Academic literature on the topic 'Biomedical textile'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomedical textile.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biomedical textile"
Li, Yi, Xin Zhang, and BaoAn Ying. "On textile biomedical engineering." Science China Technological Sciences 62, no. 6 (May 23, 2019): 945–57. http://dx.doi.org/10.1007/s11431-018-9504-5.
Full textBhavani, S., T. Shanmuganantham, N. Mouni, and G. Jaydeep Sai. "Textile UWB Antennas for Biomedical Applications." IRO Journal on Sustainable Wireless Systems 4, no. 3 (September 15, 2022): 173–84. http://dx.doi.org/10.36548/jsws.2022.3.004.
Full textSu, Po-Cheng, Ya-Hsin Hsueh, Ming-Ta Ke, Jyun-Jhe Chen, and Ping-Chen Lai. "Noncontact ECG Monitoring by Capacitive Coupling of Textiles in a Chair." Journal of Healthcare Engineering 2021 (June 16, 2021): 1–8. http://dx.doi.org/10.1155/2021/6698567.
Full textIyer, Shriya V., Jyothis George, Suhasini Sathiyamoorthy, Rohini Palanisamy, Abhijit Majumdar, and Pandiyarasan Veluswamy. "Pertinence of Textile-Based Energy Harvesting System for Biomedical Applications." Journal of Nanomaterials 2022 (August 26, 2022): 1–13. http://dx.doi.org/10.1155/2022/7921479.
Full textZhu, Chenkai, Ifty Ahmed, Andrew Parsons, Jinsong Liu, and Xiaoling Liu. "The mechanical property, degradation and cytocompatibility analysis of novel phosphate glass fiber textiles." Textile Research Journal 89, no. 16 (November 6, 2018): 3280–90. http://dx.doi.org/10.1177/0040517518809052.
Full textToskas, Georgios, Ronny Brünler, Heike Hund, Rolf-Dieter Hund, Martin Hild, Dilibaier Aibibu, and Chokri Cherif. "Pure chitosan microfibres for biomedical applications." Autex Research Journal 13, no. 4 (December 31, 2013): 134–40. http://dx.doi.org/10.2478/v10304-012-0041-5.
Full textAllehyani, Esam S., Yaaser Q. Almulaiky, Sami A. Al-Harbi, and Reda M. El-Shishtawy. "In Situ Coating of Polydopamine-AgNPs on Polyester Fabrics Producing Antibacterial and Antioxidant Properties." Polymers 14, no. 18 (September 10, 2022): 3794. http://dx.doi.org/10.3390/polym14183794.
Full textJavaid, Sana, Azhar Mahmood, Habib Nasir, Mudassir Iqbal, Naveed Ahmed, and Nasir M. Ahmad. "Layer-By-Layer Self-Assembled Dip Coating for Antifouling Functionalized Finishing of Cotton Textile." Polymers 14, no. 13 (June 22, 2022): 2540. http://dx.doi.org/10.3390/polym14132540.
Full textChen, Guopu, Jie Hu, Zhiwu Hong, Gefei Wang, Zhiming Wang, Canwen Chen, Jinjian Huang, Xiuwen Wu, and Jianan Ren. "Multifunctional Electrospun Textiles for Wound Healing." Journal of Biomedical Nanotechnology 18, no. 3 (March 1, 2022): 796–806. http://dx.doi.org/10.1166/jbn.2022.3288.
Full textStefan-van Staden, Raluca-Ioana, Livia Alexandra Gugoaşă, Marius Badulescu, and Carmen Cristina Surdu-Bob. "Novel textile material based disposable sensors for biomedical analysis." RSC Advances 5, no. 56 (2015): 45545–50. http://dx.doi.org/10.1039/c5ra04777c.
Full textDissertations / Theses on the topic "Biomedical textile"
Irsale, Swagat Appasaheb Adanur Sabit. "Textile prosthesis for vascular applications." Auburn, Ala., 2004. http://hdl.handle.net/10415/953.
Full textRush, Tabitha. "Hemostatic Mechanisms of Common Textile Wound Dressing Materials." NCSU, 2010. http://www.lib.ncsu.edu/theses/available/etd-03302010-230342/.
Full textLabay, Cédric. "Treatment of textile surfaces by plasma technology for biomedical applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277564.
Full textLas aplicaciones médicas de los textiles técnicos son un campo de investigación en expansión. Uno de los valores añadidos de estos nuevos materiales puede ser su capacidad para contener y liberar principios activos farmacéuticos y cosméticos de una forma controlada y sostenida. La incorporación de fármacos y su liberación a partir de fibras sintéticas está relacionada con la interacción del fármaco con el polímero y puede depender en gran medida de la química de superficie de la fibra. La tecnología de plasma es una herramienta que permite modificar las propiedades físicas y químicas de los primero nanómetros de la superficie de las fibras sin afectar el interior del material. Aplicado al campo de los textiles médicos, el tratamiento con plasma de fibras poliméricas podría conducir al diseño de nuevos sistemas de liberación de fármacos basados en soportes textiles. La novedad de esta Tesis Doctoral se basa en la modificación de las interacciones fármaco / fibra por tratamiento de plasma para permitir la modulación de la incorporación y la liberación de los principios activos (farmacéuticos y cosméticos) a partir de sistemas de administración de fármacos basados en material textil, sin requerir el uso de productos químicos adicionales. Esta Tesis tiene como objetivo el desarrollo de dos familias de sistemas de liberación de fármacos basados en soportes textiles, por funcionalización de la superficie mediante tratamiento de plasma, con características adecuadas bien para uso tópico como dispositivos médicos, bien para aplicación clínica en la reparación de tejidos blandos. Por tanto, esta Tesis se organiza en dos partes bien diferenciadas. En ambas partes de esta Tesis se ha seguido el siguiente esquema general: en primer lugar se ha investigado primero la modificación superficial de los materiales textiles con diferentes tipos de plasmas (plasma corona y plasma de presión atmosférica), caracterizando las modificaciones de la superficie obtenidas mediante diferentes técnicas instrumentales. Los efectos del tratamiento con plasma se han evaluado entonces sobre la incorporación de principios activos farmacéuticos o cosméticos. En el último paso, se ha estudiado la liberación del fármaco mediante ensayos de disolución "in vitro". La primera parte de la Tesis Doctoral se centra en los textiles médicos para aplicación tópica. Para ello, se ha estudiado la modificación de la superficie de tejidos de punto elástico-compresivos de poliamida 66 con plasma corona y plasma de baja presión. En este trabajo experimental se han estudiado en paralelo tejidos preparados en laboratorio y tejidos industrialmente acabados, con vistas a la posible implementación del proceso propuesto en la cadena de producción industrial textil. Se ha observado que el tratamiento con plasma mejora la cinética de liberación de un fármaco anti-inflamatorio (ketoprofeno) y de un principio activo cosmético lipolítico (cafeína), incorporados en los tejidos de poliamida 66 tratados con plasma. Se ha desarrollado un estudio fundamental comparando tres moléculas diferentes de la misma familia química (cafeína, teobromina y pentoxifilina) con respecto a la incorporación al material textil y a la liberación del principio activo. La segunda parte se centra en los textiles utilizados como implantes para la reparación de tejidos blandos (por ejemplo, hernias abdominales). La superficie de la fibra de una malla de polipropileno approvada para su uso clínico ha sido modificada por el plasma corona y plasma de baja presión. Los tratamientos estudiados tuvieron un efecto importante sobre la carga de un antibiótico (ampicilina) mostrando un importante incremento del porcentaje de impregnación. La cinética de liberación in vitro del antibiótico de la malla de polipropileno a un medio líquido isotonico fue rápida. También se investigó la posibilidad de realizar un recubrimiento de la malla de polipropileno cargada con ampicilina mediante polimerización por plasma.
Khalsi, Yosri. "Traitement de surface par jet d'azote supercritique : application aux textiles biomédicaux." Thesis, Mulhouse, 2020. http://www.theses.fr/2020MULH2591.
Full textCardiovascular implants are increasingly used for the repair of vascular pathologies. Almost 300,000 heart valve replacements per year are performed around the world. Nowadays, the development of these implants become crucial. The objective of this research work is to develop high-performance bio-textile materials that can be used as medical implants by improving their bio-integration into the biological environment. In fact, following in vivo studies carried out at LPMT, fibroblasts proliferate on the surface of implants following an inflammatory reaction. When these cells proliferate in large quantities, they form a biological tissue that cause the dysfunction of the textile heart valve. Bibliographic studies demonstrate the sensitivity of these cells to topography. Therefore, the treatment consists in modifying the topography of the tissue by the projection of micro particles on the surface. This technique was developed by CRITT TJFU. This research work focuses on: i) the elementary study of the supercritical nitrogen jet interaction with the polymer surface, ii) the study of the physical characteristics evolution: particle speed, temperature of the jet as well as iii) the study of the jet interaction with the textile. Thus, under special processing conditions, the particles projected by the jet N2 SC generate craters on the surface of monofilament as well as multifilament fabric, allowing topographical modifications at the yarn scale. Our results showed a significant decrease in fibroblast proliferation with increasing textile roughness compared to untreated one. Moreover, the topography limits the inflammatory reaction on the multifilament fabrics
Learn, Greg Daniel. "Towards Development of Affinity Polymer-Based Adhesion Barriers for Surgical Mesh Devices." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1612871430445022.
Full textJindal, Aditya Jindal. "Electrospinning and Characterization of Polyisobutylene-based Thermoplastic Elastomeric Fiber Mats For Drug Release Application." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1512483246405986.
Full textMadaan, Puneet. "Texture analysis of PET scans as a tool for image quality assessment." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/2575.
Full textCarrier-Vallières, Martin. "FDG-PET/MR Imaging for prediction of lung metastases in soft-tissue sarcomas of the extremities by texture analysis and wavelet image fusion." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114330.
Full textLes sarcomes des tissus mous (STM) provenant des extrémités forment un groupe relativement rare de néoplasme avec un risque métastatique élevé. La grande majorité des métastases provenant des STM ont lieu dans les poumons, et le pronostique résultant est généralement faible. En ce sens, il est important d'identifier autant de facteurs pronostiques pertinents que possible au moment du diagnostique et de la gestion du traitement. Certains travaux récents ont permis de démontrer que les caractéristiques texturales d'images provenant de la tomographie par émission de positrons (TEP) utilisant le fluorodéoxyglucose (FDG) et l'imagerie par résonance magnétique (IRM) ont le potentiel de prédire l'évolution tumorale grâce à l'évaluation des propriétés d'hétérogénéité biologique des tumeurs. Donc, le but de ce travail est d'évaluer le potentiel des caractéristiques texturales d'images FDG-TEP et IRM en tant que prédicteur du risque de métastases aux poumons pour le cancer des STM provenant des extrémités. Dans cette étude, une cohorte de 35 patients diagnostiqués avec des STM aux extrémités a été rétrospectivement analysée. Tous les patients ont reçu un scan FDG-TEP et un scan IRM avant leur traitement. Les séquences IRM qui ont été utilisés dans l'analyse sont: T1, T2 par saturation des gras (T2FS) et STIR. Les patients ont été suivis sur une période médiane de 29 mois (intervalle: 4 à 85 mois). Treize patients de la cohorte ont développé des métastases aux poumons. Six caractéristiques texturales d'images provenant de la matrice de co-occurrence des niveaux de gris (GLCM) ont été extraites des scans FDG-PET, IRM et FDG-PET/IRM fusionnés. De plus, la valeur maximale de consommation standard des tumeurs (SUVmax) a été incluse dans l'analyse. La fusion des scans a été effectuée grâce à la transformée d'ondelettes discrètes et grâce à une technique de renforcement des fréquences passe-bandes. L'analyse statistique a été effectuée en utilisant la corrélation de Spearman (rho), et l'analyse multivariable en utilisant la régression logistique. Les performances de prédiction des différents modèles multivariables ont été évaluées en calculant 2 métriques à partir de la technique de ré-échantillonnage « bootstrap »: L'aire sous la courbe de fonctionnement (AUC) et le coefficient de corrélation de Matthews (MCC). La plus haute prédiction univariée est attribuée à SUVmax (rho=0.6382, p<0.0001). La plupart des caractéristiques texturales extraites des scans fusionnés possèdent des coefficients de corrélation Spearman plus haut que celles extraites des scans séparés. Dans le cas des scans séparés, les caractéristiques texturales provenant de FDG-TEP sont généralement dominantes par rapport à celles provenant des scans IRM. La plus haute prédiction multivariable est provenue des scans fusionnés avec le model suivant: 0.94*SUVmax − 0.401*PET-T2FS/STIR--Variance − 6.7*PET-T1--Contrast − 165*PET-T1--Homogeneity + 140. Ce model a atteint des résultats de rho=0.8255, p<0.0001 sur l'ensemble des patients et AUC=0.956±0.002, MCC=0.829±0.002 sur les ensembles de tests « bootstrap ». De façon générale, cette étude indique le fort potentiel des caractéristiques texturales provenant des images FDG-TEP et IRM pour prédire les métastases aux poumons dans le cas des patients atteints des STM aux extrémités. Une amélioration substantielle des prédictions a pu être obtenue en utilisant les caractéristiques texturales des scans fusionnés et des stratégies d'analyse multivariable comparativement aux caractéristiques texturales des scans séparés et à l'analyse univariée. Potentiellement, cela pourrait mener à l'application de stratégies préventives pour atténuer la propagation du cancer des STM et à l'application de traitements mieux adaptés aux besoins des patients.
Gossage, Kirk William. "Optical coherence tomography and texture analysis: Non-invasive monitoring of tissue responses to glaucoma implants." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/290030.
Full textBurch, David. "Development of a Multiple Contact Haptic Display with Texture-Enhanced Graphics." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2762.
Full textBooks on the topic "Biomedical textile"
library, Wiley online, ed. Plasma technology for hyperfunctional surfaces: Food, biomedical and textile applications. Weinheim: Wiley-VCH, 2010.
Find full textMin, Jie. Taiwan fang zhi chan ye ji shu yu ce: Yi yi liao fang zhi pin wei li = Technological forecasting of textiles in Taiwan : an example of medical textiles. Taibei Xian Tucheng Shi: Cai tuan fa ren fang zhi chan ye zong he yan jiu suo, 2009.
Find full textFunctional textiles for improved performance, protection and health. Cambridge: Woodhead, 2011.
Find full textFan, L. T. Medical textiles for implantation. [S.l.]: Springer, 2012.
Find full textInternational ITV Conference on Biomaterials (3rd 1989 Stuttgart, Germany). Medical textiles for implantation. Berlin: Springer-Verlag, 1990.
Find full textLangenhove, Lieva van. Advances in Smart Medical Textiles: Treatments and Health Monitoring. Elsevier Science & Technology, 2015.
Find full text1939-, Vigo Tyrone L., Turbak Albin F. 1929-, and American Chemical Society. Cellulose, Paper, and Textile Division., eds. High-tech fibrous materials: Composites, biomedical materials, protective clothing, and geotextiles. Washington, DC: American Chemical Society, 1991.
Find full text(Editor), Tyrone L. Vigo, and Albin F. Turbak (Editor), eds. High-Tech Fibrous Materials: Composites, Biomedical Materials, Protective Clothing, and Geotextiles (Acs Symposium Series). An American Chemical Society Publication, 1998.
Find full textMedicl Textiles and biomaterials for healthcare (Woodhead Publishing in Textiles). CRC, 2005.
Find full textPan, N., G. Sun, and Ning Pan. Functional Textiles for Improved Performance, Protection and Health. Elsevier Science & Technology, 2016.
Find full textBook chapters on the topic "Biomedical textile"
Walzer, Thomas, Christian Thies, Klaus Meier, and Natividad Martínez Madrid. "Textile Sensor Platform (TSP) - Development of a Textile Real-Time Electrocardiogram." In Bioinformatics and Biomedical Engineering, 359–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78759-6_33.
Full textWalzer, Thomas, Christian Thies, Klaus Meier, and Natividad Martínez Madrid. "Correction to: Textile Sensor Platform (TSP) - Development of a Textile Real-Time Electrocardiogram." In Bioinformatics and Biomedical Engineering, C1. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78759-6_42.
Full textShahriari Khalaji, Mina, and Ishaq Lugoloobi. "Biomedical Application of Cotton and Its Derivatives." In Textile Science and Clothing Technology, 393–416. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9169-3_16.
Full textSodhani, Deepanshu, R. Varun Raj, Jaan Simon, Stefanie Reese, Ricardo Moreira, Valentine Gesché, Stefan Jockenhoevel, Petra Mela, Bertram Stier, and Scott E. Stapleton. "Artificial Textile Reinforced Tubular Aortic Heart Valves—Multi-scale Modelling and Experimental Validation." In Biomedical Technology, 185–215. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59548-1_11.
Full textChiu, Wan-Ting, Tso-Fu Mark Chang, Hiromichi Kurosu, and Masato Sone. "Noble Metallic Pt Coating on Silk Textile by a Supercritical CO2-Promoted Metallization Technique towards Applications of Biocompatible Medical Wearable Devices." In Biomedical Engineering, 33–55. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141945-3.
Full textKim, Yong, and Honggang Wang. "Textile-Based Body Sensor Networks and Biomedical Computing for Healthcare Applications." In Handbook of Smart Textiles, 1–16. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4451-68-0_17-1.
Full textKim, Yong, and Honggang Wang. "Textile-Based Body Sensor Networks and Biomedical Computing for Healthcare Applications." In Handbook of Smart Textiles, 985–1004. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-4451-45-1_17.
Full textDuta, L., A. C. Popescu, G. Dorcioman, I. N. Mihailescu, G. E. Stan, I. Zgura, I. Enculescu, and I. Dumitrescu. "ZnO Thin Films Deposited on Textile Material Substrates for Biomedical Applications." In NATO Science for Peace and Security Series A: Chemistry and Biology, 207–10. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2488-4_20.
Full textBide, Martin, Matthew Phaneuf, Frank LoGerfo, William Quist, and Michael Szycher. "Arterial Grafts as Biomedical Textiles." In ACS Symposium Series, 125–54. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0792.ch009.
Full textPetrou, Maria. "Texture in Biomedical Images." In Biomedical Image Processing, 157–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15816-2_6.
Full textConference papers on the topic "Biomedical textile"
Selm, Barbel, and Martin Camenzind. "Flexible textile light diffuser for photodynamic therapy." In Biomedical Optics 2005, edited by Israel Gannot. SPIE, 2005. http://dx.doi.org/10.1117/12.610311.
Full textTakamatsu, Seiichi, and Toshihiro Itoh. "Mechanical characterization of biomedical electrode on knit textile." In 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). IEEE, 2016. http://dx.doi.org/10.1109/dtip.2016.7514836.
Full textBalaji, Pavithra, and R. Narmadha. "Wearable E-shaped Textile Antenna for Biomedical Telemetry." In 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE, 2021. http://dx.doi.org/10.1109/icaect49130.2021.9392465.
Full textHong, Youngtaek, Jinpil Tak, and Jaehoon Choi. "All textile antennas for self-monitoring biomedical applications (invited)." In 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO). IEEE, 2015. http://dx.doi.org/10.1109/imws-bio.2015.7303754.
Full text"TEXTILE CAPACITIVE ELECTROCARDIOGRAPHY FOR AN AUTOMOTIVE ENVIRONMENT." In International Conference on Biomedical Electronics and Devices. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003194504220425.
Full textMonti, Giuseppina, Emanuele Paiano, Federica Raheli, and Luciano Tarricone. "Bracelet Textile Electrodes for Bioimpedance Measurements." In 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). IEEE, 2022. http://dx.doi.org/10.1109/imbioc52515.2022.9790244.
Full textSoh, P. J., G. A. E. Vandenbosch, F. H. Wee, A. van den Bosch, M. Martinez-Vazquez, and D. M. M. P. Schreurs. "Specific Absorption Rate (SAR) evaluation of biomedical telemetry textile antennas." In 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013. IEEE, 2013. http://dx.doi.org/10.1109/mwsym.2013.6697587.
Full textCherif, N. H., N. Mezghani, N. Gaudreault, Y. Ouakrim, I. Mouzoune, and P. Boulay. "Physiological Data Validation of the Hexoskin Smart Textile." In 11th International Conference on Biomedical Electronics and Devices. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006588001500156.
Full textSoh, P. J., G. A. E. Vandenbosch, and D. M. M. P. Schreurs. "On-body characterization of textile antennas for biomedical health monitoring systems." In 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS). IEEE, 2013. http://dx.doi.org/10.1109/biowireless.2013.6613661.
Full textDaeli, Yoshi Magdalena, Levy Olivia Nur, and Radial Anwar. "Performance of Sewed Textile Antenna for Biomedical Application at ISM Band." In 2021 7th International Conference on Space Science and Communication (IconSpace). IEEE, 2021. http://dx.doi.org/10.1109/iconspace53224.2021.9768734.
Full text