Academic literature on the topic 'Biophysical chemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biophysical chemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biophysical chemistry"

1

Häussinger, Daniel, and Thomas Pfohl. "Biophysical Chemistry." CHIMIA International Journal for Chemistry 64, no. 12 (December 15, 2010): 874–76. http://dx.doi.org/10.2533/chimia.2010.874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kennedy, John F. "Biophysical Chemistry." Carbohydrate Polymers 57, no. 1 (August 2004): 103. http://dx.doi.org/10.1016/j.carbpol.2004.04.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sanz-Medel, Alfredo. "Alan Cooper: Biophysical chemistry." Analytical and Bioanalytical Chemistry 382, no. 4 (April 28, 2005): 859–60. http://dx.doi.org/10.1007/s00216-005-3180-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schatz, George C. "Emerging Themes in Biophysical Chemistry." Journal of Physical Chemistry Letters 3, no. 8 (April 19, 2012): 1072–73. http://dx.doi.org/10.1021/jz300340u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Larter, Raima. "Understanding Complexity in Biophysical Chemistry." Journal of Physical Chemistry B 107, no. 2 (January 2003): 415–29. http://dx.doi.org/10.1021/jp020856l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chapman, D. "Biophysical chemistry of membrane function." FEBS Letters 268, no. 2 (August 1, 1990): 435–36. http://dx.doi.org/10.1016/0014-5793(90)81308-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Howland, JL. "Biophysical Chemistry: Molecules to Membranes." Biochemical Education 19, no. 2 (April 1991): 99. http://dx.doi.org/10.1016/0307-4412(91)90028-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Levie, Robert. "Biophysical Chemistry of Membrane Functions." Electrochimica Acta 34, no. 5 (May 1989): 713. http://dx.doi.org/10.1016/0013-4686(89)85021-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lucy, J. A. "Biophysical chemistry of membrane functions." Trends in Biochemical Sciences 13, no. 11 (November 1988): 455. http://dx.doi.org/10.1016/0968-0004(88)90222-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Clarke, Ronald J. "A Perspective on Biophysical Chemistry." Australian Journal of Chemistry 64, no. 1 (2011): 3. http://dx.doi.org/10.1071/ch10273.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biophysical chemistry"

1

Andres, Dorothee. "Biophysical chemistry of lipopolysaccharide specific bacteriophages." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5926/.

Full text
Abstract:
Carbohydrate recognition is a ubiquitous principle underlying many fundamental biological processes like fertilization, embryogenesis and viral infections. But how carbohydrate specificity and affinity induce a molecular event is not well understood. One of these examples is bacteriophage P22 that binds and infects three distinct Salmonella enterica (S.) hosts. It recognizes and depolymerizes repetitive carbohydrate structures of O antigen in its host´s outer membrane lipopolysaccharide molecule. This is mediated by tailspikes, mainly β helical appendages on phage P22 short non contractile tail apparatus (podovirus). The O antigen of all three Salmonella enterica hosts is built from tetrasaccharide repeating units consisting of an identical main chain with a distinguished 3,6 dideoxyhexose substituent that is crucial for P22 tailspike recognition: tyvelose in S. Enteritidis, abequose in S. Typhimurium and paratose in S. Paratyphi. In the first study the complexes of P22 tailspike with its host’s O antigen octasaccharide were characterized. S. Paratyphi octasaccharide binds less tightly (ΔΔG≈7 kJ/mol) to the tailspike than the other two hosts. Crystal structure analysis of P22 tailspike co crystallized with S. Paratyphi octasaccharides revealed different interactions than those observed before in tailspike complexes with S. Enteritidis and S. Typhimurium octasaccharides. These different interactions occur due to a structural rearrangement in the S. Paratyphi octasaccharide. It results in an unfavorable glycosidic bond Φ/Ψ angle combination that also had occurred when the S. Paratyphi octasaccharide conformation was analyzed in an aprotic environment. Contributions of individual protein surface contacts to binding affinity were analyzed showing that conserved structural waters mediate specific recognition of all three different Salmonella host O antigens. Although different O antigen structures possess distinct binding behavior on the tailspike surface, all are recognized and infected by phage P22. Hence, in a second study, binding measurements revealed that multivalent O antigen was able to bind with high avidity to P22 tailspike. Dissociation rates of the polymer were three times slower than for an octasaccharide fragment pointing towards high affinity for O antigen polysaccharide. Furthermore, when phage P22 was incubated with lipopolysaccharide aggregates before plating on S. Typhimurium cells, P22 infectivity became significantly reduced. Therefore, in a third study, the function of carbohydrate recognition on the infection process was characterized. It was shown that large S. Typhimurium lipopolysaccharide aggregates triggered DNA release from the phage capsid in vitro. This provides evidence that phage P22 does not use a second receptor on the Salmonella surface for infection. P22 tailspike binding and cleavage activity modulate DNA egress from the phage capsid. DNA release occurred more slowly when the phage possessed mutant tailspikes with less hydrolytic activity and was not induced if lipopolysaccharides contained tailspike shortened O antigen polymer. Furthermore, the onset of DNA release was delayed by tailspikes with reduced binding affinity. The results suggest a model for P22 infection induced by carbohydrate recognition: tailspikes position the phage on Salmonella enterica and their hydrolytic activity forces a central structural protein of the phage assembly, the plug protein, onto the host´s membrane surface. Upon membrane contact, a conformational change has to occur in the assembly to eject DNA and pilot proteins from the phage to establish infection. Earlier studies had investigated DNA ejection in vitro solely for viruses with long non contractile tails (siphovirus) recognizing protein receptors. Podovirus P22 in this work was therefore the first example for a short tailed phage with an LPS recognition organelle that can trigger DNA ejection in vitro. However, O antigen binding and cleaving tailspikes are widely distributed in the phage biosphere, for example in siphovirus 9NA. Crystal structure analysis of 9NA tailspike revealed a complete similar fold to P22 tailspike although they only share 36 % sequence identity. Moreover, 9NA tailspike possesses similar enzyme activity towards S. Typhimurium O antigen within conserved amino acids. These are responsible for a DNA ejection process from siphovirus 9NA triggered by lipopolysaccharide aggregates. 9NA expelled its DNA 30 times faster than podovirus P22 although the associated conformational change is controlled with a similar high activation barrier. The difference in DNA ejection velocity mirrors different tail morphologies and their efficiency to translate a carbohydrate recognition signal into action.
Kohlenhydraterkennung ist ein fundamentales Prinzip vieler biologischer Prozesse wie z.B. Befruchtung, Embryogenese und virale Infektionen. Wie aber Kohlenhydratspezifität und –affinität in ein molekulares Ereignis übersetzt werden, ist nicht genau verstanden. Ein Beispiel für ein solches Ereignis ist die Infektion des Bakteriophage P22, der drei verschiedene Salmonella enterica (S.) Wirte besitzt. Er erkennt und depolymerisiert die repetitiven Einheiten des O Antigens im Lipopolysaccharid, das sich in der äußeren Membran seines Wirtes befindet. Dieser Schritt wird durch die Tailspikes vermittelt, β helicale Bestandteile des kurzen, nicht kontraktilen Schwanzapparates von P22 (Podovirus). Das O Antigen aller drei Salmonella enterica Wirte besteht aus sich wiederholenden Tetrasacchariden. Sie enthalten die gleiche Hauptkette aber eine spezifische 3,6 Didesoxyhexose Seitenkette, die für die P22 Tailspikeerkennung essentiell ist: Tyvelose in S. Enteritidis, Abequose in S. Typhimurium und Paratose in S. Paratyphi. Im ersten Teil der Arbeit wurde die Komplexbildung von P22 Tailspike mit O Antigen Octasaccharidfragmenten der drei verschiedenen Wirte untersucht. S. Paratyphi Octasaccharide binden mit einer geringeren Affinität (ΔΔG≈7 kJ/mol) an den Tailspike als die beiden anderen Wirte. Die Kristallstrukturanalyse des S. Paratyphi Octasaccharides komplexiert mit P22 Tailspike offenbarten unterschiedliche Interkationen als vorher mit S. Enteritidis und S. Typhimurium Oktasaccharidkomplexen mit Tailspike beobachtet wurden. Diese unterschiedlichen Interaktionen beruhen auf einer strukturellen Änderung in den Φ/Ψ Winkeln der glykosidischen Bindung. Die Beiträge von verschiedenen Proteinoberflächenkontakten zur Affnität wurden untersucht und zeigten, dass konservierte Wasser in der Struktur die spezifische Erkennung aller drei Salmonella Wirte vermittelt. Obwohl die verschiedenen O Antigen Strukturen unterschiedliches Bindungsverhalten auf der Tailspikeoberfläche zeigen, werden alle vom Phagen P22 erkannt und infiziert. Daher wurde in einer zweiten Studie die multivalente Bindung zwischen P22 Tailspike und O Antigen charakterisiert. Die Dissoziationskonstanten des Polymers waren drei Mal langsamer als für das Oktasaccharid allein, was auf eine hohe Affinität des O Antigens schließen lässt. Zusätzlich wurde gezeigt, dass die Aggregate des Lipopolysaccharids in der Lage sind, die Infektiösität vom P22 Phagen zu reduzieren. Ausgehend davon wurde in einer dritten Studie die Bedeutung der Kohlenhydrat Erkennung auf den Infektionsprozess untersucht. Große S. Typhimurium Lipopolysaccharide Aggregate bewirkten die DNA Freisetzung vom P22 Kapsid. Dies deutet darauf, dass der P22 Phage keinen weiteren Rezeptor für die Infektion auf der Oberflächen seines Wirtes verwendet. Zusätzlich moduliert die P22 Tailspike Aktivität den Ausstoss der DNA vom P22 Phagen: Er ist langsamer, wenn der Phage Tailspikes besitzt, die weniger hydrolytisch aktiv sind und wurde nicht induziert, wenn Lipopolysaccharid eingesetzt wurde, dass zuvor mit Tailspike hydrolysiert wurde. Darüber hinaus wurde der Start der DNA Ejektion verzögert, wenn Tailspikes mit verminderter Affinität am Phagen vorhanden waren. Die Ergebnisse führten zu einem Modell für die Infektion von P22: Tailspikes positionieren den Phagen auf Salmonella enterica und ihre Aktivität drückt ein zentrales Strukturprotein des Phagen, das Stöpselprotein, auf die Membranoberfläche. Aufgrund des Membrankontaktes findet eine Konformationsänderung statt die zur Ejektion der Pilotproteine und zur Infektion führt. Vorhergehende Studien haben bisher nur die DNA Ejektion in vitro für Viren mit langen, nicht kontraktilen Schwänzen (Siphoviren) mit Proteinrezeptoren untersucht. In dieser Arbeit wurde das erste Mal die DNA Ejektion für einen Podovirus mit LPS Erkennung in vitro gezeigt. Die O Antigen Erkennung und Spaltung durch Tailspikeproteine gibt es häufig in der Phagenbiosphere, z.B. am Siphovirus 9NA. Die Kristallstrukturanalyse von 9NA Tailspike zeigt eine komplett gleiche Struktur, obwohl beide Proteine nur zu 36% Sequenzidentität besitzen. Zusätzlich hat 9NA Tailspike ähnliche enzymatische Eigenschaften. Diese ist für den DNA Ejektionsprozess im Siphovirus 9NA verantwortlich, der auch durch LPS Agreggate induziert wird. 9NA stößt dabei seine DNA 30 Mal schneller aus als Podovirus P22 obwohl die damit verbundene Konformationsänderung mit einer ähnlich hohen Aktivierungsbarriere kontrolliert wird. Daher spiegeln die Unterschiede in der DNA Ejektionsgeschwindigkeit der verschiedenen Tailmorphologien die Effezienz wieder, mit der die spezifische Kohlenhydraterkennung in ein Signal umgewandelt wird.
APA, Harvard, Vancouver, ISO, and other styles
2

Cuccia, Louis A. "Biophysical properties of dimeric phospholipids." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42007.

Full text
Abstract:
A series of unusual bipolar and bis-phospholipids (dimeric phospholipids) have been studied. The structure, conformation, morphology and biophysical properties of the resulting phospholipid aggregates were investigated.
Deuterium magnetic resonance spectroscopy ($ sp2$H NMR) was used to study and characterize the conformation and acyl chain order in oriented bipolar lipid membranes. The $ sp2$H-NMR studies indicated a large and constant value for the order parameter (S$ rm sb{mol})$ for all positions along the bipolar lipid diacyl chain for mechanically oriented, magnetically oriented and unoriented samples. This indicates that the great majority ($>$90%) of the bipolar lipid exists in a highly ordered spanning conformation.
Dimeric phospholipid aggregate morphologies were studied using $ sp{31}$P NMR, small angle X-ray scattering, electron microscopy, differential scanning calorimetry, and the Langmuir film balance technique in order to study the relationship between lipid structure and aggregate morphology. Dimeric phospholipids favour a lamellar morphology. A number of lipid structure-dependent features have been observed including tri-lamellar structures, extended ripple phases and hexagonal phases.
Dimeric and non-hydrolyzable phospholipids were used to study the phenomenon of interfacial activation of extracellular phospholipase A$ sb2$ (EC. 3.1.1.4) (PLA$ sb2)$ in relation to lipid phase, substrate conformation and mobility. Kinetic results and product analyses are consistent with a situation where the spanning conformer of bipolar phospholipids is resistant to PLA$ sb2$-catalyzed hydrolysis but the hairpin conformer is readily hydrolyzed. Finally, an analysis of interfacial kinetics in non-hydrolyzable matrices indicated varying degrees of interfacial inhibition and hydrolysis product activation. This has not been explicitly recognized before and affects the choice of assay conditions for PLA$ sb2.$
APA, Harvard, Vancouver, ISO, and other styles
3

Wisner, Daniel A. "Biophysical studies of biological phosphates /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu148732651171337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Danial, John Shokri Hanna. "Imaging lipid phase separation in droplet interface bilayers." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:34bb015f-2bc1-43bb-bc29-850e0b55edac.

Full text
Abstract:
The spatiotemporal organization of membrane proteins is implicated in cellular trafficking, signalling and reception. It was proposed that biological membranes partition into lipid rafts that can promote and control the organization of membrane proteins to localize the mentioned processes. Lipid rafts are thought to be transient (microseconds) and small (nanometers), rendering their detection a challenging task. To circumvent this problem, multi-component artificial membrane systems are deployed to study the segregation of lipids at longer time and length scales. In this thesis, multi-component Droplet Interface Bilayers (DIBs) were imaged using fluorescence and interferometric scattering microscopy. DIBs were used to examine and manipulate microscopic lipid domains and to observe, for the first time, transient nanoscopic lipid domains. The techniques and results described here will have important implications on future research in this field.
APA, Harvard, Vancouver, ISO, and other styles
5

Zimanyi, Eric Norman. "Theoretical advances toward understanding recent experiments in biophysical chemistry." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73181.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Several theoretical advances are presented, with the common theme of helping better understand and guide recent experiments in biophysical chemistry. In Chapter 2, I consider a recent criticism of the Jarzynski equality, notably that a breakdown in the connection between work and changes in the Hamiltonian for time-dependent systems causes the Jarzynski equality to produce unphysical results. I discuss the relationship between two possible definitions of free energy and demonstrate that it is indeed possible to obtain physically relevant free energy profiles from the Jarzynski equality, thereby resolving the recent questions in the literature. Next, I consider several aspects of coherent resonance energy transfer. In Chapter 3, I present a theory for coherent resonance energy transfer based on classical electrodynamics and demonstrate how it is able to capture dynamics in the coherent regime, the incoherent regime, and in between these two limits. In Chapter 4, I present a quantum theory for resonant energy transfer based on using a variational polaron transform to optimally split the Hamiltonian into a zeroth-order part and a perturbation. I then apply a quantum master equation to obtain the dynamics of energy transfer for various parameters. Finally, in Chapter 5, I examine whether it is possible to use the known exact equilibrium state of the system to improve the variational procedure.
by Eric Norman Zimanyi.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Damianoglou, Angeliki. "Biophysical characterisation of peptides and proteins." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/3664/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Battle, Michele Marie. "Biophysical studies of phospholipid systems." Thesis, University of Greenwich, 1992. http://gala.gre.ac.uk/6109/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Isaksson, Mikael. "On the quantitative analysis of electronic energy transfer/migration in proteins studied by fluorescence spectroscopy." Doctoral thesis, Umeå : Department of Chemistry, Umeå University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andres, Dorothee Verfasser], and Robert [Akademischer Betreuer] [Seckler. "Biophysical chemistry of lipopolysaccharide specific bacteriophages / Dorothee Andres. Betreuer: Robert Seckler." Potsdam : Universitätsbibliothek der Universität Potsdam, 2012. http://d-nb.info/1029376824/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keatch, Steven Alexander. "Biophysical chemistry of EcoKI in physiological solutions : emulating the cell interior." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/12335.

Full text
Abstract:
Production of polyamines and nucleoid-associated proteins is tightly regulated and restructures the nucleoid-associated proteins is tightly regulated and restructure the nucleoid under environmental conditions that induce DNA damage into an even more highly condensed conformation. These ‘stressful’ conditions can cause the specific methylation sequence of DNA to be lost, which leaves the DNA open to self-attack by restriction enzymes. One such enzyme is EcoKI, a type I restriction enzyme that protects the bacterial cell by destroying foreign invading DNA. Upon loss of specific methylation, EcoKI could potentially destroy the host DNA and kill the bacteria. This damaging restriction is alleviated due to partial proteolysis of EcoKI by C1pXP, although a reduced ability to destroy incoming foreign DNA is maintained. However, this method of alleviation does not exist for all type I enzymes, implying that additional restriction alleviation is required to protect bacteria. In this thesis, it has been found that the condensed structure of DNA produced by the polyamine spermidine and the nucleoid-associated protein StpA, as well as the non-specific DNA-binding of the ligand YOYO, dramatically inhibit EcoKI ATP hydrolysis an restriction activities. These results show that condensation may be a method used by bacteria to protect the nucleoid from self­-attack by EcoKI under DNA-damaging conditions, and therefore forms a second mechanism of restriction alleviation. Such a condensed DNA structure may inhibit access of the enzyme to its binding site as well as inhibiting the physical ability to translocate DNA. This is in contrast to invading foreign ‘naked’ DNA in the cytoplasm, which adopts a more open conformation, and therefore forms an ideal substrate for EcoKI translocation and restriction.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biophysical chemistry"

1

Klostermeier, Dagmar, and Markus G. Rudolph. Biophysical Chemistry. Names: Klostermeier, Dagmar, author. | Rudolph, Markus G., author. Title: Biophysical chemistry / Dagmar Klostermeier and Markus G. Rudolph. Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315156910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leatherbarrow, Robin, and R. H. Templer, eds. Biophysical Chemistry. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bergethon, Peter R., and Elizabeth R. Simons. Biophysical Chemistry. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Royal Society of Chemistry (Great Britain), ed. Biophysical chemistry. 2nd ed. Cambridge: RSC Pub., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kalidas, C., and M. V. Sangaranarayanan. Biophysical Chemistry. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37682-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walla, Peter Jomo, ed. Modern Biophysical Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527683505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

M, Engelman Donald, ed. Annual review of biophysics and biophysical chemistry. Palo Alto: Annual Reviews Inc, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Buxbaum, Engelbert. Biophysical Chemistry of Proteins. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7251-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohshima, Hiroyuki. Biophysical Chemistry of Biointerfaces. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470630631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohshima, Hiroyuki. Biophysical chemistry of biointerfaces. Hoboken, N.J: Wiley, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biophysical chemistry"

1

Templer, R. H., and E. Evans. "Biophysical chemistry." In 100 Years of Physical Chemistry, 321–38. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550002-00321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bergethon, Peter R., and Elizabeth R. Simons. "Molecules, Membranes, and Modeling." In Biophysical Chemistry, 3–8. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bergethon, Peter R., and Elizabeth R. Simons. "Introduction to Electrolytic Solutions." In Biophysical Chemistry, 109–21. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bergethon, Peter R., and Elizabeth R. Simons. "Ion-Solvent Interactions." In Biophysical Chemistry, 122–51. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bergethon, Peter R., and Elizabeth R. Simons. "Ion-Ion Interactions." In Biophysical Chemistry, 152–70. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bergethon, Peter R., and Elizabeth R. Simons. "Molecules in Solution." In Biophysical Chemistry, 171–80. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bergethon, Peter R., and Elizabeth R. Simons. "Macromolecules in Solution." In Biophysical Chemistry, 181–98. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bergethon, Peter R., and Elizabeth R. Simons. "Lipids in Aqueous Solution: The Formation of the Cell Membrane." In Biophysical Chemistry, 201–18. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bergethon, Peter R., and Elizabeth R. Simons. "Irreversible Thermodynamics." In Biophysical Chemistry, 219–24. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bergethon, Peter R., and Elizabeth R. Simons. "Flow in a Chemical Potential Field: Diffusion." In Biophysical Chemistry, 225–34. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biophysical chemistry"

1

Fernandes, Eduarda, Sofia Benfeito, M. Elisabete Oliveira, Fernanda Borges, and Marlene Lúcio. "Drug (re-)design guided by biophysical characterization of interactions with biomimetic membranes." In 5th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2019. http://dx.doi.org/10.3390/ecmc2019-06377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

SHAKHNOVICH, EUGENE I. "EMERGING BIOPHYSICAL MECHANISM AND EVOLUTION: SYNERGISTIC APPROACHES TO PREDICT EVOLUTIONARY DYNAMICS TO FIGHT DRUG RESISTANCE." In 25th Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811228216_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amato, Jussara, Simona Marzano, Bruno Pagano, Nunzia Iaccarino, Anna Di Porzio, Stefano De Tito, Eleonora Vertecchi, Erica Salvati, and Antonio Randazzo. "Targeting of telomeric repeat-containing RNA G-quadruplexes: From screening to biophysical and biological characterization of a new hit compound." In 7th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecmc2021-11382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vernerey, Franck J. "Biophysical Model of the Coupled Mechanisms of Cell Adhesion, Contraction and Spreading." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80309.

Full text
Abstract:
Recent research has shown that cell spreading is highly dependent on the contractility of its cytoskeleton and the mechanical properties of its surrounding environment. This extended abstract introduces a mathematical formulation of cell spreading and contraction that couples the processes of stress fiber formation, protrusion growth through actin polymerization at the cell edge and dynamics of cross-membrane protein (integrins) enabling cell-substrate attachment. The evolving cell’s cytoskeleton is modeled as a mixture of fluid, proteins and filaments that can exchange mass and generate contraction. In particular, besides self-assembling into stress fibers, actin monomers are able to polymerize into an actin meshwork at the cell’s boundary in order to push the membrane forward and generate protrusion. These processes are possible via the development of cell-substrate attachment complexes that arise from the mechano-sensitive equilibrium of membrane proteins, known as integrins. Numerical simulations show that the proposed model is able to capture the dependency of cell spreading and contraction on substrate stiffness and chemistry. The very good agreement between model predictions and experimental observations suggests that mechanics plays a strong role into the coupled mechanisms of contraction, adhesion and spreading of adherent cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Liang, Dwayne Arola, Charles Eggleton, and Anne Spence. "Education Activities of Bioengineering for Undergraduate Students at UMBC." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53149.

Full text
Abstract:
Recent developments in micro- and nano-technology have become the primary thrust of many new research opportunities in bioengineering to provide better imaging, diagnosis, therapeutic therapy, and monitoring progression of various diseases. Biology and Chemistry are becoming highly quantitative disciplines, dealing with deeply complex interacting factors. Engineered systems are increasingly integrating biological operability and capabilities into traditional methodology. Light matter interactions traditionally employed in Optical Physics has generated new fields in Biophysics and Bioengineering. These are unique challenges often requiring interdisciplinary collaborations among researchers with diversified expertise. Therefore, it is important to educate the next generation of undergraduate students to possess the technical knowledge within their core discipline, to cultivate opportunities for interdisciplinary problem solving and to prepare them for an industrial or graduate environment involving interdisciplinary research.
APA, Harvard, Vancouver, ISO, and other styles
6

Voelkel, Dirk, J. Marques, Friedrich Huisken, Yu L. Chuzavkov, S. N. Orlov, Yu N. Polivanov, and V. V. Smirnov. "Infrared degenerate four-wave mixing and resonance-enhanced stimulated Raman scattering in small molecules." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Andrey Y. Chikishev, Victor N. Zadkov, and Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.339994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pavlov, V. V., R. V. Pisarev, Dietmar H. Froehlich, and St Leute. "Second-harmonic spectroscopy of the ferroelectric antiferromagnet YMnO3." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Andrey Y. Chikishev, Victor N. Zadkov, and Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.339995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zayats, Anatoly V., Igor I. Smolyaninov, and Christopher C. Davis. "Near-field microscopy of second-harmonic generation." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Andrey Y. Chikishev, Victor N. Zadkov, and Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.339996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lozovik, Yurii E., A. V. Klyuchnik, and S. P. Merkulova. "Nanolocal time-resolved optical study using scanning probe microscope." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Andrey Y. Chikishev, Victor N. Zadkov, and Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.339997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sukhodolsky, Anatoly T., and P. A. Sukhodolsky. "Coherent beating of vector waves in active spectroscopy of elastic light scattering." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Andrey Y. Chikishev, Victor N. Zadkov, and Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.339998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography