Journal articles on the topic 'Biomedical Device Fabrication'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biomedical Device Fabrication.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shin, Yoo-Kyum, Yujin Shin, Jung Woo Lee, and Min-Ho Seo. "Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications." Biosensors 12, no. 11 (November 1, 2022): 952. http://dx.doi.org/10.3390/bios12110952.
Full textBais, Ashish Singh, Lokendra Singh Chouhan, and Joseph Thomas Andrews. "All Optical Integrated MOEMS Optical Coherence Tomography System." Journal of Physics: Conference Series 2426, no. 1 (February 1, 2023): 012024. http://dx.doi.org/10.1088/1742-6596/2426/1/012024.
Full textDey, D., and T. Goswami. "Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication." Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/348218.
Full textGiorleo, L., E. Ceretti, and C. Giardini. "Optimization of laser micromachining process for biomedical device fabrication." International Journal of Advanced Manufacturing Technology 82, no. 5-8 (June 27, 2015): 901–7. http://dx.doi.org/10.1007/s00170-015-7450-2.
Full textLi, Qiushi, Zhaoduo Tong, and Hongju Mao. "Microfluidic Based Organ-on-Chips and Biomedical Application." Biosensors 13, no. 4 (March 29, 2023): 436. http://dx.doi.org/10.3390/bios13040436.
Full textGarcia-Rey, Sandra, Jacob B. Nielsen, Gregory P. Nordin, Adam T. Woolley, Lourdes Basabe-Desmonts, and Fernando Benito-Lopez. "High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation." Polymers 14, no. 13 (June 22, 2022): 2537. http://dx.doi.org/10.3390/polym14132537.
Full textWu, Zhen-Lin, Ya-Nan Qi, Xiao-Jie Yin, Xin Yang, Chang-Ming Chen, Jing-Ying Yu, Jia-Chen Yu, et al. "Polymer-Based Device Fabrication and Applications Using Direct Laser Writing Technology." Polymers 11, no. 3 (March 22, 2019): 553. http://dx.doi.org/10.3390/polym11030553.
Full textButkutė, Agnė, Tomas Jurkšas, Tomas Baravykas, Bettina Leber, Greta Merkininkaitė, Rugilė Žilėnaitė, Deividas Čereška, et al. "Combined Femtosecond Laser Glass Microprocessing for Liver-on-Chip Device Fabrication." Materials 16, no. 6 (March 8, 2023): 2174. http://dx.doi.org/10.3390/ma16062174.
Full textElvira, Katherine S., Fabrice Gielen, Scott S. H. Tsai, and Adrian M. Nightingale. "Materials and methods for droplet microfluidic device fabrication." Lab on a Chip 22, no. 5 (2022): 859–75. http://dx.doi.org/10.1039/d1lc00836f.
Full textPerumal, Veeradasan, U. Hashim, and Tijjani Adam. "Mask Design and Simulation: Computer Aided Design for Lab-on-Chip Application." Advanced Materials Research 832 (November 2013): 84–88. http://dx.doi.org/10.4028/www.scientific.net/amr.832.84.
Full textTrinh, Kieu The Loan, Duc Anh Thai, and Nae Yoon Lee. "Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics." Micromachines 13, no. 9 (September 10, 2022): 1503. http://dx.doi.org/10.3390/mi13091503.
Full textMikhaylov, Roman, Fangda Wu, Hanlin Wang, Aled Clayton, Chao Sun, Zhihua Xie, Dongfang Liang, et al. "Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB." Lab on a Chip 20, no. 10 (2020): 1807–14. http://dx.doi.org/10.1039/c9lc01192g.
Full textKim, Kyunghun, Hocheon Yoo, and Eun Kwang Lee. "New Opportunities for Organic Semiconducting Polymers in Biomedical Applications." Polymers 14, no. 14 (July 21, 2022): 2960. http://dx.doi.org/10.3390/polym14142960.
Full textPolanco, Edward R., Justin Griffin, and Thomas A. Zangle. "Fabrication and Bonding of Refractive Index Matched Microfluidics for Precise Measurements of Cell Mass." Polymers 13, no. 4 (February 5, 2021): 496. http://dx.doi.org/10.3390/polym13040496.
Full textTahir, Usama, Young Bo Shim, Muhammad Ahmad Kamran, Doo-In Kim, and Myung Yung Jeong. "Nanofabrication Techniques: Challenges and Future Prospects." Journal of Nanoscience and Nanotechnology 21, no. 10 (October 1, 2021): 4981–5013. http://dx.doi.org/10.1166/jnn.2021.19327.
Full textS, Anil Subash, Manjunatha C, Ajit Khosla, R. Hari Krishna, and Ashoka S. "Current Progress in Materials, Device Fabrication, and Biomedical Applications of Potentiometric Sensor Devices: A Short Review." ECS Transactions 107, no. 1 (April 24, 2022): 6343–54. http://dx.doi.org/10.1149/10701.6343ecst.
Full textChen, Luyao, Xin Guo, Xidi Sun, Shuming Zhang, Jing Wu, Huiwen Yu, Tongju Zhang, Wen Cheng, Yi Shi, and Lijia Pan. "Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review." Micromachines 14, no. 3 (February 26, 2023): 547. http://dx.doi.org/10.3390/mi14030547.
Full textLin, Haisong, Yichao Zhao, Shuyu Lin, Bo Wang, Christopher Yeung, Xuanbing Cheng, Zhaoqing Wang, et al. "A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing." Lab on a Chip 19, no. 17 (2019): 2844–53. http://dx.doi.org/10.1039/c9lc00418a.
Full textChen, Ziyu, and Jeong-Bong Lee. "Biocompatibility of SU-8 and Its Biomedical Device Applications." Micromachines 12, no. 7 (July 4, 2021): 794. http://dx.doi.org/10.3390/mi12070794.
Full textSattayasoonthorn, Preedipat, Jackrit Suthakorn, and Sorayouth Chamnanvej. "On the feasibility of a liquid crystal polymer pressure sensor for intracranial pressure measurement." Biomedical Engineering / Biomedizinische Technik 64, no. 5 (September 25, 2019): 543–53. http://dx.doi.org/10.1515/bmt-2018-0029.
Full textAhangar, Pouyan, Megan E. Cooke, Michael H. Weber, and Derek H. Rosenzweig. "Current Biomedical Applications of 3D Printing and Additive Manufacturing." Applied Sciences 9, no. 8 (April 25, 2019): 1713. http://dx.doi.org/10.3390/app9081713.
Full textZhang, Haijian, Yanxiu Peng, Nuohan Zhang, Jian Yang, Yongtian Wang, and He Ding. "Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical Applications." Micromachines 13, no. 7 (July 4, 2022): 1069. http://dx.doi.org/10.3390/mi13071069.
Full textGalliani, Marina, Laura M. Ferrari, Guenaelle Bouet, David Eglin, and Esma Ismailova. "Tailoring inkjet-printed PEDOT:PSS composition toward green, wearable device fabrication." APL Bioengineering 7, no. 1 (March 1, 2023): 016101. http://dx.doi.org/10.1063/5.0117278.
Full textAbd Rahman, Siti Fatimah, Nor Azah Yusof, Mohd Khairuddin Md Arshad, Uda Hashim, Mohammad Nuzaihan Md Nor, and Mohd Nizar Hamidon. "Fabrication of Silicon Nanowire Sensors for Highly Sensitive pH and DNA Hybridization Detection." Nanomaterials 12, no. 15 (August 2, 2022): 2652. http://dx.doi.org/10.3390/nano12152652.
Full textLee, Jaeseok, and Minseok Kim. "Polymeric Microfluidic Devices Fabricated Using Epoxy Resin for Chemically Demanding and Day-Long Experiments." Biosensors 12, no. 10 (October 7, 2022): 838. http://dx.doi.org/10.3390/bios12100838.
Full textSundriyal, Poonam. "(Digital Presentation) 3D Printing and Laser for Fabrication and Interface Modification of Origami-Inspired Dielectric Elastomer Actuators." ECS Meeting Abstracts MA2022-01, no. 18 (July 7, 2022): 1044. http://dx.doi.org/10.1149/ma2022-01181044mtgabs.
Full textShakeri, Amid, Shadman Khan, Noor Abu Jarad, and Tohid F. Didar. "The Fabrication and Bonding of Thermoplastic Microfluidics: A Review." Materials 15, no. 18 (September 18, 2022): 6478. http://dx.doi.org/10.3390/ma15186478.
Full textKong, David S., Todd A. Thorsen, Jonathan Babb, Scott T. Wick, Jeremy J. Gam, Ron Weiss, and Peter A. Carr. "Open-source, community-driven microfluidics with Metafluidics." Nature Biotechnology 35, no. 6 (June 2017): 523–29. http://dx.doi.org/10.1038/nbt.3873.
Full textAhmad, Muneer, Yongho Seo, and Young Jin Choi. "Nanographene device fabrication using atomic force microscope." Micro & Nano Letters 8, no. 8 (August 2013): 422–25. http://dx.doi.org/10.1049/mnl.2013.0199.
Full textWei, Zhihuan, Zhongying Xue, and Qinglei Guo. "Recent Progress on Bioresorbable Passive Electronic Devices and Systems." Micromachines 12, no. 6 (May 22, 2021): 600. http://dx.doi.org/10.3390/mi12060600.
Full textWang, Chua-Chin, Lean Karlo S. Tolentino, Pin-Chuan Chen, John Richard E. Hizon, Chung-Kun Yen, Cheng-Tang Pan, and Ya-Hsin Hsueh. "A 40-nm CMOS Piezoelectric Energy Harvesting IC for Wearable Biomedical Applications." Electronics 10, no. 6 (March 11, 2021): 649. http://dx.doi.org/10.3390/electronics10060649.
Full textCai, Zhongyu, Yong Wan, Matthew L. Becker, Yun-Ze Long, and David Dean. "Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications." Biomaterials 208 (July 2019): 45–71. http://dx.doi.org/10.1016/j.biomaterials.2019.03.038.
Full textBarbosa, Rita Clarisse Silva, and Paulo M. Mendes. "A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications." Sensors 22, no. 23 (December 6, 2022): 9541. http://dx.doi.org/10.3390/s22239541.
Full textMonserrat Lopez, Diego, Philipp Rottmann, Martin Fussenegger, and Emanuel Lörtscher. "Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation." Micromachines 14, no. 7 (June 23, 2023): 1289. http://dx.doi.org/10.3390/mi14071289.
Full textLi, Rongfeng, Liu Wang, and Lan Yin. "Materials and Devices for Biodegradable and Soft Biomedical Electronics." Materials 11, no. 11 (October 26, 2018): 2108. http://dx.doi.org/10.3390/ma11112108.
Full textKim, Jueun, Su A. Park, Jei Kim, and Jaejong Lee. "Fabrication and Characterization of Bioresorbable Drug-coated Porous Scaffolds for Vascular Tissue Engineering." Materials 12, no. 9 (May 2, 2019): 1438. http://dx.doi.org/10.3390/ma12091438.
Full textSharma Rao, Balakrishnan, and U. Hashim. "Microfluidic Photomask Design Using CAD Software for Application in Lab-On-Chip Biomedical Nanodiagnostics." Advanced Materials Research 795 (September 2013): 388–92. http://dx.doi.org/10.4028/www.scientific.net/amr.795.388.
Full textBokka, Naveen, Venkatarao Selamneni, Vivek Adepu, Sandeep Jajjara, and Parikshit Sahatiya. "Water soluble flexible and wearable electronic devices: a review." Flexible and Printed Electronics 6, no. 4 (December 1, 2021): 043006. http://dx.doi.org/10.1088/2058-8585/ac3c35.
Full textMurali, M., and S. H. Yeo. "Rapid Biocompatible Micro Device Fabrication by Micro Electro-Discharge Machining." Biomedical Microdevices 6, no. 1 (March 2004): 41–45. http://dx.doi.org/10.1023/b:bmmd.0000013364.71148.51.
Full textAn, Seongpil, Dong Jin Kang, and Alexander L. Yarin. "A blister-like soft nano-textured thermo-pneumatic actuator as an artificial muscle." Nanoscale 10, no. 35 (2018): 16591–600. http://dx.doi.org/10.1039/c8nr04181d.
Full textMalic, L., X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, et al. "Polymer-based microfluidic chip for rapid and efficient immunomagnetic capture and release of Listeria monocytogenes." Lab on a Chip 15, no. 20 (2015): 3994–4007. http://dx.doi.org/10.1039/c5lc00852b.
Full textPezzuoli, Denise, Elena Angeli, Diego Repetto, Patrizia Guida, Giuseppe Firpo, and Luca Repetto. "Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach." Nanomaterials 9, no. 12 (November 25, 2019): 1678. http://dx.doi.org/10.3390/nano9121678.
Full textMokkapati, V. R. S. S., V. Di Virgilio, C. Shen, J. Mollinger, J. Bastemeijer, and A. Bossche. "DNA tracking within a nanochannel: device fabrication and experiments." Lab on a Chip 11, no. 16 (2011): 2711. http://dx.doi.org/10.1039/c1lc20075e.
Full textSahraeibelverdi, Tayebeh, L. Jay Guo, Hadi Veladi, and Mazdak Rad Malekshahi. "Polymer Ring Resonator with a Partially Tapered Waveguide for Biomedical Sensing: Computational Study." Sensors 21, no. 15 (July 23, 2021): 5017. http://dx.doi.org/10.3390/s21155017.
Full textZahiruddin, Syed, Avireni Srinivasulu, and Musala Sarada. "A Novel FSK Generator Using a Second Generation Current Controlled Conveyor." Nanoscience & Nanotechnology-Asia 10, no. 6 (November 30, 2020): 902–8. http://dx.doi.org/10.2174/2210681209666191116121454.
Full textMooney, D. J., G. Organ, J. P. Vacanti, and R. Langer. "Design and Fabrication of Biodegradable Polymer Devices to Engineer Tubular Tissues." Cell Transplantation 3, no. 2 (March 1994): 203–10. http://dx.doi.org/10.1177/096368979400300209.
Full textKumar, Ashwani, K. L. Singh, and S. K. Tripathi. "Effect on Morphology and Optical Properties of Inorganic and Hybrid Perovskite Semiconductor Thin Films Fabricated Layer by Layer." Journal of Nanoscience and Nanotechnology 20, no. 6 (June 1, 2020): 3832–38. http://dx.doi.org/10.1166/jnn.2020.17493.
Full textNaderi, Arman, Nirveek Bhattacharjee, and Albert Folch. "Digital Manufacturing for Microfluidics." Annual Review of Biomedical Engineering 21, no. 1 (June 4, 2019): 325–64. http://dx.doi.org/10.1146/annurev-bioeng-092618-020341.
Full textZhang, Q., Y. J. Shin, F. Hua, L. V. Saraf, and D. W. Matson. "Fabrication of Transparent Capacitive Structure by Self-Assembled Thin Films." Journal of Nanoscience and Nanotechnology 8, no. 6 (June 1, 2008): 3008–12. http://dx.doi.org/10.1166/jnn.2008.075.
Full textTavakoli, Javad, Colin L. Raston, and Youhong Tang. "Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device." Molecules 25, no. 15 (July 29, 2020): 3445. http://dx.doi.org/10.3390/molecules25153445.
Full text