Academic literature on the topic 'Biomedical and Physiological Monitoring'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomedical and Physiological Monitoring.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biomedical and Physiological Monitoring"
Ansermino, J. Mark, Stephan K. W. Schwarz, Guy A. Dumont, Chris Brouse, Yang Ping, Joanne Lim, Dustin Dunsmuir, and Jeremy Daniels. "Clinical decision support in physiological monitoring." International Journal of Biomedical Engineering and Technology 3, no. 3/4 (2010): 264. http://dx.doi.org/10.1504/ijbet.2010.032696.
Full textPalumbo, Arrigo, Patrizia Vizza, Barbara Calabrese, and Nicola Ielpo. "Biopotential Signal Monitoring Systems in Rehabilitation: A Review." Sensors 21, no. 21 (October 28, 2021): 7172. http://dx.doi.org/10.3390/s21217172.
Full textSohmyung Ha, Chul Kim, Yu M. Chi, Abraham Akinin, Christoph Maier, Akinori Ueno, and Gert Cauwenberghs. "Integrated Circuits and Electrode Interfaces for Noninvasive Physiological Monitoring." IEEE Transactions on Biomedical Engineering 61, no. 5 (May 2014): 1522–37. http://dx.doi.org/10.1109/tbme.2014.2308552.
Full textGirija, C., and M. N. Sivakumar. "Determination of Physiological Parameters using Biomedical Monitoring System based on Labview FPGA." Research Journal of Pharmacy and Technology 11, no. 9 (2018): 4021. http://dx.doi.org/10.5958/0974-360x.2018.00739.4.
Full textNocera, Antonio, Agnese Sbrollini, Sofia Romagnoli, Micaela Morettini, Ennio Gambi, and Laura Burattini. "Physiological and Biomechanical Monitoring in American Football Players: A Scoping Review." Sensors 23, no. 7 (March 28, 2023): 3538. http://dx.doi.org/10.3390/s23073538.
Full textTomasevic, Olivera, Luka Mejic, Darko Stanisic, Vojin Ilic, and Filip Gasparic. "A portable device for physiological measurements in biomedical engineering education." Serbian Journal of Electrical Engineering 16, no. 1 (2019): 55–70. http://dx.doi.org/10.2298/sjee1901055t.
Full textScully, C. G., Jinseok Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon. "Physiological Parameter Monitoring from Optical Recordings With a Mobile Phone." IEEE Transactions on Biomedical Engineering 59, no. 2 (February 2012): 303–6. http://dx.doi.org/10.1109/tbme.2011.2163157.
Full textHarris, N. D., S. B. Baykouchev, J. L. B. Marques, T. Cochrane, E. George, S. R. Heller, and J. D. Ward. "A portable system for monitoring physiological responses to hypoglycaemia." Journal of Medical Engineering & Technology 20, no. 6 (January 1996): 196–202. http://dx.doi.org/10.3109/03091909609008998.
Full textLim, Yong Gyu, Ki Hwan Hong, Ko Keun Kim, Jae Hyuk Shin, Seung Min Lee, Gih Sung Chung, Hyun Jae Baek, Do-Un Jeong, and Kwang Suk Park. "Monitoring physiological signals using nonintrusive sensors installed in daily life equipment." Biomedical Engineering Letters 1, no. 1 (February 2011): 11–20. http://dx.doi.org/10.1007/s13534-011-0012-0.
Full textZheng, Wenfeng, Mingzhe Liu, Chao Liu, Dan Wang, and Kenan Li. "Recent Advances in Sensor Technology for Healthcare and Biomedical Applications (Volume II)." Sensors 23, no. 13 (June 27, 2023): 5949. http://dx.doi.org/10.3390/s23135949.
Full textDissertations / Theses on the topic "Biomedical and Physiological Monitoring"
Cross, Carl Brady. "An Investigation of Thermal Imaging to Detect Physiological Indicators of Stress in Humans." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1369317509.
Full textShah, Syed Ahmar. "Vital sign monitoring and data fusion for paediatric triage." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:80ae66e3-849b-4df1-b064-f9eb7530200d.
Full textBerelowitz, Jonathan. "The development of a neonatal vital signs database." Master's thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/26607.
Full textWoodward, Richard. "Pervasive motion tracking and physiological monitoring." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/28240.
Full textAL-Ramadan, Aymen. "Evaluating Bluetooth Radio for Physiological Monitoring." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-39717.
Full textMiller, Catherine Susan. "Monitoring of biomedical research in Canada." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ60050.pdf.
Full textRademeyer, A. J. "Wireless physiological monitoring system for psychiatric patients." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/3011.
Full textThis thesis is concerned with the development and testing of a non-invasive device that is unassailable, and can be placed on an aggressive psychiatric patient to monitor the vital signs of this patient. Two devices, a glove measuring oxygen saturation and another on the dorsal part (back) of the patient measuring heart rate via electrocardiography (ECG), skin temperature and respiratory rate were designed and implemented. The data is transmitted using wireless technology. Both devices connect to one central monitoring station using two separate Bluetooth connections ensuring a total wireless setup. All the hardware and software to measure these variables have been designed and implemented. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototype was manufactured and tested in a laboratory setting on five volunteers. Satisfactory test results were obtained and the primary objectives of the thesis were fulfilled
Moreira, Ricardo Jorge Arada Borges. "BeMonitored: psycho-physiological monitoring using mobile devices." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12245.
Full textThe daily life in modern societies has a high impact in individuals. Long-term stress, changes, traumas and life experiences are some of environmental factors that lead to the development of anxiety disorders. Anxiety disorders affects many people in their daily lives, since they may lead to social isolation, clinical depression, and can impair a person’s ability to work, study and routine activities. Nevertheless, there are many effective therapies available for such disease, sufferers do not seek for treatment, because they underestimate the problem, the treatments duration, cost or difficult in access. In result, it is of the utmost importance that researchers can recreate, as accurately as possible, real life conditions in psychological studies. However, that is not always possible. Recent improvements in sensors technology make then a straightforward solution to gather physiological data. However, their standalone use is quite limited. Nevertheless, combining those sensors with a Smartphone creates an independent solution that without any more requirements has an enormous potential, due to the advanced computing power and connectivity features available. In this dissertation it is proposed the BeMonitored, a Smartphone based solution to support more ecological valid monitoring of psychological experiments. BeMonitored delivers customizable specific context dependent audio-visual stimuli and using external resources connected via Bluetooth or Smartphone own resources (camera, gps), is able to capture the subject’s behavior, physiology and environment. As a proof of concept, BeMonitored was tested in a spider phobia population, where it was found that spider phobic was separated from control subjects using solely the face motion captured with the Smartphone camera. Also, heart rate differences were found between spider and neutral stimuli. Although current study focused only on spider phobia, the results support the validity and the potential of using BeMonitored in other phobias related, especially in cognitive behavioral therapy (CBT) scenarios, either for assessment of the phobia “stage” or to deliver a stepwise sequence of video stimuli according to accepted psychology guidelines.
O dia a dia nas sociedades modernas, tem um grande impacto nos indivíduos. O stress continuado, mudanças, traumas e as experiências de vida, são alguns dos fatores ambientais que potenciam o desenvolvimento de doenças de ansiedade. Este tipo de doenças podem conduzir ao isolamento social, a depressões, à diminuição da capacidade de trabalhar, estudar ou executar tarefas do quotidiano. Apesar de existirem inúmeras terapias eficazes no tratamento deste tipo de doenças, os sofredores, não procuram tratamento, ou por desvalorizarem o problema, ou devido à duração e custo associado ou pelo difícil acesso. Deste modo, é da extrema importância que os investigadores consigam recriar as condições da vida real no estudo de doenças do foro psicológico.Contudo, tal nem sempre é possível. As recentes evoluções ao nível dos sensores biomédicos fazem deles uma solução simples para adquirir sinais biológicos. Contudo, o seu uso isolado é de certa forma limitado. Por outro lado, combinando estes sensores com um Smartphone, criamos uma solução independente, com enorme potencial, devido ao avançado poder computacional e conectividade destes dispositivos. Nesta dissertação propomos o sistema BeMonitored: uma solução baseada em Smartphone para suportar um estudo ecologicamente válido a nível da monitorização de doenças do foro psicológico. BeMonitored é uma solução que permite expor os sujeitos a um estímulo audiovisual configurável, que usando sensores biomédicos ligados por Bluetooth ao Smartphone, juntamente com os seus recursos de hardware (ex: câmera, GPS), é capaz de adquirir o comportamento e a fisiologia dos sujeitos, bem como o contexto envolvente. Como prova de conceito, o BeMonitored foi testado num estudo de fobia a aranhas, onde foi possível obter resultados que nos permitem separar os sujeitos fóbicos dos sujeitos de controlo usando apenas o movimento facial capturado com a camara do smartphone. Encontraram-se também diferenças na frequência cardiaca entre os segmentos de vídeo com aranhas e neutros. Apesar do estudo ser focado nas fobias a aranhas, os resultados obtidos confirmam a validade e o potencial de utilização do BeMonitored em outras fobias, bem como em cenários de terapia cognitivo-comportamental(CBT), quer para a avaliação do nível de fobia quer na exposição gradual de estímulos de video de acordo com as directizes aceites na área da psicologia.
Punter, Villagrasa Jaime. "Bioimpedance monitoring system for pervasive biomedical applications." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396086.
Full textL’objectiu de la tesi és la realització d’equipaments electrònics per aplicacions biomèdiques de caràcter Poin-of-Care en entorns d’investigació, control i tractament clínic. Aquest projecte es troba en el marc de les activitats de recerca del grup, on el desenvolupament d’electròniques d’interface amb el mon biomèdic i la recerca de noves tecnologies i aplicacions d’instrumentació són unes de les principals tasques que porten a terme. Donades aquestes consideracions, a l’últim any s’ha definit un camí dintre dels sistemes d’instrumentació PoC orientats al control d’agents biològics cel·lulars amb tècniques d’anàlisi d’impedància. Aquests dispositius estan basats en dos conceptes claus: el disseny d’instrumentació electrònica senzilla, econòmica i de baix consum, així com sistemes de sensat versàtils i d’un sol us. D’aquesta manera, és possible desenvolupar equipaments versàtils, portables i de baix cost que poden aportar gran rendiment en diferents camps de la biomedicina. Amb aquestes premisses, s’ha desenvolupat un equipament d’anàlisi d’impedància independent del sistema de sensat, el que comporta la possibilitat d’utilitzar multitud de tipus de sistemes de sensat. Aquest equipament, consta d’una senzilla instrumentació electrònica basada en un sistema de sensat preparat per diferents tipus de sensors, tot controlat per un microprocessador encarregat del control automatitzat del hardware, post-processat de dades i comunicació amb un ordinador remot. El sistema és capaç de treballar en un rang de freqüències molt ampli, amb diferent tipus de potència de senyal i diferent tipus d’anàlisi i representació, com ara Electrochemical Impedance Spectroscopy (EIS) amb representació amb diagrames de Bode i Nyquist, o la selecció de punts de freqüencials concrets per un tipus d’anàlisi més específic per a un experiment biomèdic més concret, senzill i ràpid. Es tracta d’un equipament econòmic, fiable i senzill per l’anàlisi d’hematòcrit, que aporta avenços com la gran capacitat d’integració en ambients clínics, la possibilitat de fer un control medico sanitari instantani i reportar telemàticament els resultats o la possibilitat d’implementar un sistema de control mèdic integrat i automatitzat.
Cunningham, Steven. "Computerised physiological trend monitoring in neonatal intensive care." Thesis, University of Edinburgh, 1995. http://hdl.handle.net/1842/26422.
Full textBooks on the topic "Biomedical and Physiological Monitoring"
Togawa, Tatsuo. Biomedical sensors and instruments. 2nd ed. Boca Raton: CRC Press, 2011.
Find full textHandbook of biomedical instrumentation. New Delhi: Tata McGraw-Hill, 1987.
Find full textPrinciples of biomedical instrumentation and measurement. Columbus: Merrill Pub. Co., 1990.
Find full text1942-, Schmid Rolf, and Guilbault George G, eds. Biosensors International Workshop 1987. Weinheim, Federal Republic of Germany: VCH, 1987.
Find full textQingjun, Liu, and SpringerLink (Online service), eds. Biomedical Sensors and Measurement. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textservice), SpringerLink (Online, ed. Pervasive Healthcare Computing: EMR/EHR, Wireless and Health Monitoring. Boston, MA: Springer-Verlag US, 2009.
Find full textUnited States. National Aeronautics and Space Administration., ed. Space Station Freedom biomedical monitoring and countermeasures: Biomedical facility hardware catalog. [Washington, DC: National Aeronautics and Space Administration, 1990.
Find full textAgeing, a biomedical perspective. Chichester: John Wiley & Sons, 1995.
Find full textA, Atherton M., Collins M. W, and Dayer M. J, eds. Repair and redesign of physiological systems. Southampton: WIT, 2008.
Find full textA, Atherton M., Collins M. W, and Dayer M. J, eds. Repair and redesign of physiological systems. Southampton: WIT, 2008.
Find full textBook chapters on the topic "Biomedical and Physiological Monitoring"
Splinter, Robert. "The Physics of Nanosensor Systems in Medicine and the Development of Physiological Monitoring Equipment." In Computational Approaches in Biomedical Nano-Engineering, 89–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527344758.ch4.
Full textPostolache, Octavian, Pedro Silva Girão, Eduardo Pinheiro, and Gabriela Postolache. "Unobtrusive and Non-invasive Sensing Solutions for On-Line Physiological Parameters Monitoring." In Wearable and Autonomous Biomedical Devices and Systems for Smart Environment, 277–314. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15687-8_15.
Full textGardner, Reed M., Terry P. Clemmer, R. Scott Evans, and Roger G. Mark. "Patient Monitoring Systems." In Biomedical Informatics, 561–91. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4474-8_19.
Full textHerasevich, Vitaly, Brian W. Pickering, Terry P. Clemmer, and Roger G. Mark. "Patient Monitoring Systems." In Biomedical Informatics, 693–732. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58721-5_21.
Full textButlin, Mark, Isabella Tan, Edward Barin, and Alberto P. Avolio. "Non-invasive physiological monitoring." In Interventional Cardiology and Cardiac Catheterisation, 11–20. Second edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] | Preceded by Cardiology and cardiac catheterisation : the essential guide / edited by John Boland and David W.M. Muller. 2001.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351060356-2.
Full textMagder, Sheldon. "Physiological Aspects of Arterial Blood Pressure." In Cardiopulmonary Monitoring, 107–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73387-2_8.
Full textKaniusas, Eugenijus. "Physiological and Functional Basis." In Biomedical Signals and Sensors I, 27–181. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24843-6_2.
Full textKaniusas, Eugenijus. "Physiological Phenomena and Biosignals." In Biomedical Signals and Sensors I, 183–282. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24843-6_3.
Full textBergis, Benjamin, Anatole Harrois, and Jacques Duranteau. "Microcirculation: Physiological Background." In Advanced Hemodynamic Monitoring: Basics and New Horizons, 173–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71752-0_18.
Full textLebedinskii, Konstantin M. "Pressure: Physiological Background." In Advanced Hemodynamic Monitoring: Basics and New Horizons, 3–9. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71752-0_1.
Full textConference papers on the topic "Biomedical and Physiological Monitoring"
Brothers, Michael, and Steve Kim. "Electrochemical sensing platforms towards physiological monitoring (Conference Presentation)." In Smart Biomedical and Physiological Sensor Technology XVI, edited by Brian M. Cullum, Eric S. McLamore, and Douglas Kiehl. SPIE, 2019. http://dx.doi.org/10.1117/12.2520234.
Full textEsenaliev, R. O., Y. Y. Petrov, I. Y. Petrova, and D. S. Prough. "Noninvasive Optoacoustic Monitoring of Multiple Physiological Parameters: Clinical Studies." In Biomedical Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/biomed.2010.btuf9.
Full textCoppock, Matthew B., and Dimitra N. Stratis-Cullum. "Ruggedized peptide receptors for soldier health and performance monitoring." In Smart Biomedical and Physiological Sensor Technology XVI, edited by Brian M. Cullum, Eric S. McLamore, and Douglas Kiehl. SPIE, 2019. http://dx.doi.org/10.1117/12.2518631.
Full textRudolph, Melanie, Jonathan Harris, and Erin L. Ratcliff. "Predicting limits of detection in real-time sweat-based human performance monitoring." In Smart Biomedical and Physiological Sensor Technology XVI, edited by Brian M. Cullum, Eric S. McLamore, and Douglas Kiehl. SPIE, 2019. http://dx.doi.org/10.1117/12.2518885.
Full textAura, Christopher, Leonard A. Temme, Paul M. St. Onge, Aaron M. McAtee, Michael Wilson, Bobby Bowers, Kevin M. Baugher, and Amanda Hayes. "Operator state monitoring via pupilometry: measuring mental workload under varying luminance conditions." In Smart Biomedical and Physiological Sensor Technology XVIII, edited by Brian M. Cullum, Eric S. McLamore, and Douglas Kiehl. SPIE, 2021. http://dx.doi.org/10.1117/12.2585989.
Full textAlam, Fahmida, Muhammad M. Hasan, Masudur R. Siddiquee, Shahrzad Forouzanfar, Ahmed H. Jalal, and Nezih Pala. "Miniaturized, wireless multi-channel potentiostat platform for wearable sensing and monitoring applications." In Smart Biomedical and Physiological Sensor Technology XVIII, edited by Brian M. Cullum, Eric S. McLamore, and Douglas Kiehl. SPIE, 2021. http://dx.doi.org/10.1117/12.2587955.
Full textAlam, Fahmida, Ahmed H. Jalal, Shahrzad Forouzanfar, Muhammad M. Hasan, and Nezih Pala. "Thin-film nanostructure-based enzymatic alcohol sensor for wearable sensing and monitoring applications." In Smart Biomedical and Physiological Sensor Technology XVIII, edited by Brian M. Cullum, Eric S. McLamore, and Douglas Kiehl. SPIE, 2021. http://dx.doi.org/10.1117/12.2587808.
Full textHasan, Muhammad M., Anthony Perez-Pinon, and Nezih Pala. "Bandage compatible chipless RFID pH sensor for chronic wound monitoring using chitosan in the ISM frequency band." In Smart Biomedical and Physiological Sensor Technology XX, edited by Brian M. Cullum, Eric S. McLamore, and Douglas Kiehl. SPIE, 2023. http://dx.doi.org/10.1117/12.2666014.
Full textDorshow, Richard B., Joseph E. Bugaj, Samuel I. Achilefu, Raghavan Rajagopalan, and Arthur H. Combs. "Monitoring physiological function by detection of exogenous fluorescent contrast agents." In BiOS '99 International Biomedical Optics Symposium, edited by Alexander V. Priezzhev and Toshimitsu Asakura. SPIE, 1999. http://dx.doi.org/10.1117/12.348383.
Full textMourant, Judith R., Andreas H. Hielscher, Heather D. Miller, and John S. George. "Broadband monitoring of physiological changes with a continuous light tissue spectrometer." In Biomedical Optical Spectroscopy and Diagnostics. Washington, D.C.: Optica Publishing Group, 2006. http://dx.doi.org/10.1364/bosd.1996.sp5.
Full textReports on the topic "Biomedical and Physiological Monitoring"
Tyack, Peter L., Andreas Fahlman, Michael Moore, Warren Zapol, and Richard Anderson. Physiological Monitoring in Diving Mammals. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada541814.
Full textFahlman, Andreas, Peter L. Tyack, Michael Moore, Warren Zapol, Richard Anderson, and Steve Trumble. Physiological Monitoring in Diving Mammals. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada573474.
Full textFahlman, Andreas, Peter L. Tyack, Michael Moore, Warren Zapol, Richard Anderson, and Steve Trumble. Physiological Monitoring in Diving Mammals. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598516.
Full textTyack, Peter L., Andreas Fahlman, Michael Moore, Warren Zapol, and Richard Anderson. Physiological Monitoring in Diving Mammals. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada598816.
Full textTyack, Peter L., Andreas Fahlman, Michael Moore, Warren Zapol, and Richard Anderson. Physiological Monitoring in Diving Mammals. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada551257.
Full textFahlman, Andreas, Peter L. Tyack, Michael Moore, Warren Zapol, Richard Anderson, and Steve Trumble. Physiological Monitoring in Diving Mammals. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada617976.
Full textWiederhold, Mark D. Physiological Monitoring During Simulation Training and Testing. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada436158.
Full textAnderson, R. B., J. S. Johnson, S. R. Burastero, and O. Gilmore. Practical Physiological Monitoring Protocol for Heat Strain Control. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/15004547.
Full textLittlefield, Richard J. Real-Time 3D Ultrasound for Physiological Monitoring 22258. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada373262.
Full textChon, Ki, and Yitzhak Mendelson. Wearable Wireless Sensor for Multi-Scale Physiological Monitoring. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada590832.
Full text