Academic literature on the topic 'Bioreactors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioreactors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bioreactors"
Feyereisen, Gary W., Ehsan Ghane, Todd W. Schumacher, Brent J. Dalzell, and M. R. Williams. "Can Woodchip Bioreactors Be Used at a Catchment Scale? Nitrate Performance and Sediment Considerations." Journal of the ASABE 66, no. 2 (2023): 367–79. http://dx.doi.org/10.13031/ja.15496.
Full textRitonja, Jozef, Andreja Gorsek, and Darja Pecar. "Control of Milk Fermentation in Batch Bioreactor." Elektronika ir Elektrotechnika 26, no. 1 (February 16, 2020): 4–9. http://dx.doi.org/10.5755/j01.eie.26.1.23377.
Full textOktiawan, Wiharyanto, Irawan Wisnu Wardhana, Endro Sutrisno, Domuanri Gorat, and Alfian Rizky Rizaldianto. "Municipal Solid Waste Management Using Bioreactor Landfill in the Treatment of Organic Waste from Jatibarang Landfill, Semarang-Indonesia." E3S Web of Conferences 125 (2019): 07002. http://dx.doi.org/10.1051/e3sconf/201912507002.
Full textChristianson, Laura E., Richard A. Cooke, Christopher H. Hay, Matthew J. Helmers, Gary W. Feyereisen, Andry Z. Ranaivoson, John T. McMaine, et al. "Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas." Transactions of the ASABE 64, no. 2 (2021): 641–58. http://dx.doi.org/10.13031/trans.14011.
Full textGhosh, Subhrojyoti, Nainika Srivastava, Shreya Jha, and Nandan Kumar Jana. "Spinner Flask Bioreactor in Tissue Engineering." YMER Digital 21, no. 06 (June 20, 2022): 611–26. http://dx.doi.org/10.37896/ymer21.06/61.
Full textWiharyanto, Oktiawan, Sutrisno Endro, and Hadiwidodo Mochtar. "Performance of Semi-Aerobic Solid Waste Bioreactor in relation to Decomposition Process and Biogas Production." E3S Web of Conferences 73 (2018): 07021. http://dx.doi.org/10.1051/e3sconf/20187307021.
Full textMalhotra, Neeraj. "Bioreactors Design, Types, Influencing Factors and Potential Application in Dentistry. A Literature Review." Current Stem Cell Research & Therapy 14, no. 4 (May 23, 2019): 351–66. http://dx.doi.org/10.2174/1574888x14666190111105504.
Full textDzianik, František, and Štefan Gužela. "Basic Technological Parameters of the Activation Process for Two Bioreactor Configurations." Strojnícky časopis - Journal of Mechanical Engineering 73, no. 1 (May 1, 2023): 43–54. http://dx.doi.org/10.2478/scjme-2023-0004.
Full textCatapano, Gerardo, Juliane K. Unger, Elisabetta M. Zanetti, Gionata Fragomeni, and Jörg C. Gerlach. "Kinetic Analysis of Lidocaine Elimination by Pig Liver Cells Cultured in 3D Multi-Compartment Hollow Fiber Membrane Network Perfusion Bioreactors." Bioengineering 8, no. 8 (July 23, 2021): 104. http://dx.doi.org/10.3390/bioengineering8080104.
Full textNokhbatolfoghahaei, Hanieh, Mahboubeh Bohlouli, Kazem Adavi, Zahrasadat Paknejad, Maryam Rezai Rad, Mohammad Mehdi khani, Nasim Salehi-Nik, and Arash Khojasteh. "Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, no. 12 (July 21, 2020): 1397–408. http://dx.doi.org/10.1177/0954411920944039.
Full textDissertations / Theses on the topic "Bioreactors"
Millward, Huw Richard. "Novel membrane bioreactors." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317837.
Full textDaly, Chris D. "Artificial arteries and bioreactors /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19028.pdf.
Full textFonseca, Anabela Duarte. "Denitrification in Membrane Bioreactors." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/35212.
Full textMaster of Science
Kadzinga, Fadzai. "Venturi aeration of bioreactors." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/13675.
Full textMamo, Julian. "Assessment and optimisation of the operation of integrated membrane system for wastewater reclamation." Doctoral thesis, Universitat de Girona, 2018. http://hdl.handle.net/10803/667844.
Full textLa combinació de dos tecnologies de membrana acoblades en sèrie ha esdevingut un tecnologia consolidada degut a la capacitat de produir aigua d’elevada qualitat i potencialment reutilitzable per aplicacions industrials com fins i tot per ser potabilitzada. Tot i l’elevada experiència adquirida en aquests processos combinats, encara hi ha aspectes del procés que calen una investigació més profunda que inclogui el coneixement sobre l’eliminació dels compostos emergents, el control de la formació de N-Nitrosodimetilamines (NDMA), l’ús de l’energia associada amb el procés incloent el cost total de produir l’aigua reutilitzable, i el seguiment de la integritat de la membrana en el tractament amb osmosi inversa (OI). L’objectiu d’aquest treball recau en avançar en el coneixement dels aspectes relacionats amb cada un dels quatre reptes esmentats, per aconseguir discutir de forma conjunta la millor forma d’integrar aquest nou coneixement adquirit proposant un sistema d’ajuda a la decisió pel control i seguiment de l’operació de sistemes integrats de membrana (SIM).
McAdam, Ewan J. "Denitrification using immersed membrane bioreactors." Thesis, Cranfield University, 2008. http://dspace.lib.cranfield.ac.uk/handle/1826/6281.
Full textRuiz, Medina Tarik. "Plant cell bioreactors for peptide production." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670804.
Full textLa producción de proteínas recombinantes en plantas representa una oportunidad para su obtención y uso comercial. El objetivo principal de esta tesis industrial ha sido el desarrollo de sistemas vegetales de producción de proteínas, eficientes y competitivos a nivel económico, con posibilidades de llevarlas al mercado. Para ello hemos explorado dos sistemas: los cultivos celulares de Daucus carota y las hojas de Nicotiana benthamiana, cada uno con sus ventajas y limitaciones. Como prueba de concepto, ambos sistemas fueron utilizados para la producción de “'insulin-like growth factor 1” (IGF1), un péptido de alto valor añadido para las industrias cosmética y farmacéutica. Se ensayaron varias estrategias innovadoras para mejorar los rendimientos de producción aumentando la expresión génica y para reducir costes de purificación del producto. Además, la actividad biológica de IGF1 y sus derivados producidos en plantas se evaluó en comparación con péptidos sintéticos. Como primera estrategia se ensayaron supresores del silenciamiento de ARN de origen viral para incrementar la expresión génica. En ensayos de expresión transitoria con la proteína verde fluorescente como marcadora, seleccionamos la proteína P1b del ipomovirus Cucumber vein yellowing virus (CVYV). Nuestros resultados con líneas celulares de zanahoria sobreexpresoras de IGF1 o su péptido derivado CPP-IGF1 (variante diseñada para mejorar su penetración en células humanas) mostraron que en combinación con P1b alcanzaban rendimientos de producción 4 veces mayores que las líneas sin el supresor del silencing. Además, los péptidos fueron dirigidos al medio de cultivo para facilitar su aislamiento por simple clarificación. En ensayos de actividad, las fracciones obtenidas confirmaron ser capaces de incrementar la división de fibroblastos humanos. En relación a la estabilidad de la producción, se observó una reducción cercana al 33% después de veintiún ciclos de propagación sucesivos, por lo que se implementó la criopreservación de las líneas transgénicas para mantener los rendimientos de producción originales, y así establecer bancos de líneas celulares para usos futuros. También se desarrolló un sistema de producción transitoria de IGF1 y CPP-IGF1 en hojas de N. benthamiana utilizando un vector derivado del virus del mosaico del tabaco, Tobacco mosaic virus (TMV). Este sistema permitió reducir el tiempo de obtención del péptido activo, aunque en comparación con la producción en líneas celulares la obtención del producto no fue tan sencilla. Con el fin de facilitar la purificación de IGF1 desde matrices vegetales, aplicamos una estrategia innovadora basada en fusiones a oleosina para dirigir la producción a cuerpos lipídicos. Esta tecnología ya había sido utilizada en semillas, pero no en cultivos celulares, y escasamente en hojas. Nuestras observaciones mostraron la presencia de abundantes cuerpos lipídicos en numerosos cultivos celulares, incluyendo los de D. carota, con la excepción de las dos especies modelo analizadas, Nicotiana tabacum y Arabidopsis thaliana. Desafortunadamente, la expresión estable de fusiones a oleosina pareció afectar gravemente el crecimiento de los callos celulares, por lo que se exploró la alternativa de su aplicación a la producción en hojas. Para aumentar la cantidad de cuerpos lipídicos, la producción de las fusiones a oleosina se realizó simultáneamente con inductores de la acumulación de triacilgliceroles, usando elementos clave de su ruta biosintética en A. thaliana: la enzima DGAT1 y el factor de transcripción WRI1. Cuando ambos inductores fueron co-expresados en combinación con fusiones de oleosina e IGF1 en plantas de N. benthamiana, se obtuvo hasta 1 μg/g de IGF1 unida a los cuerpos lipídicos, fácilmente aislable y activo. Nuestro trabajo proporciona evidencias de que la utilización de supresores del silenciamiento de ARN, los vectores virales y la tecnología de oleosinas contribuyen al potencial de las matrices vegetales para la producción de proteínas de interés.
The production of proteins in plant cell cultures and whole plants represents great opportunities to develop products for commercial use. The main objective of this industrial thesis was to develop economic and efficient plant production systems to bring proteins of interest to the market. We explored two different systems, Daucus carota cell cultures and Nicotiana benthamiana leaves, each having advantages and drawbacks depending on the intended use of the products. As a proof of concept, both systems were applied in the production of the human insulin-like growth factor 1 (IGF1), a high value peptide for the cosmetic and therapeutic industries. Innovative strategies to enhance gene expression and to facilitate product purification were used to improve yields and to reduce costs. Moreover, the biological activity of the produced IGF1 and derivatives was evaluated and compared to the chemically synthesized peptides to demonstrate the usefulness of production systems. Our first approach to enhance gene expression and improve peptide yields was with RNA silencing suppressors (RSSs). Using transient expression assays and the green fluorescent protein (GFP) as reporter, we selected the P1b from the Cucumber vein yellowing virus (CVYV) Ipomovirus as the RSSs to enhance gene expression in carrot cell cultures. Our results demonstrated that transgenic lines overexpressing IGF1 or the derivative CPP-IGF1 (a variant tailored to enhance the delivery to human cells) reached up to 4-fold higher peptide yields in combination with P1b than without. The IGF1 or CPP-IGF1 was targeted to the culture media being easily purified by simple clarification of suspensions. Moreover, we found that the media containing the produced IGF1 or CPP-IGF1 stimulated the division of human fibroblasts. A cryopreservation process was applied to the transgenic lines to avoid the reduction in peptide production found over successive propagation cycles. This allowed us to recover the original yields, opening up the possibility of establishing master cell banks. We also developed a transient production system of IGF1 and CPP-IGF1 using N. benthamiana leaves and a derived tobacco mosaic virus vector. This system resulted in similar yields of active peptides to cell cultures with the main advantage of shortening production times, although requiring more complex downstream purification. Our innovative strategy to facilitate the purification of IGF1 from plant matrices was the use of oleosin fusion technology for lipid droplet (LDs) targeting. This technology has been previously used in LD-rich seeds, but unexplored in plant cell cultures or LD-poor tissues such as leaves. Our work showed that model cell cultures from Nicotiana tabacum or Arabidopsis thaliana were an exception, as many other plant cell cultures, including D. carota cells, do contain a large number of LDs and are susceptible to produce oleosin fusion proteins. However, as the stable expression of oleosin fusions severely affected callus cell growth, we tested the technology in transient expression in leaves. Due to the low level of LDs in leaves, oleosin fusion proteins production was in combination with triacylglycerol (TAG) induction to increase LD content simultaneously. For this purpose, key components of the TAG biosynthetic pathway, A. thaliana derived elements such as the enzyme DGAT1 and the regulatory factor WRI1 were co-expressed with the IGF1 oleosin fusion proteins in N. benthamiana leaves. Using this strategy, we obtained yields up to 1 μg/g of IGF1 bound to LDs, easily purified and fully active. Our work provides evidence of the potential of plant matrices to produce valuable peptides. Also, the oleosin technology, the use of RSSs and viral vectors explored will serve to overcome some of the known limitations of plant systems to produce active products of industrial interest.
Peron, Yannick L. "Mixing of immobilised cells in bioreactors." Thesis, University of Huddersfield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286090.
Full textShu, Chin-Hang. "Multiphase bioreactors for recombinant yeast fermentation /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487780865408922.
Full textRokstad, Anne Mari Aukan. "Alginate capsules as bioreactors for cell therapy." Doctoral thesis, Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1535.
Full textBooks on the topic "Bioreactors"
Mandenius, Carl-Fredrik, ed. Bioreactors. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.
Full textEibl, Regine, and Dieter Eibl, eds. Disposable Bioreactors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01872-5.
Full textChisti, M. Y. Airlift bioreactors. London: Elsevier Applied Science, 1989.
Find full textEibl, Regine, and Dieter Eibl. Disposable bioreactors. Berlin: Springer, 2009.
Find full textWater Environment Federation. Energy Conservation in Water and Wastewater Treatment Facilities Task Force. Membrane bioreactors. Alexandria, Va: WEF Press, 2012.
Find full textHiggins, James, Al Mattes, William Stiebel, and Brent Wootton. Eco-Engineered Bioreactors. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315166810.
Full textEibl, Dieter, and Regine Eibl, eds. Disposable Bioreactors II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45158-4.
Full text1950-, Ho Chester S., and Wang, Daniel I. C. 1936-, eds. Animal cell bioreactors. Boston, Mass: Butterworth-Heinemann, 1991.
Find full textW, Moody G., Baker P. B, National Engineering Laboratory (Great Britain), and International Conference on Bioreactors and Biotransformations (1987 : Glen Eagles, Scotland), eds. Bioreactors and biotransformations. London: Published on behalf of the National Engineering Laboratory by Elsevier Applied Science Publishers, 1987.
Find full text1950, Ho Chester S., and Wang Daniel I.-chyau 1936-, eds. Animal cell bioreactors. Boston: Butterworth-Heinemann, 1991.
Find full textBook chapters on the topic "Bioreactors"
Mandenius, Carl-Fredrik. "Challenges for Bioreactor Design and Operation." In Bioreactors, 1–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch1.
Full textRathore, Anurag S., Lalita Kanwar Shekhawat, and Varun Loomba. "Computational Fluid Dynamics for Bioreactor Design." In Bioreactors, 295–322. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch10.
Full textNeubauer, Peter, and Stefan Junne. "Scale-Up and Scale-Down Methodologies for Bioreactors." In Bioreactors, 323–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch11.
Full textVelayudhan, Ajoy, and Nigel Titchener-Hooker. "Integration of Bioreactors with Downstream Steps." In Bioreactors, 355–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch12.
Full textGlassey, Jarka. "Multivariate Modeling for Bioreactor Monitoring and Control." In Bioreactors, 369–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch13.
Full textMandenius, Carl-Fredrik, and Robert Gustavsson. "Soft Sensor Design for Bioreactor Monitoring and Control." In Bioreactors, 391–420. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch14.
Full textMandenius, Carl-Fredrik. "Design-of-Experiments for Development and Optimization of Bioreactor Media." In Bioreactors, 421–52. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch15.
Full textHass, Volker C. "Operator Training Simulators for Bioreactors." In Bioreactors, 453–86. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch16.
Full textLattermann, Clemens, and Jochen Büchs. "Design and Operation of Microbioreactor Systems for Screening and Process Development." In Bioreactors, 35–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch2.
Full textvan Noort, Danny. "Bioreactors on a Chip." In Bioreactors, 77–112. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch3.
Full textConference papers on the topic "Bioreactors"
Neitzel, G. Paul, Robert M. Nerem, Athanassios Sambanis, Marc K. Smith, Timothy M. Wick, Jason B. Brown, Christopher Hunter, et al. "Effect of Fluid-Mechanical and Chemical Environments on Cell Function and Tissue Growth: Experimental and Modeling Studies." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0794.
Full textVan Dyke, W. Scott, Eric Nauman, and Ozan Akkus. "A Novel Mechanical Bioreactor System Allowing Simultaneous Strain and Fluid Shear Stress on Cell Monolayers." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53595.
Full textBertrand, Robert S., Emmanuel Revellame, Lisa Stephanie Dizon, Kristel Gatdula, and Remil Aguda. "Measurement of Volumetric Mass Transfer Coefficient in Lab-scale Stirred Tank Reactors: Is There a Point of Diminishing Returns for Impeller Speed and Gas Flowrate?" In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/zrrh2541.
Full textFerrar, Joseph, Philip Maun, Kenneth Wunch, Joseph Moore, Jana Rajan, Jon Raymond, Ethan Solomon, and Matheus Paschoalino. "High Pressure, High Temperature Bioreactors as a Biocide Selection Tool for Hydraulically Fractured Reservoirs." In SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/204198-ms.
Full textStraume, Indulis, Imants Plume, Vilis Dubrovskis, Viktors Dreimanis, and Eriks Zukovskis. "Biogas potential from co-fermentation of food leftovers and lignocellulosic biomass at mesophilic temperatures." In 22nd International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2023. http://dx.doi.org/10.22616/erdev.2023.22.tf081.
Full textNwaigwe, Kevin N., Nnamdi V. Ogueke, Chibuike Ononogbo, and Emmanuel E. Anyanwu. "Performance Study of Anaerobic Digestion of Organic Municipal Waste in Upflow Bioreactor With Central Substrate Dispenser." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64064.
Full textCruel, Magali, Morad Bensidhoum, Laure Sudre, Guillaume Puel, Virginie Dumas, and Thierry Hoc. "Study of the Effect of Mechanical Loading on Cell Cultures in Bone Tissue Engineering." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82989.
Full textSabliy, Larisa, Veronika Zhukova, and Lyubov Kika. "Effective Biological Treatment of Tannery Wastewater from Nitrogen Compounds." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.ii.22.
Full textKadic, Enes, and Theodore J. Heindel. "Hydrodynamic Considerations in Bioreactor Selection and Design." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30367.
Full textSyedain, Zeeshan H., and Robert T. Tranquillo. "A Novel Bioreactor for Tissue Engineered Heart Valves Based on Controlled Cyclic Stretching." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206751.
Full textReports on the topic "Bioreactors"
Maxwell, Bryan, Francois Birgand, Caleb Ray, and Matt Helmers. Monitoring Bioreactors Using Improved Techniques. Ames: Iowa State University, Digital Repository, 2018. http://dx.doi.org/10.31274/farmprogressreports-180814-1996.
Full textKendall, Edward. Bioreactors: Design, Background, and Applications. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1887112.
Full textLagasse, Eric. Ovarian Cancer, Stem Cells, and Bioreactors. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada517343.
Full textSavage, David. Engineering self-assembled bioreactors from protein microcompartments. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1328679.
Full textRuelas, Samantha. Methanotroph Immobilization in Polymeric Bioreactors to Increase Mass Transfer. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1476187.
Full textJaroch, David, Eric McLamore, Wen Zhang, Jin Shi, Jay Garland, M. K. Banks, D. M. Porterfield, and Jenna L. Rickus. Silica Entrapment of Biofilms in Membrane Bioreactors for Water Regeneration. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada585275.
Full textHoover, Natasha L., and Michelle L. Soupir. Experimental Tile Drainage Denitrification Bioreactors: Pilot-Scale System for Replicated Field Research. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/farmprogressreports-180814-1738.
Full textParra-Alvarez, Milo, Malik Hassanaly, Mohammad Rahimi, and Hariswaran Sitaraman. Multiphysics Computational Fluid Dynamics for Design and Scale-Up of CO2/Syngas Bioreactors. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2274814.
Full textBreewood, Helen, and Tara Garnett. Meat, metrics and mindsets: Exploring debates on the role of livestock and alternatives in diets and farming. TABLE, March 2023. http://dx.doi.org/10.56661/2caf9b92.
Full textDonaldson, T. L., G. W. Strandberg, and R. M. Worden. Fixed-film, fluidized-bed bioreactors for biooxidation of coal conversion wastewaters. Progress report, October 1, 1984-September 30, 1985. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5953994.
Full text