wastewater treatment. The application of membranes has led to very compact wastewater treatment systems with an excellent effluent quality. For concentrated wastewaters, like industrial streams and landfill leachate the membrane bioreactor has been applied at full scale successfully. The relatively high energy requirements have hindered the wide spread application of membrane bioreactors. Using new membrane techniques, like transfer flow modules, creates the possibilities of a more widespread application. This opens possibilities for far going reuse of wastewater, both industrial and municipal, decrease in sludge production and small-footprint bioreactors for less concentrated wastewater streams.
APA, Harvard, Vancouver, ISO, and other styles
33

Christianson, Laura Elizabeth, Reid Christianson, Carolina Díaz-García, Gabriel Johnson, Bryan Maxwell, Richard Andrew Cooke, N. M. Wickramarathne, and Lowell Gentry. "Denitrifying Bioreactor In Situ Woodchip Bulk Density." Journal of the ASABE 66, no. 3 (2023): 723–34. http://dx.doi.org/10.13031/ja.15364.

Full text
Abstract:
Highlights The bulk density of woodchips in denitrifying bioreactors in the field is unknown. In situ bulk density estimation methods were developed for use during construction or excavation. Dry bulk densities of aged woodchips at bioreactor bottoms were lower than previous literature values. Moisture and particle size and density explained some, but not all, of the variation in in situ bulk densities. Abstract. Woodchip bulk density in a denitrifying bioreactor governs system hydraulics, but this prime physical attribute has never been estimated in situ. The objectives were twofold: (1) to establish estimates of in situ woodchip bulk density at bioreactors in the field, and (2) evaluate causal factors for and resulting impacts of these estimates. Proof-of-concept bulk density methods were developed at a pilot-scale bioreactor using three ways to estimate volume: surveying the excavated area, pumping the excavation full through a flow meter, and using iPhone Light Detection and Ranging (LiDAR). These methods were then further tested at two new and three old full-size bioreactors. Additional ex situ (off-site) testing with the associated woodchips included analysis of bulk density along a moisture gradient and particle size, particle density, wood composition, and hydraulic property testing. In situ dry bulk densities based on the entire volume of the new bioreactors (206-224 kg/m3) were similar to values from previous lab-scale studies. In situ estimates for woodchips at the bottom of aged bioreactors (22-mo. to 6-y) were unexpectedly low (120-166 kg/m3), given that these woodchips would presumably be the most compacted. These low moisture-content corrected dry bulk densities were influenced by high moisture contents in situ (>70% wet basis). The impacts of particle size and particle density on bulk density were somewhat mixed across the dataset, but in general, smaller woodchips had higher dry bulk densities than larger, and several woodchips sourced from the bottom of bioreactors had low particle densities. Although dry bulk densities in the zone of flow in bioreactors in the field were shown to be relatively low, the resulting permeability coefficients under those packing conditions did not differ from those of the original woodchips. The LiDAR-based volume estimation method was the most practical for large-scale, full-size evaluations and allowed high precision with small features (e.g., vertical reactor edges, drainage fittings). Keywords: Compaction, Cone penetrometer, Drainable porosity, LiDAR, Moisture content, Survey.
APA, Harvard, Vancouver, ISO, and other styles
34

Pluer, William T., M. Todd Walter, and Scott Steinschneider. "Understanding Complex Flow Pathways within Lab-Scale Denitrifying Bioreactors with a Conservative Tracer." Transactions of the ASABE 63, no. 2 (2020): 417–27. http://dx.doi.org/10.13031/trans.13629.

Full text
Abstract:
HighlightsStorm size and media age did not significantly impact removal rate based on simulated storm events in lab bioreactors.Post-hoc cluster analysis of bromide tracer time series identified distributed and preferential flow patterns.Distributed flow cluster had significantly higher removal rate and removal efficiency than preferential cluster.Abstract. Denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution from agricultural fields. During storm-induced flow events, flow rate and hydraulic retention time (HRT) can fluctuate widely, which may disturb denitrification within bioreactors in ways not captured by current steady-flow models of NO3- removal rate (RR). This study investigated RR and removal efficiency (RE) during storm flows of variable size and duration to close the gap between existing steady-flow models and real-world flow event conditions. Three simulated storm flow events were run through six lab bioreactors, and RR and RE were calculated during and following each event. Our results show that bioreactors were able to attenuate flow such that event size and duration were not significant explanatory variables of RR. A k-means cluster analysis on characteristics of the outflow bromide tracer time series for each bioreactor during each event identified two major flow patterns. The cluster exhibiting a more distributed bromide load through time had a significantly higher average RR than the cluster with a bromide load time series more characteristic of preferential flow (24.8 and 22.0 g N m-3 d-1, respectively, p = 0.01). Bioreactors did not consistently display a given flow pattern but often changed between events. This suggests that flow patterns within lab bioreactors for each event are a more significant driver of RR than the external factor of the inflow hydrograph. Keywords: Denitrifying bioreactor, k-Means clustering, Stormwater, Tracer.
APA, Harvard, Vancouver, ISO, and other styles
35

Zaburko, J., G. Łagód, M. K. Widomski, J. Szulżyk-Cieplak, B. Szeląg, and R. Babko. "Modeling and optimizations of mixing and aeration processes in bioreactors with activated sludge." Journal of Physics: Conference Series 2130, no. 1 (December 1, 2021): 012027. http://dx.doi.org/10.1088/1742-6596/2130/1/012027.

Full text
Abstract:
Abstract Mixing aimed at homogenization of the volume of bioreactors with the activated sludge is of great importance for the proper course of the wastewater treatment process. It affects both the efficiency of pollutants removal and the properties of the activated sludge related to its sedimentation. The mixing process in bioreactors can be carried out in different ways. In batch bioreactors in the aeration phase or flow bioreactors in aerobic chambers, mixing is carried out through aeration systems. These systems should aerate the activated sludge flocs for efficient biological treating of wastewater, as well as effectively homogenize the volume of the bioreactor. Hence, it is important to choose such a design of the aeration system and its operation settings that provide the amount of air ensuring the exact amount of oxygen for the implementation of technological processes, counteract sedimentation of sludge at the bottom of the reactor, are reliable as well as economical in operation (demand of electric energy). The paper presents the model studies aimed at optimization of the design and settings of aeration and mixing systems used in active sludge bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
36

Shareefdeen, Zarook, Ali Elkamel, and Zaeem Bin Babar. "Recent Developments on the Performance of Algal Bioreactors for CO2 Removal: Focusing on the Light Intensity and Photoperiods." BioTech 12, no. 1 (January 11, 2023): 10. http://dx.doi.org/10.3390/biotech12010010.

Full text
Abstract:
This work presents recent developments of algal bioreactors used for CO2 removal and the factors affecting the reactor performance. The main focus of the study is on light intensity and photoperiods. The role of algae in CO2 removal, types of algal species used in bioreactors and conventional types of bioreactors including tubular bioreactor, vertical airlift reactor, bubble column reactor, flat panel or plate reactor, stirred tank reactor and specific type bioreactors such as hollow fibre membrane and disk photobioreactors etc. are discussed in details with respect to utilization of light. The effects of light intensity, light incident, photoinhibition, light provision arrangements and photoperiod on the performance of algal bioreactors for CO2 removal are also discussed. Efficient operation of algal photobioreactors cannot be achieved without the improvement in the utilization of incident light intensity and photoperiods. The readers may find this article has a much broader significance as algae is not only limited to removal or sequestration of CO2 but also it is used in a number of commercial applications including in energy (biofuel), nutritional and food sectors.
APA, Harvard, Vancouver, ISO, and other styles
37

Mishra, Maneesh, Shailendra Rajan, and T. Damodaran. "New paradigm shifts in micropropagation of fruit crops through bioreactors - a review." Indian Journal of Horticulture 81, no. 01 (March 30, 2024): 1–10. http://dx.doi.org/10.58993/ijh/2024.81.1.1.

Full text
Abstract:
within relatively shorter periods, as well as significant reductions in hyperhydricity in plants as a result of efficient gas exchange, oxygen supplementation and automation, bioreactors, specifically temporary immersion systems (TIS), are being utilized for mass multiplication of forestry and horticultural crops. In tissue culture of banana, date palm, strawberrys, papaya, citrus, grape, pineapple, apple, pear, plum, chestnut, pistachio nut, apricot, sweet cherry, and almond, a variety of TIS bioreactors were used, including RITA, Plantform, SETIS and twin glass airlifts. TIS Bioreactors need to be improved in terms of space utilization. The space utilization was found to be highest with the Plantform system (80%) and lowest in the Twin Flask system (26%). Higher head space provides better plant growth and lesser fogging on the walls of the bioreactor. Most bioreactors have not been designed to facilitate better root production in vitro. Roots get coiled and cluttered, which needs improvement in design. The provision of illumination in each tank will facilitate better morphogenesis. This paper describes the micropropagation of fruit crops using different TIS bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
38

Lim, B. R., H. Y. Hu, N. Goto, and K. Fujie. "PVA-coated activated carbon for aerobic biological treatment of concentrated refractory organic wastewater." Water Science and Technology 42, no. 3-4 (August 1, 2000): 205–10. http://dx.doi.org/10.2166/wst.2000.0381.

Full text
Abstract:
The treatment characteristics of concentrated p-phenol sulfonic acid (PSA) wastewater in a submerged bioreactor and a solid phase bioreactor packed with ACP particles (polyvinyl alcohol particles coated with powered activated carbon) were compared experimentally. The changes in biomass and microbial community with the degradation of PSA at both bioreactors were also evaluated using microbial quinones as an index. Greater than 95% of influent PSA was mineralized at the solid phase bioreactor under the volumetric loading of PSA ranging from 0.3 to 1.8 kg-C·m-3·d-1 at the steady state, but less than 10% of the influent PSA was mineralized in the submerged bioreactor. The solid phase aerobic biological treatment process was more effective for the treatment of concentrated refractory chemicals such as PSA than the submerged bioreactor. The dominant quinone species in the solid phase bioreactor were ubiquinone-10 and menaquinone-8(H4), while those in the submerged bioreactor were ubiquinone-8 and menaquinone-8. This suggests hat different microbes had contributed to the degradation in the two bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
39

Schirmer, Cedric, Rüdiger W. Maschke, Ralf Pörtner, and Dieter Eibl. "An overview of drive systems and sealing types in stirred bioreactors used in biotechnological processes." Applied Microbiology and Biotechnology 105, no. 6 (March 2021): 2225–42. http://dx.doi.org/10.1007/s00253-021-11180-7.

Full text
Abstract:
AbstractNo matter the scale, stirred tank bioreactors are the most commonly used systems in biotechnological production processes. Single-use and reusable systems are supplied by several manufacturers. The type, size, and number of impellers used in these systems have a significant influence on the characteristics and designs of bioreactors. Depending on the desired application, classic shaft-driven systems, bearing-mounted drives, or stirring elements that levitate freely in the vessel may be employed. In systems with drive shafts, process hygiene requirements also affect the type of seal used. For sensitive processes with high hygienic requirements, magnetic-driven stirring systems, which have been the focus of much research in recent years, are recommended. This review provides the reader with an overview of the most common agitation and seal types implemented in stirred bioreactor systems, highlights their advantages and disadvantages, and explains their possible fields of application. Special attention is paid to the development of magnetically driven agitators, which are widely used in reusable systems and are also becoming more and more important in their single-use counterparts.Key Points• Basic design of the most frequently used bioreactor type: the stirred tank bioreactor• Differences in most common seal types in stirred systems and fields of application• Comprehensive overview of commercially available bioreactor seal types• Increased use of magnetically driven agitation systems in single-use bioreactors
APA, Harvard, Vancouver, ISO, and other styles
40

Biliaiev, M. M., P. B. Mashykhina, L. H. Tatarko, A. O. Chirkov, and M. V. Chyrva. "EXPRESS CALCULATION OF OXYGEN REGIME IN WASTEWATER FACILITIES." Ukrainian Journal of Civil Engineering and Architecture, no. 6 (018) (February 24, 2024): 29–34. http://dx.doi.org/10.30838/j.bpsacea.2312.261223.29.1004.

Full text
Abstract:
Problem statement. The efficiency of biological water purification depends significantly on the concentration of dissolved oxygen in the volume of the bioreactor. But during the operation of bioreactors, the oxygen regime changes, so it is important to predict the oxygen concentration for different modes of operation of treatment plants. Simplified mathematical models are used to calculate the oxygen regime, but these models are designed for typical bioreactors. An important task is the development of effective multivariate numerical models for evaluating the oxygen regime in reactors of different geometric shapes, which differ from “classical” reactors. The purpose of the article. Development of a CFD model for operational evaluation of the oxygen regime in bioreactors. Methodology. For mathematical modeling of the oxygen regime in the bioreactor, a two-dimensional mass transfer equation is used, which takes into account the place of oxygen supply from the aerator located in the building, the hydrodynamics of the flow in the bioreactor, and the diffusion process. The potential motion model was used to solve the hydrodynamic problem. Numerical integration of modeling equations is carried out by using finite-difference splitting schemes. At each splitting step, the difference equations are solved using explicit schemes. This allows a simple computer implementation of the numerical model. Scientific novelty. A multifactor two-dimensional CFD model was developed, which allows for a quick assessment of the oxygen regime in a bioreactor used for wastewater treatment. Practical significance. The developed CFD model and computer code can be used at the stage of designing or re-engineering bioreactors in order to find the optimal location of aerators in the structure. Conclusions. The software implementation of the developed numerical model was carried out. The results of a computational experiment on the study of the wastewater treatment process in a sedimentation tank are presented.
APA, Harvard, Vancouver, ISO, and other styles
41

Bondarenko, N. A., E. V. Guseva, and R. R. Safarov. "Application of computational fluid dynamics for simulation of stirred bioreactors in Ansys Fluent." Proceedings of the Voronezh State University of Engineering Technologies 85, no. 2 (September 2, 2023): 123–29. http://dx.doi.org/10.20914/2310-1202-2023-2-123-129.

Full text
Abstract:
Stirred bioreactors are widely used in the pharmaceutical industry to produce various active substances for the treatment of cancer, heart and vascular diseases, viral and bacterial infections. Despite the widespread use of bioreactors with a stirrer, the optimization of mixing conditions remains an urgent task. In bioreactors of this type, continuous mixing of cells in a medium with a high rotation speed should be carried out. The manuscript considers an example of the use of computational fluid dynamics to study and model the process of cultivation Escherichia coli bacterial cells in a batch bioreactor (NLF, 30 l.). Computational fluid dynamics was used to analyze the hydrodynamic conditions in a bioreactor with a double Rushton turbine stirrer. To describe the movement of flows and evaluate turbulence in a batch bioreactor, the multiphase Euler model and the k-𝜀 turbulence model, respectively, were used, the built-in Ansys Fluent software package. A geometric model was built with the original dimensions of the bioreactor with an NLF 30 stirrer. Based on the geometric model, a computational grid was created for the working volume of the bioreactor and the optimal parameters for constructing the computational grid were selected. As a result of modeling the hydrodynamic regime, the distribution profiles of the turbulence kinetic energy over the volume of the bioreactor were obtained and the velocities of cell movement were found at different speeds of rotation of the stirrer. The obtained results show the possibility and applicability of the Ansys Fluent software package for calculating the hydrodynamic situation in a bioreactor with a stirrer at different stirring rates and at different cell volume fractions.
APA, Harvard, Vancouver, ISO, and other styles
42

Lakov, V., E. Chorukova, and I. Simeonov. "Mathematical Modelling and Extremum Seeking Control of Cascade of Two Bioreactors for Production of Hydrogen and Methane." Information Technologies and Control 15, no. 2 (June 1, 2017): 6–13. http://dx.doi.org/10.1515/itc-2017-0022.

Full text
Abstract:
Abstract A mathematical model of a cascade of two continuously stirred anaerobic bioreactors is presented in this paper and the extremum seeking control is applied on it. The dilution rate of the first bioreactor is chosen as control action and the joint biogas flow rate both bioreactors is the measured output to be maximized. The concentration of inlet organics is accepted as the disturbance. The correction of the working volume of the second bioreactor is studied as the inner loop of the cascade control system. The outer control loop is represented by the extremum seeking controller, which finds the optimum control action and reacts to the disturbance. Computer simulation studies show the feasibility of this scheme.
APA, Harvard, Vancouver, ISO, and other styles
43

Kazimierczak, Paulina, and Agata Przekora. "Bioengineered Living Bone Grafts—A Concise Review on Bioreactors and Production Techniques In Vitro." International Journal of Molecular Sciences 23, no. 3 (February 3, 2022): 1765. http://dx.doi.org/10.3390/ijms23031765.

Full text
Abstract:
It has been observed that bone fractures carry a risk of high mortality and morbidity. The deployment of a proper bone healing method is essential to achieve the desired success. Over the years, bone tissue engineering (BTE) has appeared to be a very promising approach aimed at restoring bone defects. The main role of the BTE is to apply new, efficient, and functional bone regeneration therapy via a combination of bone scaffolds with cells and/or healing promotive factors (e.g., growth factors and bioactive agents). The modern approach involves also the production of living bone grafts in vitro by long-term culture of cell-seeded biomaterials, often with the use of bioreactors. This review presents the most recent findings concerning biomaterials, cells, and techniques used for the production of living bone grafts under in vitro conditions. Particular attention has been given to features of known bioreactor systems currently used in BTE: perfusion bioreactors, rotating bioreactors, and spinner flask bioreactors. Although bioreactor systems are still characterized by some limitations, they are excellent platforms to form bioengineered living bone grafts in vitro for bone fracture regeneration. Moreover, the review article also describes the types of biomaterials and sources of cells that can be used in BTE as well as the role of three-dimensional bioprinting and pulsed electromagnetic fields in both bone healing and BTE.
APA, Harvard, Vancouver, ISO, and other styles
44

Granata, Tim, Bernd Rattenbacher, Florian Kehl, and Marcel Egli. "Microbial Factories and Exploiting Synergies of Bioreactor Technologies to Produce Bioproducts." Fermentation 10, no. 3 (February 28, 2024): 135. http://dx.doi.org/10.3390/fermentation10030135.

Full text
Abstract:
Microbial factories, including microalgae biofactories, have the enormous potential to produce biochemicals for manufacturing diverse bioproducts. A strategic approach to biofactories is maintaining cultures in bioreactors with sufficient resource inputs to optimize biochemical precursors for manufacturing bioproducts. Exploiting synergies that use the waste output from a bioreactor containing one microbial culture as a resource input to another bioreactor with a different microbe can lead to overall efficiencies in biofactories. In this paper, two synergies are evaluated. The first is between yeast and algae bioreactors, where data are presented on oxygen (O2) uptake by aerobic yeast cultures and their production of carbon dioxide (CO2) and the uptake of CO2 by algae and their production of O2. The second focuses on a carbon capture reactor, which is utilized to increase CO2 levels to promote higher algal production. This approach of waste as a resource for bioreactor cultures is a novel synergy that can be important to bioreactor designs and, ultimately, to the production of bioproducts.
APA, Harvard, Vancouver, ISO, and other styles
45

Chisti, Yusuf. "Pneumatically Agitated Bioreactors in Industrial and Environmental Bioprocessing: Hydrodynamics, Hydraulics, and Transport Phenomena." Applied Mechanics Reviews 51, no. 1 (January 1, 1998): 33–112. http://dx.doi.org/10.1115/1.3098989.

Full text
Abstract:
Major aspects of design and operation of pneumatically agitated bioreactors are reviewed. The focus is on considerations that are relevant to industrial practice. Airlift bioreactors are emphasized. The treatment covers hydraulics, hydrodynamics, gas-liquid and solid-liquid mass transfer, heat transfer, mixing, and suspension. Newtonian and non-Newtonian systems are discussed. Applications in microbial fermentations, animal and plant cell culture, biotransformations with immobilized enzymes, and treatment of wastewater are outlined. Comparisons with more conventional bioreactor technologies are made. Design features for sterile processing in airlift systems are detailed. The evidence for superior performance of airlift bioreactors is overwhelming. Excellent productivities have been demonstrated with yeasts, bacteria, and filamentous fungi. Processes that produce highly viscous broths, including several biopolymer producing fermentations, have been proven in airlift devices. Similarly, many hybridoma cultures and plant cell suspensions have given good results. As a general rule, volumetric productivity of airlift bioreactors equals or betters that of conventional stirred tanks. Typically, this level of performance is achieved at substantially lower power input than in stirred vessels. Furthermore, the probability of mechanical failure and likelihood of loss of sterility are lower with airlift bioreactors. In wastewater treatment, too, airlift devices have far outperformed conventional systems. Airlift bioreactors accept higher BOD loadings, produce less sludge, and the degradation rate is faster; performance improves with increasing scale of operation. This review article includes 328 references.
APA, Harvard, Vancouver, ISO, and other styles
46

Pathak, Nirenkumar, Van Huy Tran, Andrea Merenda, M. A. H. Johir, Sherub Phuntsho, and Hokyong Shon. "Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors." Applied Sciences 10, no. 8 (April 24, 2020): 2969. http://dx.doi.org/10.3390/app10082969.

Full text
Abstract:
The ubiquitous presence of organic micropollutants (OMPs) in the environment as a result of continuous discharge from wastewater treatment plants (WWTPs) into water matrices—even at trace concentrations (ng/L)—is of great concern, both in the public and environmental health domains. This fact essentially warrants developing and implementing energy-efficient, economical, sustainable and easy to handle technologies to meet stringent legislative requirements. Membrane-based processes—both stand-alone or integration of membrane processes—are an attractive option for the removal of OMPs because of their high reliability compared with conventional process, least chemical consumption and smaller footprint. This review summarizes recent research (mainly 2015–present) on the application of conventional aerobic and anaerobic membrane bioreactors used for the removal of organic micropollutants (OMP) from wastewater. Integration and hybridization of membrane processes with other physicochemical processes are becoming promising options for OMP removal. Recent studies on high retention membrane bioreactors (HRMBRs) such as osmotic membrane bioreactor (OMBRs) and membrane distillation bioreactors (MDBRs) are discussed. Future prospects of membrane bioreactors (MBRs) and HRMBRs for improving OMP removal from wastewater are also proposed.
APA, Harvard, Vancouver, ISO, and other styles
47

Voitov, Evgeniy, Yuri Skolubovich, Victor Kravchenko, and Tamara Khalturina. "Tertiary wastewater treatment using bioreactors-clarifiers." E3S Web of Conferences 135 (2019): 01055. http://dx.doi.org/10.1051/e3sconf/201913501055.

Full text
Abstract:
The use of technical oxygen instead of air in biological treatment plants can increase their oxidizing ability. Bioreactor-clarifier is a new technical device for tertiary wastewater treatment with the use of oxygen. The design, operation principle and research results of the bioreactor-clarifier for tertiary treatment of urban wastewater are given The use of bioreactors-clarifiers for tertiary treatment of urban wastewater using dissolved technical oxygen allows intensifying the process of biochemical oxidation of organic substances in a contact weighed load and increasing the efficiency of wastewater treatment by BOD and other components.
APA, Harvard, Vancouver, ISO, and other styles
48

Maxwell, Bryan, Laura Christianson, Richard A. C. Cooke, Mary Foltz, Niranga Wickramarathne, Ronnie Chacon, and Reid Christianson. "Nitrate Removal and Woodchip Properties across a Paired Denitrifying Bioreactor Treating Centralized Agricultural Ditch Flows." Water 14, no. 1 (December 28, 2021): 56. http://dx.doi.org/10.3390/w14010056.

Full text
Abstract:
Treatment of nitrate loads by denitrifying bioreactors in centralized drainage ditches that receive subsurface tile drainage may offer a more effective alternative to end-of-pipe bioreactors. A paired denitrifying bioreactor design, consisting of an in-ditch bioreactor (18.3 × 2.1 × 0.2 m) treating ditch base flow and a diversion bioreactor (4.6 × 9.1 × 0.9 m) designed to treat high-flow events, was designed and constructed in an agricultural watershed (3.2 km2 drainage area) in Illinois, USA. Flow and water chemistry were monitored for three years and the woodchip and bioreactor-associated soil were analyzed for denitrification potential and chemical properties after 25 months. The in-ditch bioreactor did not significantly reduce nitrate concentrations in the ditch, likely due to low hydraulic connectivity with stream water and sedimentation. The diversion bioreactor significantly reduced nitrate concentrations (58% average reduction) but treated only ~2% of annual ditch flow. Denitrification potential was significantly higher in the in-ditch bioreactor woodchips versus the diversion bioreactor after 25 months (2950 ± 580 vs. 620 ± 310 ng N g−1 dry media h−1). The passive flow design was simple to construct and did not restrict flow in the drainage ditch but resulted in low hydraulic exchange, limiting nitrate removal.
APA, Harvard, Vancouver, ISO, and other styles
49

Stoyancheva, Galina, Lyudmila Kabaivanova, Venelin Hubenov, and Elena Chorukova. "Metagenomic Analysis of Bacterial, Archaeal and Fungal Diversity in Two-Stage Anaerobic Biodegradation for Production of Hydrogen and Methane from Corn Steep Liquor." Microorganisms 11, no. 5 (May 11, 2023): 1263. http://dx.doi.org/10.3390/microorganisms11051263.

Full text
Abstract:
The main purpose of this study was to identify the microbial communities (bacterial, archaeal and fungal) in a two-stage system of anaerobic bioreactors for the production of hydrogen and methane from the waste substrate—corn steep liquor. Wastes from the food industry are valuable resources with potential in biotechnological production because of their high organic matter contents. In addition, the production of hydrogen and methane, volatile fatty acids, reducing sugars and cellulose content was monitored. Two-stage anaerobic biodegradation processes were performed by microbial populations in the first hydrogen generating bioreactor (working volume of 3 dm3) and in the second methane-generating reactor (working volume of 15 dm3). Cumulative hydrogen yield reached 2000 cm3 or 670 cm3/L a day, while the methane production reached a maximum quantity of 3300 cm3 or 220 cm3/L a day. Microbial consortia in anaerobic digestion systems play an essential role for process optimization and biofuel production enhancement. The obtained results showed the possibility of conducting two separate processes—the hydrogenic (hydrolysis and acidogenesis) and methanogenic (acetogenesis and methanogenesis)—as two stages of anaerobic digestion to favor energy production under controlled conditions with corn steep liquor. The diversity of microorganisms as main participants in the processes in the bioreactors of the two-stage system was followed using metagenome sequencing and bioinformatics analysis. The obtained metagenomic data showed that the most abundant phylum in both bacterial communities was Firmicutes—58.61% and 36.49% in bioreactors 1 and 2, respectively. Phylum Actinobacteria were found in significant quantities (22.91%) in the microbial community in Bioreactor 1, whereas in Bioreactor 2, they were 2.1%. Bacteroidetes are present in both bioreactors. Phylum Euryarchaeota made up 0.4% of the contents in the first bioreactor and 11.4% in the second. As the dominant genera among methanogenic archaea are Methanothrix (8.03%) and Methanosarcina (3.39%), the main fungal representatives were Saccharomyces cerevisiae. New knowledge of anaerobic digestion mediated by novel microbial consortia could be widely used to convert different wastes to green energy.
APA, Harvard, Vancouver, ISO, and other styles
50

Amo-Duodu, Gloria, Emmanuel Kweinor Tetteh, Sudesh Rathilal, and Martha Noro Chollom. "Assessment of Magnetic Nanomaterials for Municipality Wastewater Treatment Using Biochemical Methane Potential (BMP) Tests." International Journal of Environmental Research and Public Health 19, no. 16 (August 9, 2022): 9805. http://dx.doi.org/10.3390/ijerph19169805.

Full text
Abstract:
Wastewater as a substrate potential for producing renewable energy in the form of biogas is gaining global attention. Herein, nanomaterials can be utilised as a nutrient source for microorganisms for anaerobic digestion activity. Therefore, this study explored the impact of seven different magnetic nanomaterials (MNMs) on the anaerobic digestion of wastewater via biochemical methane potential (BMP) tests for biogas production. The BMP assay was carried out with eight bioreactors, where each was charged with 50% wastewater and 30% activated sludge, leaving a headspace of 20%. Aside the control bioreactor, the other seven (7) bioreactors were dosed with 1.5 g of MNMs. This was operated under anaerobic conditions at a mesophilic temperature of 35 °C for 31 days. At the degree of 80% degradation of contaminants, the results that showed bioreactors charged with 1.5 g MNMs of TiO2 photocatalyst composites were more effective than those constituting metallic composites, whereas the control achieved 65% degradation. Additionally, the bioreactor with magnetite (Fe3O4) produced the highest cumulative biogas of 1172 mL/day. Kinetically, the modified Gompertz model favoured the cumulative biogas data obtained with a significant regression coefficient (R2) close to one.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography