Academic literature on the topic 'Biomaterials, neural stem cell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomaterials, neural stem cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biomaterials, neural stem cell"

1

Russell, Lauren N., and Kyle J. Lampe. "Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production." Cells Tissues Organs 202, no. 1-2 (2016): 85–101. http://dx.doi.org/10.1159/000446645.

Full text
Abstract:
Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo.
APA, Harvard, Vancouver, ISO, and other styles
2

Little, Lauren, Kevin E. Healy, and David Schaffer. "Engineering Biomaterials for Synthetic Neural Stem Cell Microenvironments." Chemical Reviews 108, no. 5 (2008): 1787–96. http://dx.doi.org/10.1021/cr078228t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agbay, Andrew, John M. Edgar, Meghan Robinson, et al. "Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury." Cells Tissues Organs 202, no. 1-2 (2016): 42–51. http://dx.doi.org/10.1159/000446474.

Full text
Abstract:
Ongoing clinical trials are evaluating the use of stem cells as a way to treat traumatic spinal cord injury (SCI). However, the inhibitory environment present in the injured spinal cord makes it challenging to achieve the survival of these cells along with desired differentiation into the appropriate phenotypes necessary to regain function. Transplanting stem cells along with an instructive biomaterial scaffold can increase cell survival and improve differentiation efficiency. This study reviews the literature discussing different types of instructive biomaterial scaffolds developed for transplanting stem cells into the injured spinal cord. We have chosen to focus specifically on biomaterial scaffolds that direct the differentiation of neural stem cells and pluripotent stem cells since they offer the most promise for producing the cell phenotypes that could restore function after SCI. In terms of biomaterial scaffolds, this article reviews the literature associated with using hydrogels made from natural biomaterials and electrospun scaffolds for differentiating stem cells into neural phenotypes. It then presents new data showing how these different types of scaffolds can be combined for neural tissue engineering applications and provides directions for future studies.
APA, Harvard, Vancouver, ISO, and other styles
4

Xia, Lin, Wenjuan Zhu, Yunfeng Wang, Shuangba He, and Renjie Chai. "Regulation of Neural Stem Cell Proliferation and Differentiation by Graphene-Based Biomaterials." Neural Plasticity 2019 (October 16, 2019): 1–11. http://dx.doi.org/10.1155/2019/3608386.

Full text
Abstract:
The transplantation of neural stem cells (NSCs) has become an emerging treatment for neural degeneration. A key factor in such treatments is to manipulate NSC behaviors such as proliferation and differentiation, resulting in the eventual regulation of NSC fate. Novel bionanomaterials have shown usefulness in guiding the proliferation and differentiation of NSCs due to the materials’ unique morphological and topological properties. Among the nanomaterials, graphene has drawn increasing attention for neural regeneration applications based on the material’s excellent physicochemical properties, surface modifications, and biocompatibility. In this review, we summarize recent works on the use of graphene-based biomaterials for regulating NSC behaviors and the potential use of these materials in clinical treatment. We also discuss the limitations of graphene-based nanomaterials for use in clinical practice. Finally, we provide some future prospects for graphene-based biomaterial applications in neural regeneration.
APA, Harvard, Vancouver, ISO, and other styles
5

Finch, L., S. Harris, C. Adams, et al. "WP1-22 DuraGen™ as an encapsulating material for neural stem cell delivery." Journal of Neurology, Neurosurgery & Psychiatry 90, no. 3 (2019): e7.2-e7. http://dx.doi.org/10.1136/jnnp-2019-abn.22.

Full text
Abstract:
ObjectivesAchieving neural regeneration after spinal cord injury (SCI) represents a significant challenge. Neural stem cell (NSC) therapy offers replacement of damaged cells and delivery of pro-regenerative factors, but >95% of cells die when transplanted to sites of neural injury. Biomaterial scaffolds provide cellular protective encapsulation to improve cell survival. However, current available scaffolds are overwhelmingly not approved for human use, presenting a major barrier to clinical translation. Surgical biomaterials offer the unique benefit of being FDA-approved for human implantation. Specifically, a neurosurgical grade material, DuraGen™, used predominantly for human duraplasty has many attractive features of an ideal biomaterial scaffold. Here, we have investigated the use of DuraGen™ as a 3D cell encapsulation device for potential use in combinatorial, regenerative therapies.MethodsPrimary NSCs were seeded into optimised sheets of DuraGen™. NSC growth and fate within DuraGen™ were assessed using 3D microscopic fluorescence imaging techniques.ResultsDuraGen™ supports the survival (ca 95% viability, 12 days) and 3D growth of NSCs. NSC phenotype, proliferative capacity and differentiation into astrocytes, neurons and oligodendrocytes were unaffected by DuraGen™.ConclusionsA ‘combinatorial therapy’, consisting of NSCs protected within a DuraGen™ matrix, offers a potential clinically translatable approach for neural cell therapy.
APA, Harvard, Vancouver, ISO, and other styles
6

Assunção-Silva, Rita C., Eduardo D. Gomes, Nuno Sousa, Nuno A. Silva, and António J. Salgado. "Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration." Stem Cells International 2015 (2015): 1–24. http://dx.doi.org/10.1155/2015/948040.

Full text
Abstract:
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Phillip H., Sanjay Kumar, and David V. Schaffer. "Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies." Current Opinion in Biomedical Engineering 4 (December 2017): 13–20. http://dx.doi.org/10.1016/j.cobme.2017.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dai, Xizi, and Yen-Chih Huang. "Pluripotent Stem Cell Derived Neural Lineage Cells and Biomaterials for Neuroscience and Neuroengineering." Journal of Neuroscience and Neuroengineering 2, no. 2 (2013): 119–40. http://dx.doi.org/10.1166/jnsne.2013.1047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soria, Jose Miguel, María Sancho-Tello, M. Angeles Garcia Esparza, et al. "Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation." Journal of Biomedical Materials Research Part A 97A, no. 1 (2011): 85–92. http://dx.doi.org/10.1002/jbm.a.33032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maclean, Francesca L., Alexandra L. Rodriguez, Clare L. Parish, Richard J. Williams, and David R. Nisbet. "Integrating Biomaterials and Stem Cells for Neural Regeneration." Stem Cells and Development 25, no. 3 (2016): 214–26. http://dx.doi.org/10.1089/scd.2015.0314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography