Academic literature on the topic 'Biomaterials platform'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomaterials platform.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biomaterials platform"

1

Okulov, I. V., A. V. Okulov, I. V. Soldatov, B. Luthringer, R. Willumeit-Römer, T. Wada, H. Kato, J. Weissmüller, and J. Markmann. "Open porous dealloying-based biomaterials as a novel biomaterial platform." Materials Science and Engineering: C 88 (July 2018): 95–103. http://dx.doi.org/10.1016/j.msec.2018.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nurzynska, Aleksandra, Katarzyna Klimek, Iga Swierzycka, Krzysztof Palka, and Grazyna Ginalska. "Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment." Polymers 12, no. 9 (August 23, 2020): 1893. http://dx.doi.org/10.3390/polym12091893.

Full text
Abstract:
Bacterial infections at the wound site still remain a huge problem for current medicine, as they may lead to development of chronic wounds. In order to prevent such infections, there is a need to use wound dressings that possess ability to inhibit bacterial colonization. In this study, three new curdlan-based biomaterials modified with copper ions were fabricated via simple and inexpensive procedure, and their structural, physicochemical, and biological properties in vitro were evaluated. Received biomaterials possessed porous structure, had ability to absorb high amount of simulated wound fluid, and importantly, they exhibited satisfactory antibacterial properties. Nevertheless, taking into account all evaluated properties of new curdlan-based biomaterials, it seems that Cur_Cu_8% is the most promising biomaterial for management of wounds accompanied with bacterial infections. This biomaterial exhibited the best ability to reduce Escherichia coli and Staphylococcus aureus growth and moreover, it absorbed the highest amount of simulated wound fluid as well as enabled optimal water vapor transmission. Furthermore, Cur_Cu_8% biomaterial possessed the best values of selective indexes, which determine its potential safety in vitro. Thus, Cur_Cu_8% hydrogel may be considered as a promising candidate for management of infected wounds as well as it may constitute a good platform for further modifications.
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Kijun, Yeontaek Lee, and Jungmok Seo. "Recent Advances in High-throughput Platforms with Engineered Biomaterial Microarrays for Screening of Cell and Tissue Behavior." Current Pharmaceutical Design 24, no. 45 (April 16, 2019): 5458–70. http://dx.doi.org/10.2174/1381612825666190207093438.

Full text
Abstract:
In the last decades, bioengineers have developed myriad biomaterials for regenerative medicine. Development of screening techniques is essential for understanding complex behavior of cells in the biological microenvironments. Conventional approaches to the screening of cellular behavior in vitro have limitations in terms of accuracy, reusability, labor-intensive screening, and versatility. Thus, drug screening and toxicology test through in vitro screening platforms have been underwhelming. Recent advances in the high-throughput screening platforms somewhat overcome the limitations of in vitro screening platforms via repopulating human tissues’ biophysical and biomchemical microenvironments with the ability to continuous monitoring of miniaturized human tissue behavior. Herein, we review current trends in the screening platform in which a high-throughput system composed of engineered microarray devices is developed to investigate cell-biomaterial interaction. Furthermore, diverse methods to achieve continuous monitoring of cell behavior via developments of biosensor integrated high-throughput platforms, and future perspectives on high-throughput screening will be provided.
APA, Harvard, Vancouver, ISO, and other styles
4

Guzzi, Elia A., Giovanni Bovone, and Mark W. Tibbitt. "Universal Nanocarrier Ink Platform for Biomaterials Additive Manufacturing." Small 15, no. 51 (November 25, 2019): 1905421. http://dx.doi.org/10.1002/smll.201905421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jayasinghe, Suwan N., Jensen Auguste, and Chris J. Scotton. "Platform Technologies for Directly Reconstructing 3D Living Biomaterials." Advanced Materials 27, no. 47 (October 28, 2015): 7794–99. http://dx.doi.org/10.1002/adma.201503001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Xiao, Jasper Z. Williams, Ryan Chang, Zhongbo Li, Eric Gai, David M. Patterson, Yu Wei, Wendell A. Lim, and Tejal Desai. "DNA-scaffolded biomaterials enable modular and tunable presentation of proteins to control immune cell therapies." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 86.19. http://dx.doi.org/10.4049/jimmunol.204.supp.86.19.

Full text
Abstract:
Abstract Advanced biomaterials can be used to spatially and temporally control immune cell activities to improve the efficacy and safety of cell therapies. Precise immune cell modulation demands multi-modal display of functional proteins on biomaterials with a high level of control. Here, we developed biodegradable immune cell engaging particles (ICEp) with synthetic short DNA as scaffolds for efficient and tunable protein loading. We demonstrate the precise ratiometric control of anti-CD3 and anti-CD28 antibodies on this biodegradable platform can impact the quality of ex vivo expanded human primary T cells. Furthermore, the high-density presentation of antigens, difficult to achieve by other chemistries, is necessary for controlling the activity of engineered T cells in vivo. Antigen-presenting ICEp injected intratumorally can provide a local priming signal for systemically administered AND-gate chimeric antigen receptor (CAR) T cells that recognize dual antigens: the first antigen on ICEp activates CAR expression to target the second antigen on tumor cells. This leads to local tumor clearance while sparing uninjected tumors that model potentially cross-reactive healthy tissues. This modularly functionalized biomaterial thus provides a flexible platform to achieve sophisticated control of cell-based immunotherapies.
APA, Harvard, Vancouver, ISO, and other styles
7

Houston, Katelyn R., Sarah M. Brosnan, Laurel M. Burk, Yueh Z. Lee, J. C. Luft, and Valerie S. Ashby. "Iodinated polyesters as a versatile platform for radiopaque biomaterials." Journal of Polymer Science Part A: Polymer Chemistry 55, no. 13 (May 2, 2017): 2171–77. http://dx.doi.org/10.1002/pola.28596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Riha, Shaima Maliha, Manira Maarof, and Mh Busra Fauzi. "Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review." Polymers 13, no. 10 (May 12, 2021): 1546. http://dx.doi.org/10.3390/polym13101546.

Full text
Abstract:
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Stem cell therapy is used to treat a wide range of injuries and degenerative diseases of the skin. Nevertheless, many related studies demonstrated modest improvement in organ functions due to the low survival rate of transplanted cells at the targeted injured area. Thus, incorporating stem cells into biomaterial offer niches to transplanted stem cells, enhancing their delivery and therapeutic effects. Currently, through the skin tissue engineering approach, many attempts have employed biomaterials as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. This review aims to identify the limitations of stem cell therapy in wound healing treatment and potentially highlight how the use of various biomaterials can enhance the therapeutic efficiency of stem cells in tissue regeneration post-implantation. Moreover, the review discusses the combined effects of stem cells and biomaterials in in vitro and in vivo settings followed by identifying the key factors contributing to the treatment outcomes. Apart from stem cells and biomaterials, the role of growth factors and other cellular substitutes used in effective wound healing treatment has been mentioned. In conclusion, the synergistic effect of biomaterials and stem cells provided significant effectiveness in therapeutic outcomes mainly in wound healing improvement.
APA, Harvard, Vancouver, ISO, and other styles
9

Lachowski, Dariusz, Carlos Matellan, Ernesto Cortes, Alberto Saiani, Aline F. Miller, and Armando E. del Río Hernández. "Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment." Cancers 13, no. 13 (June 30, 2021): 3286. http://dx.doi.org/10.3390/cancers13133286.

Full text
Abstract:
The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).
APA, Harvard, Vancouver, ISO, and other styles
10

Lesnikowski, Z. "DNA as Platform for New Biomaterials. Metal-Containing Nucleic Acids." Current Organic Chemistry 11, no. 4 (March 1, 2007): 355–81. http://dx.doi.org/10.2174/138527207780059358.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biomaterials platform"

1

Müller, Eike, Weijia Wang, Wenlian Qiao, Martin Bornhäuser, Peter W. Zandstra, Carsten Werner, and Tilo Pompe. "Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-208979.

Full text
Abstract:
Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.
APA, Harvard, Vancouver, ISO, and other styles
2

Aduba, Donald C. Jr. "Multi-platform arabinoxylan scaffolds as potential wound dressing materials." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3955.

Full text
Abstract:
Biopolymers are becoming more attractive as advanced wound dressings because of their naturally derived origin, abundance, low cost and high compatibility with the wound environment. Arabinoxylan (AX) is a class of polysaccharide polymers derived from cereal grains that are primarily used in food products and cosmetic additives. Its application as a wound dressing material has yet to be realized. In this two-pronged project, arabinoxylan ferulate (AXF) was fabricated into electrospun fibers and gel foams to be evaluated as platforms for wound dressing materials. In the first study, AXF was electrospun with varying amounts of gelatin. In the second study, AXF was dissolved in water, enzymatically crosslinked and lyophilized to form gel foams. The morphology, mechanical properties, porosity, drug release kinetics, fibroblast cell response and anti-microbial properties were examined for both platforms. Carbohydrate assay was conducted to validate the presence of arabinoxylan ferulate in the electrospun GEL-AXF fibers. Swelling and endotoxin quantification studies were done to evaluate the absorptive capacity and sterilization agent efficacy respectively in AXF foams. The results indicated successful fabrication of both platforms which validated the porous, absorptive, biocompatibility and drug release properties. The results also exhibited that silver impregnated AXF scaffolds inhibited growth of Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis bacteria species, anti-microbial properties necessary to function as advanced wound dressing materials. Future work will be done to improve the stability of both platforms as well as evaluate its applications in vivo.
APA, Harvard, Vancouver, ISO, and other styles
3

Kelly, Jennifer Yvonne DeSimone Joseph M. "Novel fluoroelastomers composed of tetrafluoroethylene and vinylidene fluoride oligomers synthesized in carbon dioxide for use in soft lithography to enable a platform for the fabrication of shape- and size-specific, monodisperse biomaterials." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1934.

Full text
Abstract:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2008.
Title from electronic title page (viewed Dec. 11, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry.
APA, Harvard, Vancouver, ISO, and other styles
4

Govindarajan, Sudhanva Raj. "THE DESIGN OF A MULTIFUNCTIONAL INITIATOR-FREE SOFT POLYESTER PLATFORM FOR ROOM-TEMPERATURE EXTRUSION-BASED 3D PRINTING, AND ANALYSIS OF PRINTABILITY." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1466778249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Melo, Priscila Cristina Soares. "Electromechanical Poly(L-lactic acid) PLLA platforms for regenerative medicine." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/15135.

Full text
Abstract:
Mestrado em Materiais e Dispositivos Biomédicos
The discovery of piezoelectricity in bone by Fukada brought to light the idea of using piezoelectrics to enhance bone growth. Piezoelectric polymers like poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polyester combining adjustable biodegradability and physical properties, stands out and therefore can be used as scaffolds for bone regeneration. In addition, some PLLA products have been approved for implantation in human body by the Food and Drug Administration (FDA). In the present work PLLA films with different crystallinities and thicknesses were produced in order to improve the dielectric properties and cellular adhesion. The maximum crystalline degree obtained was 35%. A complete characterization of PLLA films with different thicknesses and crystallinities was performed. The dielectric analysis included permittivity, dielectric loss and polarization. The highest relative permittivity value was 52.58 for amorphous samples at 120 ºC and 153 kHz. Dielectric loss reached its maximum at 27 ºC for a frequency of 1 MHz, being the value 1.64 on crystalline films. Polarization was studied by the technique Thermal Stimulated Depolarization Currents (TSDC), a method that measures polarization through thermal stimulus. In terms of polarization, the values increase proportionally with crystallinity, being the highest values 180 μC/cm2 on crystalline samples polarized during half an hour. In addition to cell-based assays, exists the metabolomics studies, a powerful tool since it can provide detailed information on the specific metabolic pathways responding and adapting to each of the selected material formulations. The work carried out in this project is the first stage of a wider program including in vitro biological characterization. It is presented the first metabolomics study using human osteoblasts in contact with piezoelectric PLLA, on PLLA standard films with 3% crystallinity, negatively poled.
A descoberta da piezoeletricidade no osso por Fukada levou à ideia de usar materiais piezoeléctricos para melhorar o crescimento ósseo. Polímeros piezoeléctricos como o poli (L-ácido láctico) (PLLA), um poliéster semicristalino sintético que combina biodegradabilidade e propriedades físicas ajustáveis, destacam-se pois podem ser utilizados como estruturas temporárias para a regeneração óssea. Para além disso, alguns produtos feitos à base de PLLA estão já aprovados para implantação no corpo humano pela Food and Drug Administration (FDA).Neste trabalho foram produzidos filmes de PLLA com diferentes cristalinidades e espessuras com o intuito de melhorar as propriedades dielétricas do material e a adesão celular. O grau de cristalinidade máximo obtido foi de aproximadamente 35%. Efectuou-se uma caracterização completa dos filmes com diferentes cristalinidades e espessuras. As medidas dielétricas realizadas abrangeram permitividade relativa, perda dielétrica e polarização. O valor mais alto de permitividade relativa medido foi de 52,58 para o filme amorfo, a 120 ºC e 153 kHz. A perda dielétrica atingiu o seu máximo nos filmes cristalinos aos 27 ºC para uma frequência de 1 MHz, com o valor de 1,64. A polarização foi estudada segundo a técnica TSDC (Thermal Stimulation Depolarization Current), um método que mede a polarização do material através do estímulo térmico. Em termos de polarização os valores aumentaram proporcionalmente com a cristalinidade, sendo o mais elevado 180 μC/cm2 para as amostras cristalinas polarizadas durante meia hora. Para além dos ensaios celulares, existe a metabolómica, hoje em dia uma ferramenta poderosa pois pode fornecer informações detalhadas sobre as vias metabólicas específicas que respondem e permitem a adaptação celular a cada uma das formulações de materiais selecionados. O trabalho realizado neste projecto constitui a primeira etapa de um programa mais amplo de caracterização biológica in vitro. É apresentado o primeiro estudo de metabolómica, utilizando osteoblastos humanos, em contato com o piezoelétrico PLLA, utilizando filmes de PLLA standard, 3% de cristalinidade, polarizados negativamente.
APA, Harvard, Vancouver, ISO, and other styles
6

Paradis, Mathieu. "Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15771.

Full text
Abstract:
Mestrado em Ciência e Engenharia de Materiais
The development of scaffolds based on biomaterials is a promising strategy for Tissue Engineering and cellular regeneration. This work focuses on Bone Tissue Engineering, the aim is to develop electrically tailored biomaterials with different crystalline and electric features, and study their impacts onto cell biological behavior, so as to predict the materials output in the enhancement of bone tissue regeneration. It is accepted that bone exhibits piezoelectricity, a property that has been proved to be involved in bone growth/repair mechanism regulation. In addition electrical stimulations have been proved to influence bone growth and repair. Piezoelectric materials are therefore widely investigated for a potential use in bone tissue engineering. The main goal is the development of novel strategies to produce and employ piezoelectric biomaterials, with detailed knowledge of mechanisms involved in cell-material interaction. In the current work, poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polymer, exhibiting biodegradibility, biocompatibility and piezoelectricity is studied and proposed as a promoter of enhanced tissue regeneration. PLLA has already been approved for implantation in human body by the Food and Drug Administration (FDA), and at the moment it is being used in several clinical strategies. The present study consists of first preparing films with different degrees of crystallinity and characterizing these PLLA films, in terms of surface and structural properties, and subsequently assessing the behavior of cells in terms of viability, proliferation, morphology and mineralization for each PLLA configuration. PLLA films were prepared using the solvent cast technique and submitted to different thermal treatments in order to obtain different degrees of crystallinity. Those platforms were then electrically poled, positively and negatively, by corona discharge in order to tailor their electrical properties. The cellular assays were conducted by using two different osteoblast cell lines grown directly onto the PLLA films:Human osteoblast Hob, a primary cell culture and Human osteosarcoma MG-63 cell line. This thesis gives also a comprehensive introduction to the area of Bone Tissue Engineering and provides a review of the work done in this field in the past until today, in that same field, including the one related with bone’s piezoelectricity. Then the experimental part deals with the effects of the crystallinity degrees and of the polarization in terms of surface properties and cellular bio assays. Three different degrees of crystallinity, and three different polarization conditions were prepared; which results in 9 different configurations under investigation.
O desenvolvimento de scaffolds baseados em biomateriais é uma estratégia promissora para a engenharia de tecidos e entrega de fármacos. Este trabalho centra-se na engenharia de tecido ósseo, o objectivo é desenvolver biomateriais electricamente modificados, com diferentes valores de cristalinidade e propriedades eléctricas, e estudar o seu impacto no comportamento biológico da célula de modo a prever o efeito desses materiais na regeneração do tecido. É já amplamente conhecido o fato de o osso possuir características piezoeléctricas, e reconhecido que estas contribuem para os mecanismos de regulação do crescimento e reparação do tecido ósseo. Além disso é um facto aceite que a estimulação eléctrica também influencia o crescimento e reparação do osso. Os materiais piezoeléctricos apresentam assim vantagens quanto à sua utilização em engenharia de tecido ósseo, e têm vindo a ser estudados para esse efeito. No presente trabalho foram desenvolvidos filmes de ácido poli-L-láctico (PLLA), um polímero sintético semi-cristalino que é biocompatível, biodegradável, e piezoeléctrico, que se apresenta como promotor da regeneração óssea. O PLLA é um material aceite para implantes em humanos pela “Food and Drug Administration” (FDA), e está já a ser utilizado em várias estratégias e produtos para uso clínico. O presente estudo consiste numa primeira fase de preparação e caracterização de filmes de PLLA em termos de propriedades estruturais e de superfície, e numa segunda fase de avaliação do comportamento celular em termos de viabilidade, proliferação, morfologia e mineralização, para cada uma das configurações de PLLA obtidas. Os filmes foram preparados pelo método de evaporação do solvente com molde, e submetidos a diferentes tratamentos térmicos de forma a obter diferentes valores de cristalinidade. Estas plataformas foram depois electricamente polarizadas, positiva e negativamente, por meio de descarga de corona para modular as suas propriedades eléctricas. Os ensaios celulares foram realizados utilizando duas linhas celulares osteoblásticas, em contacto direto com as superfícies de PLLA: Osteoblastos Humanos - Hob, cultura primária de células, e linha de Osteosarcoma Humano - MG-63. Este trabalho também inclui uma introdução teórica para área da Engenharia de Tecido Ósseo, e resume o trabalho de investigação realizado nesta área até hoje incluindo aquele relacionado com a piezoelectricidade do tecido ósseo. A parte experimental dedica-se aos efeitos do grau de cristalinidade e da polarização nas propriedades de superfície do material e nos ensaios biológicos. Foram estudadas nove configurações, originadas por três valores de cristalinidade: 0, 7 e 35%, e três tipos de polarização: positiva, negativa e neutra (apenas com o tratamento térmico análogo).
APA, Harvard, Vancouver, ISO, and other styles
7

Recha, Sancho Lourdes Georgina. "Development of biomaterial self-assembling based platforms to obtain human cartilage tissue in vitro." Doctoral thesis, Universitat Ramon Llull, 2016. http://hdl.handle.net/10803/394009.

Full text
Abstract:
El cartílag articular té una capacitat limitada de creixement i regeneració i, els tractaments per restaurar la funció del teixit, després d’una lesió, són limitats i poc entesos per la comunitat mèdica. Existeix, per tant, un gran interès en trobar una solució pràctica i agradable pel pacient que aconsegueixi la reparació del cartílag. La enginyeria de teixits va sorgir per restablir teixits danyats usant noves plataformes terapèutiques basades en cèl·lules i/o biomaterials. Aquestes noves teràpies pretenen crear estructures similars al cartílag que imiten les propietats mecàniques i biològiques que trobem in vivo. En aquest context, l’ús de matrius biomimètiques que reprodueixin estructural i funcionalment el microambient natiu han despertat gran interès en aquest camp. Els pèptids auto-ensamblants representen candidats ideals per crear nínxols cel·lulars, ja que les seves nanofibres i propietats biomecàniques son similars a les de la matriu extracel·lular. En aquesta tesi, s’ha desenvolupat nous biomaterials sintètics amb gran potencial per la reparació de cartílag. Aquests estan basats en el pèptid auto-ensamblant RAD16-I decorat amb motius bioactius, amb l’objectiu de reproduir la matriu del cartílag. Donada la versatilitat del hidrogel RAD16-I, les noves matrius es van formar per simple mescla del pèptid RAD16-I amb molècules d’heparina, condroitin sulfat i decorina. Aquestes matrius bi-composades presenten bona estabilitat química i estructural a pH fisiològic i son capaces d’unir i alliberar, gradualment, factors de creixement. L’avaluació d’aquestes matrius es va dur a terme mitjançant dues estratègies in vitro diferents: la rediferenciació de condròcits articulars humans i la inducció del llinatge condrogènic en cèl·lules mare derivades de teixit adipós. Ambdós tipus cel·lulars son considerats una bona font cel·lular per obtenir constructes que reparin defectes al cartílag. Els resultats presentats en aquest treball mostren diferencies a nivell de comportament cel·lular, patrons d’expressió i propietats mecàniques entre els dos tipus cel·lulars i les diferents condicions de cultiu (matrius i medis). Cal destacar que els dos tipus cel·lulars es diferencien a un llinatge condrogènic en medi d’inducció i que els constructes presenten propietats mecàniques compatibles amb un sistema condrogènic. A més s’ha determinat que la presencia de molècules d’heparina a la matriu promou la supervivència de les cèl·lules mare derivades de teixit adipós. En conjunt, les noves matrius bi-composades representen un material fàcil de preparar i prometedor per promoure la diferenciació condrogènica. Finalment, part d’aquesta tesi s’ha centrat en el desenvolupament d’una nova matriu composta mitjançant la infiltració del pèptid RAD16-I amb cèl·lules en microfibres de policaprolactona (PCL). S’ha demostrat que aquesta nova combinació ofereix una estructura funcional i biomimètica, ja que proporciona suport mecànic per les fibres de PCL i a la vegada, facilita l’adhesió i el creixement cel·lular per l’hidrogel RAD16-I. El cultiu in vitro de condròcits humans desdiferenciats demostra que la nova matriu composada promou la supervivència cel·lular i el restabliment del llinatge condrogènic. En general, les propietats sinèrgiques de la nova matriu composada proporcionen una plataforma terapèutica ideal per ajudar a la reparació del cartílag.
El cartílago articular tiene una capacidad limitada de crecimiento y regeneración y, los tratamientos para restaurar la función del tejido, después de una lesión, son limitados y poco entendidos por la comunidad médica. Existe, por tanto, un gran interés en encontrar una solución práctica y agradable para el paciente que consiga la reparación del cartílago. La ingeniería de tejidos surgió para restaurar tejidos dañados usando nuevas plataformas terapéuticas basadas en células y/o biomateriales. Estas nuevas terapias pretenden crear estructuras similares al cartílago que imiten las propiedades mecánicas y biológicas que se dan in vivo. En este sentido, el uso de matrices biomiméticas que reproduzcan estructural y funcionalmente el microambiente nativo ha generado gran interés en este campo. Los péptidos auto-ensamblantes representan candidatos ideales para crear nichos celulares dado que, sus nanofibras y propiedades biomecánicas son similares a las de la matriz extracelular. En esta tesis, se han desarrollado nuevos biomateriales sintéticos con gran potencial para la reparación de cartílago. Éstos, están basados en el péptido auto-ensamblante RAD16-I decorado con motivos bioactivos, tratando de reproducir la matriz del cartílago. Dada la versatilidad del hidrogel RAD16-I, las nuevas matrices se formaron por simple mezcla del péptido RAD16-I con moléculas de heparina, condroitin sulfato y decorina. Estas matrices bi-compuestas presentan buena estabilidad química y estructural a pH fisiológico y son capaces de unir y liberar, gradualmente, factores de crecimiento. La evaluación de estas matrices se llevó a cabo mediante dos estrategias in vitro diferentes: la rediferenciación de condrocitos articulares humanos y, la inducción del linaje condrogénico en células madre derivadas de tejido adiposo. Ambos tipos celulares son considerados una buena fuente de células para obtener constructos que reparen defectos en el cartílago. Los resultados presentados en este trabajo muestran diferencias a nivel de comportamiento celular, patrones de expresión y propiedades mecánicas entre los dos tipos celulares y las diferentes condiciones de cultivo (matrices y medios). Cabe destacar que, ambos tipos celulares se diferencian a un linaje condrogénico en medio de inducción y que los constructos presentan propiedades mecánicas compatibles con un sistema condrogénico. Además, se ha determinado que la presencia de moléculas de heparina en la matriz promueve la supervivencia de las células madre derivadas de tejido adiposo. En conjunto, las nuevas matrices bi-compuestas representan un material fácil de preparar y prometedor para promover la diferenciación condrogénica. Por último, parte de esta tesis se ha centrado en el desarrollo de una nueva matriz compuesta mediante la infiltración del péptido RAD16-I con células en microfibras de policaprolactona (PCL). Se ha demostrado que esta nueva combinación ofrece una estructura funcional y biomimética, dado que, proporciona soporte mecánico por las fibras PCL y a su vez, facilita la adhesión y el crecimiento celular debido al hidrogel RAD16-I. El cultivo in vitro de condrocitos humanos desdiferenciados demuestra que la nueva matriz compuesta promueve la supervivencia celular y el restablecimiento del linaje condrogénico. En general, las propiedades sinérgicas de la nueva matriz compuesta proporcionan una plataforma terapéutica ideal para ayudar a la reparación del cartílago.
Adult articular cartilage has a limited capacity for growth and regeneration and, after injury, treatments to restore tissue function remain poorly understood by the medical community. Therefore, there is currently great interest in finding practical and patient-friendly strategies for cartilage repair. Tissue engineering has emerged to restore damaged tissue by using new cellular or biomaterial-based therapeutic platforms. These approaches aim to produce cartilage-like structures that reproduce the complex mechanical and biological properties found in vivo. To this end, the use of biomimetic scaffolds that recreate structurally and functionally the native cell microenvironment has become of increasing interest in the field. Self-assembling peptides are attractive candidates to create artificial cellular niches, because their nanoscale network and biomechanical properties are similar to those of the natural extracellular matrix (ECM). In the present thesis, new composite synthetic biomaterials were developed for cartilage tissue engineering (CTE). They were based on the non-instructive self-assembling peptide RAD16-I and decorated with bioactive motifs, aiming to emulate the native cartilage ECM. We employed a simple mixture of the self-assembling peptide RAD16-I with either heparin, chondroitin sulfate or decorin molecules, taking advantage of the versatility of RAD16-I. The bi-component scaffolds presented good structural and chemical stability at a physiological pH and the capacity to bind and gradually release growth factors. Then, these composite scaffolds were characterized using two different in vitro assessments: re-differentiation of human articular chondrocytes (ACs) and induction of human adipose derived stem cells (ADSCs) to a chondrogenic commitment. Both native chondrocytes and adult mesenchymal stem cells (MSCs), either bone marrow or adipose-tissue derived, are considered good cell sources for CTE applications. The results presented in this work revealed differences in cellular behavior, expression patterns and mechanical properties between cell types and culture conditions (scaffolds and media). Remarkably, both cell types underwent into chondrogenic commitment under inductive media conditions and 3D constructs presented mechanical properties compatible to a system undergoing chondrogenesis. Interestingly, as a consequence of the presence of heparin moieties in the scaffold cell survival of ADSCs was enhanced. Altogether, the new bi-component scaffolds represent a promising "easy to prepare" material for promoting chondrogenic differentiation. Finally, part of this thesis was focus on developing a composite scaffold by infiltrating a three-dimensional (3D) woven microfiber poly (ε-caprolactone) (PCL) scaffold with the RAD16-I self-assembling peptide and cells. This new combination resulted into a multi-scale functional and biomimetic tissue-engineered structure providing mechanical support by PCL scaffold and facilitating cell attachment and growth by RAD16-I hydrogel. The in vitro 3D culture of dedifferentiated human ACs evidenced that the new composite supports cell survival and promotes the reestablishment of the chondrogenic lineage commitment. Overall, the synergistic properties of the novel composite scaffold may provide an ideal therapeutic platform to assist cartilage repair.
APA, Harvard, Vancouver, ISO, and other styles
8

Puigmal, Domínguez Núria. "Skin-targeting platforms based on poly (β-amino ester)s for local immunotherapy." Doctoral thesis, Universitat Ramon Llull, 2021. http://hdl.handle.net/10803/672238.

Full text
Abstract:
El potencial curatiu de les immunoteràpies per a estimular o suprimir respostes immunes ha revolucionat el paradigma sota el qual malalties como el càncer o trastorns autoimmunes son tractats; no obstant, una implementació extensa d’aquestes no ha sigut possible degut a la seva toxicitat. Donada la capacitat dels nanomaterials de reconduir fàrmacs immunomoduladors cap a teixits diana, les plataformes per alliberar fàrmacs dissenyades a partir de biomaterials podrien solucionar les necessitats més urgents d’aquest camp com l’alliberació específica a cèl·lules diana, l’alliberament local —en comptes de sistèmic— i l’acumulació a teixits diana per tal d’augmentar la seva eficàcia i seguretat. Aquesta tesi proposa l’ús de poly(β-amino ester)s (PBAEs) per al desenvolupant de vehicles d’alliberament dirigits cap a les pell amb l’objectiu de modular el sistema immune a nivell local en els àmbits de la vacunació amb àcids nucleics, la immunoteràpia contra el càncer y la teràpia adoptiva. S’ha presentat una nova llibreria de PBAEs modificats amb oligopèptids i manosa amb especificitat cel·lular cap a les cèl·lules dendrítiques, les principals presentadores d’antigen a la pell. L’efecte sinèrgic entre els oligopèptids i el lligand ha permès millorar substancialment el rendiment d’aquests vector per a vacunació amb mRNA/DNA. Addicionalment, aquest s’han pogut formular sense necessitar de fer servir solvents ni en forma de nanopartícules, a més de poder-los integrar en dispositius mèdics com microagulles, ja sigui en forma de partícules o films, per tal de transferir gens de manera no invasiva. Com a teràpia contra el càncer, una microagulles innovadores fetes a partir d’hidrogels s’han utilitzat per a alliberar un fàrmac immunomodulador mentre recol·lectaven líquid intersticial simultàniament per tal monitoritzar l’eficiència de la teràpia. Les microagulles carregades amb PBAEs foren capaces de reduir la mida de tumors y modular el microambient tumoral, la composició immunològica del qual correlaciona amb la del líquid intersticial mostrejat. Finalment, les microagulles s’han reciclat com a plataforma per a restablir l’equilibri immunològic en transplantaments de pell. Les microagulles reclutaren cèl·lules T reguladores cap als transplantaments gràcies a l’alliberació de citocines mentre vigilaven in situ la migració d’aquestes. En conclusió, aquesta tesi demostra el potencial de les plataformes transdèrmiques derivades de PBAEs per a induir immunomodulació a nivell local. Prioritzant plataformes sense solvents, locals i no-invasives, en aquesta tesi s’han optimitzat nous sistemes basats en PBAEs i integrats en dispositius mèdics com microagulles per a immunoteràpia.
El potencial curativo de las inmunoterapias para estimular o suprimir el sistema inmune ha revolucionado el paradigma bajo el que enfermedades como el cáncer o trastornos autoinmunes son tratados; no obstante, la implementación de dichas terapias se ha visto restringida por su toxicidad. Dada la capacidad de los nanomateriales para redirigir fármacos inmunomoduladores a tejidos dianas, las plataformas de liberación basadas en biomateriales podrían solventar las mayores necesidades del ámbito incluyendo, liberación específica a células diana, localizada —en vez de sistémica— y acumulación en tejidos diana para así aumentar su potencia y seguridad. Usando los poly(β-amino ester)s (PBAEs) como piedra angular, esta tesis propone desarrollar vectores dirigidos hacía la piel con el fin de modular el sistema inmune a nivel local en ámbitos tales como vacunación con ácidos nucleicos, inmunoterapia contra cáncer y terapia celular adoptiva. Se ha presentado una nueva librería de PBAEs modificados con oligopéptidos y manosa que poseen especificidad celular hacia células dendríticas, las principales instigadoras en la presentación de antígenos en la piel. El efecto sinérgico entre oligopéptidos y ligando ha permitido mejorar sustancialmente estos vehículos de transporte para vacunación. Además, los PBAEs se han podido formular como vectores alternativos a las nanopartículas y que no precisan solventes, así como integrarlos en dispositivos médicos como microagujas, ya sea en forma de partículas o de films, para transferir genes de manera no invasiva. Como terapia contra el cáncer, se han diseñado microagujas de hidrogel que permiten la liberación de un fármaco inmunoestimulante además de colectar líquido intersticial para monitorear la respuesta a la terapia in situ. Las microagujas cargadas con PBAEs pudieron reducir el tamaño de los tumores y modular el microambiente tumoral, la composición del cual correlaciona con la del líquido intersticial colectado con dicha plataforma. Finalmente, las microagujas fueron usadas para restablecer el equilibrio inmunológico en trasplantes de piel. Las microagujas pudieron reclutar células T reguladoras hacia el trasplante mediante la liberación de citoquinas quimioatrayentes además de informar sobre su proceso de migración hacia el trasplante. En conclusión, esta tesis demuestra el potencial de las plataformas transdérmicas basadas en PBAEs para inducir inmunomodulación local. Priorizando plataformas sin solventes, locales, y poco invasivas, se han desarrollado sistemas basados en PBAEs e integrados con microagujas para inmunoterapia.
The curative potential of immunotherapies to augment or suppress immune responses has shifted the paradigm for managing various diseases including cancer and autoimmune disorders, yet broad implementation has been curtailed by detrimental off-target toxicities. Given the ability of nanomaterials to direct immunomodulators to target tissues, nanomedicine-based delivery platforms formulated in carrier biomaterials could surmount the most pressing needs in the field being cell-specific targeting, local —rather than systemic— administration, and tissue accumulation to ultimately enhance the safety and potency of these therapeutic products. Using poly(β-amino ester)s (PBAEs) as foundational nanocarriers, this thesis proposes to engineer PBAE-based delivery platforms to target the immunologically rich milieu of the skin for local immunomodulation in the contexts of nucleic acid vaccination, cancer immunotherapy and adoptive T cell therapy. First, a novel library of oligopeptide- and mannose-modified PBAEs is presented for refined targeting of dendritic cells (DCs) as primary orchestrators of antigen presentation in the skin. The synergistic potential of oligopeptide and ligand decoration to target dermal DC subsets has been demonstrated as a powerful tool to upgrade delivery vectors for gene vaccination. Nanoparticle- and solvent-free delivery of nucleic acids using PBAEs formulated as polyelectrolyte films (PEMs) has also been confirmed. PBAEs can be successfully integrated in transdermal devices such as microneedles, either as PEMs or as polyplexes, to mediate minimally-invasive gene transfer. Moving to cancer immunotherapy, a hydrogel-based MN platform is presented for delivery of an immunostimulatory drug and retrieval of interstitial skin fluid (ISF) for in situ immune surveillance of the response to therapy. It has been proven that PBAE-loaded MNs suppress tumor growth and modulate the immune signature of the tumor microenvironment, which appears to correlate with that from MN-sampled ISF. Finally, hydrogel MNs are proposed for restoring immune homeostasis in transplanted skin allografts. Recruitment of adoptively-transferred regulatory T cells into the allografts has been achieved by delivering chemoattractant chemokines with the MNs while also monitoring the Treg homing process via ISF sampling, confirming the potential of MNs as a mode of tissue surveillance. In conclusion, this thesis demonstrates the potential of transdermal platforms derived from PBAEs for local immunomodulation. Shifting from hypodermic administration to solvent-free, local, and minimally-invasive approaches, PBAE-based systems have been engineered with microneedles for immunotherapy delivery.
APA, Harvard, Vancouver, ISO, and other styles
9

Weisman, Jeffery A. "Nanotechnology and additive manufacturing platforms for clinical medicine| An investigation of 3D printing bioactive constructs and halloysite nanotubes for drug delivery and biomaterials." Thesis, Louisiana Tech University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3662483.

Full text
Abstract:

Personalized medicine requires the development of new technologies for controlled or targeted drug delivery. Three-dimensional (3D) printing and additive manufacturing techniques can be used to generate customized constructs for bioactive compound delivery. Nanotechnology in the form of nanoparticles, used as a stand-alone construct or for material enhancements, can significantly improve established biomaterials such as PMMA based bone cements or enable new technology to have enhanced capabilities. Combinations of the technologies can be used in such applications as infectious disease treatments, chemotherapeutic targeted drug delivery or targeted delivery of nearly any bioactive compound.

Chemotherapeutic or antibiotic enhanced 3D printing filaments were invented and designed to allow for the fabrication of antibiotic beads, drug eluting catheters, drains, stents, screws or any bioactive construct. Halloysite nanotubes (HNTs) were investigated as a modular platform and solely or in combinations were coated in metals including: iron for magnetic targeted delivery including hyperthermia, gold for laser targeted hyperthermia or barium as a contrast agent for visualization. The particles were test loaded with antibiotics or chemotherapeutics as well as coated in biocompatible coatings containing lipids or layered polyelectrolytes. Nanoparticles were added to 3D printing filaments or bone cements to test increases in strength, contrast or pore size.

3D print filaments and bioactive constructs that eluted gentamicin sulfate were tested using clinical microbiology lab standards and were shown to inhibit bacterial growth. 3D print filaments that eluted methotrexate were shown to inhibit proliferation of osteosarcoma cells and also provided a means for sustained drug release. Halloysite was successfully shown as a modular platform that could be highly customized for patient specific uses. Single coatings or combinations of magnetically susceptible iron coatings, gold coatings, drug loading of multiple bioactive compounds and biocompatible coatings were also developed. Bone cements with barium-coated particles were shown to have enhanced contrast.

The first ever ability to create and use bioactive 3D printing filaments on consumer printers was realized and HNTs were developed as proof of principle for multifunctional and real time customizable nanoparticle platforms. Nanoparticles as additives showed ways to modify established biomaterials or 3D printing filaments with enhanced features and properties.

APA, Harvard, Vancouver, ISO, and other styles
10

Wilson, David Scott. "Rational design and synthesis of drug delivery platforms for treating diseases associated with intestinal inflammation." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45803.

Full text
Abstract:
Over 500 million people worldwide suffer from disease associated with intestinal inflammation, including gastric cancer, inflammatory bowel disease, h. pylori infections, and numerous viral and bacterial infections. Although potentially effective therapeutics exist for many of these pathologies, delivery challenges thwart their clinical viability. The objective of this work was to develop drug delivery platforms that could target toxic immunomodulatory therapeutics to diseased intestinal tissues. To meet this objective, we developed an oral delivery vehicle for siRNA and an NF-κB inhibiting nanoparticle that reduces drug-resistance. Small interfering RNA (siRNA) represents a promising treatment strategy for numerous gastrointestinal (GI) diseases; however, the oral delivery of siRNA to inflamed intestinal tissues remains a major challenge. In this presentation, we describe a delivery vehicle for siRNA, termed thioketal nanoparticles (TKNs), that can orally deliver siRNA to sites of intestinal inflammation, and thus inhibit gene expression in diseased intestinal tissue. Using a murine model of ulcerative colitis, we demonstrate that orally administered TKNs loaded with TNFα-siRNA (TNFα-TKNs) diminish TNFα messenger RNA (mRNA) levels in the colon and protect mice from intestinal inflammation. Activation of nuclear factor-κB (NF-κB) results in the expression of numerous prosurvival genes that block apoptosis, thus mitigating the efficacy of chemotherapeutics. Paradoxically, all conventional therapeutics for cancer activate NF-κB, and in doing so initiate drug resistance. Although adjuvant strategies that block NF-κB activation could potentiate the activity of chemotherapeutics in drug resistant tumors, clinical evidence suggests that current adjuvant strategies also increase apoptosis in non-malignant cells. In this presentation, we present a nanoparticle, formulated from a polymeric NF-κB-inhibiting prodrug, that target the chemotherapeutic irinotecan (CPT-11) to solid tumors, and thus abrogates CPT-11-mediated drug resistance and inhibits tumor growth. In order to maximize the amount of NF-κB inhibitor delivered to tumors, we synthesized a novel polymeric prodrug, termed PCAPE, that releases the NF-κB inhibitor caffeic acid phenethyl ester (CAPE) as its major degradation product. Using a murine model of colitis-associated cancer, we demonstrate that when administered systemically, CPT-11-loaded PCAPE-nanoparticles (CCNPs) are three time more effective than a cocktail of the free drugs at reducing both tumor multiplicity and tumor size.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biomaterials platform"

1

Thayer, Patrick, Hector Martinez, and Erik Gatenholm. "Manufacturing of Biomaterials via a 3D Printing Platform." In 3D and 4D Printing in Biomedical Applications, 81–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813704.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hernández, Salvador Carlos, Diana Sofía Segovia Arévalo, and Lourdes Díaz Jiménez. "Anaerobic Digestion as Consolidated Process Platform for Gaseous Biofuels Production and Other Value-Added Products." In Handbook of Research on Bioenergy and Biomaterials, 165–202. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003105053-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nie, Minghao, and Shoji Takeuchi. "Chapter 3. Microfluidic Platforms for Biofabrication and 3D Tissue Modeling." In Biomaterials Science Series, 49–76. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788012683-00049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zuppolini, Simona, Iriczalli Cruz-Maya, Vincenzo Guarino, Vincenzo Venditto, and Anna Borriello. "Design of Biofunctional Platforms: Differently Processed Biomaterials with Polydopamine Coating." In Lecture Notes in Electrical Engineering, 17–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69551-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guarino, Vincenzo, Rosaria Altobelli, Francesca della Sala, Assunta Borzacchiello, and Luigi Ambrosio. "Alginate Processing Routes to Fabricate Bioinspired Platforms for Tissue Engineering and Drug Delivery." In Springer Series in Biomaterials Science and Engineering, 101–20. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6910-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Connell, Patrick S., Varun K. Krishnamurthy, and K. Jane Grande-Allen. "Bioreactor and Biomaterial Platforms for Investigation of Mitral Valve Biomechanics and Mechanobiology." In Molecular Biology of Valvular Heart Disease, 95–106. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6350-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuche, Kaushik, Pramina Kumari Pandey, Abhimanyu Patharkar, Rahul Maheshwari, and Rakesh K. Tekade. "Hyaluronic Acid as an Emerging Technology Platform for Silencing RNA Delivery." In Biomaterials and Bionanotechnology, 415–58. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814427-5.00012-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chiellini, Federica, and Andrea Morelli. "Ulvan: A Versatile Platform of Biomaterials from Renewable Resources." In Biomaterials - Physics and Chemistry. InTech, 2011. http://dx.doi.org/10.5772/24901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hollis, C. P., R. Zhao, and T. Li. "Hybrid nanocrystal as a versatile platform for cancer theranostics." In Biomaterials for Cancer Therapeutics, 188–207. Elsevier, 2013. http://dx.doi.org/10.1533/9780857096760.3.188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruocco, Gianpaolo, Paolo Caccavale, and Maria Valeria De Bonis. "A predictive oncology framework—modeling tumor proliferation using a FEM platform." In Biomaterials for 3D Tumor Modeling, 427–50. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818128-7.00018-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biomaterials platform"

1

Eng, Wilson, Max Kim, Anand Ramasubramanian, and Sang-Joon John Lee. "A Modular Test Platform for Micromechanical Tensile Testing of Soft Biomaterials." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87259.

Full text
Abstract:
Mechanical properties of biomaterials are difficult to characterize experimentally because many relevant biomaterials such as hydrogels are very pliable and viscoelastic. Furthermore, test specimens such as blood clots retrieved from patients tend to be small in size, requiring fine positioning and sensitive force measurement. Mechanobiological studies require fast data recording, preferably under simultaneous microscope imaging, in order to monitor events such as structural remodeling or localized rupture while strain is being applied. A low-profile tensile tester that applies prescribed displacement up to several millimeters and measures forces with resolution on the order of micronewtons has been designed and tested, using alginate as a representative soft biomaterial. 1.5% alginate (cross-linked with 0.1 M and 0.2 M calcium chloride) has been chosen as a reference material because of its extensive use in tissue engineering and other biomedical applications. Prescribed displacement control with rates between 20 μm/s and 60 μm/s were applied using a commercial low-noise nanopositioner. Force data were recorded using data acquisition and signal conditioning hardware with sampling rates as high as 1 kHz. Elongation up to approximately 10 mm and force in the range of 250 mN were measured. The data were used to extract elastic and viscoelastic parameters for alginate specimens. Another biomaterial, 2% agarose, was also tested to show versatility of the apparatus for slightly stiffer materials. The apparatus is modular such that different load cells ranging in capacity from hundreds of millinewtons to tens of newtons can be used. The apparatus furthermore is compatible with real-time microscope imaging, particle tracing, and programmable positioning sequences.
APA, Harvard, Vancouver, ISO, and other styles
2

Stone, James J. S., Andrew R. Thoreson, Kurt L. Langner, Jay M. Norton, Daniel J. Stone, Francis W. Wang, Shawn W. O’Driscoll, and Kai-Nan An. "Computer-Aided Design, Manufacturing, and Modeling of Polymer Scaffolds for Tissue Engineering." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81621.

Full text
Abstract:
A custom computer-controlled rapid prototyping system was designed and developed in this research. This system for bio-manufacturing of polymer scaffolds included 3D motion control components, a nozzle, a pressure controller, and a temperature-controlled reservoir containing a biomaterial. Heating elements built into the reservoir melted the biomaterial. The pressure line attached to the reservoir provided a controllable force that extruded the polymer biomaterial through the nozzle and deposited the polymer biomaterial onto a platform to fabricate scaffolds. A low pressure (830 KPa) system was designed and fabricated to accommodate different temperatures, motion speeds, and viscosities of polymer biomaterials. The reservoir with the nozzle was mounted to servo motor-controlled linear x-y motion devices along with a third servo motor-controlled device that controlled the z-position of the platform. Poly(ε-caprolactone) [PCL] was used to fabricate scaffolds with designed structure that were used in cell and tissue regeneration studies. 3D computer-aided design (CAD) with Pro-Engineer and computational finite element analysis (FEA) programs with MSC_Patran and MSC_Marc were used to model scaffold designs with appropriate architecture and material selection. The CAD models were used in FEA to develop new methods for determining mechanical properties of tissue scaffolds of desired structure and geometry. FEA models were validated by mechanical testing and other published results. Technology developed in this research has potential for the advancement of bio-manufacturing, and design optimization of scaffolds for tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
3

Hiyama, Satoshi, Yuki Moritani, Kaori Kuribayashi-Shigetomi, Hiroaki Onoe, and Shoji Takeuchi. "Micropatterning of different kinds of biomaterials as a platform of a molecular communication system." In IEEE INFOCOM 2011 - IEEE Conference on Computer Communications Workshops. IEEE, 2011. http://dx.doi.org/10.1109/infcomw.2011.5928860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Phadke, Manisha, Sebastian Shaner, Shreyas Shah, Ygnacio Rodriguez, Denni Wibowo, Yudan Whulanza, Peter Teriete, Jeff Allen, and Sam Kassegne. "Inertial focusing and passive micro-mixing techniques for rare cells capturing microfluidic platform." In 2ND BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5023971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alfonso García, Alba, Anne K. Haudenschild, James F. Mcmasters, Julien Bec, Xiangnan Zhou, Alyssa Panitch, Leigh G. Griffiths, and Laura Marcu. "Fluorescence lifetime imaging and intravascular ultrasound (FLIm/IVUS) platform for label-free intraluminal characterization of vascular biomaterials in vitro and in vivo (Conference Presentation)." In Diagnostic and Therapeutic Applications of Light in Cardiology 2019, edited by Kenton W. Gregory and Laura Marcu. SPIE, 2019. http://dx.doi.org/10.1117/12.2510816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jandhyala, Sidhartha, Scott A. Walper, Allison A. Cargill, Abigail Ozual, and Michael A. Daniele. "Integration of biochemical sensors into wearable biomaterial platforms." In SPIE Commercial + Scientific Sensing and Imaging, edited by Brian M. Cullum, Douglas Kiehl, and Eric S. McLamore. SPIE, 2016. http://dx.doi.org/10.1117/12.2226039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cacace, Teresa, Pasquale Memmolo, Massimiliano M. Villone, Marco De Corato, Melania Paturzo, Pier Luca Maffettone, and Pietro Ferraro. "Holographic imaging of erythrocytes in acoustofluidic platforms." In Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV, edited by Pietro Ferraro, Monika Ritsch-Marte, Simonetta Grilli, and Christoph K. Hitzenberger. SPIE, 2019. http://dx.doi.org/10.1117/12.2527695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Puerto Vivar, Andrés, Elena Torres, Mercedes Carrascosa Rico, Jose Luis Bella, Carmen López_Fernández, and Ángel García-Cabañes. "Bio-droplet manipulation and characterization by ferroelectric photovoltaic platforms." In Optical Methods for Inspection, Characterization, and Imaging of Biomaterials V, edited by Pietro Ferraro, Monika Ritsch-Marte, Simonetta Grilli, and Christoph K. Hitzenberger. SPIE, 2021. http://dx.doi.org/10.1117/12.2592394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Su, Chih-Yuan, and Gou-Jen Wang. "Development of a Three-Dimensional Printer for Water-Soluble Biomaterial Printing." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85057.

Full text
Abstract:
In this study, a three-dimensional bioscaffold printer was developed to fabricate biocompatible scaffolds from water-soluble materials for application in cell studies. A gelatin/sodium alginate solution was used to produce the scaffolds via a fused deposition modelling (FDM) printing method using the modified 3D printer. Modifications and improvements to the material feeding system, printing head, and printing platform were made, with additional optimization of the printing parameters, such as the feed rate, printing rate, and printing head size to investigate the precision and accuracy of two-dimensional and 3D bioscaffold printing. In addition to modifications of the feeding system from the original solid to the new liquid state material, a heating probe and coil were added to maintain the liquid phase. The printing nozzle was also altered to allow for the feed material and a cross-linking agent to mix prior to printing; enabling cross-linked scaffolds to be produced. Furthermore, the printing surface was integrated with a filter to allow for excess fluid to drain from the scaffold after printing and cross-linking. The results of this study revealed that the optimal printing parameters for producing a 2D 15.3 mm × 15.3 mm square was with a printing head-platform distance of 4 mm, material feed rate of 5 mL/min, printing rate of 35 mm/s and a printing head diameter of 0.4 mm. In addition, it was found that the printing speed and the printed image size and resolution are correlated, as such, the smallest dimensions able to be printed is 10.3 mm × 10.3 mm, with a line width of 1 mm. In regards to 3D scaffolds, the printed scaffolds had dimensions of 20 mm × 20.15 mm with a height of 7.5 mm; which were found to support the growth of mouse fibroblast cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Puerto Vivar, Andrés, Carmen López Fernández, Jose Luis Bella, Iris Elvira Rodríguez, Gladis Minguez-Vega, Ángel García-Cabañes, and Mercedes Carrascosa Rico. "Fluorescence enhancement based on plasmonic nanoparticle structures on ferroelectric platforms for bioimaging applications." In Optical Methods for Inspection, Characterization, and Imaging of Biomaterials V, edited by Pietro Ferraro, Monika Ritsch-Marte, Simonetta Grilli, and Christoph K. Hitzenberger. SPIE, 2021. http://dx.doi.org/10.1117/12.2592401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography