Academic literature on the topic 'Biomaterials for orthopedic applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomaterials for orthopedic applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biomaterials for orthopedic applications"
Allizond, Valeria, Sara Comini, Anna Maria Cuffini, and Giuliana Banche. "Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability." Antibiotics 11, no. 4 (April 15, 2022): 529. http://dx.doi.org/10.3390/antibiotics11040529.
Full textCao, Jian, Zhongxing Liu, Limin Zhang, Jinlong Li, Haiming Wang, and Xiuhui Li. "Advance of Electroconductive Hydrogels for Biomedical Applications in Orthopedics." Advances in Materials Science and Engineering 2021 (January 22, 2021): 1–13. http://dx.doi.org/10.1155/2021/6668209.
Full textBalasundaram, Ganesan, and Thomas J. Webster. "Nanotechnology and biomaterials for orthopedic medical applications." Nanomedicine 1, no. 2 (August 2006): 169–76. http://dx.doi.org/10.2217/17435889.1.2.169.
Full textAoki, Kaoru, Nobuhide Ogihara, Manabu Tanaka, Hisao Haniu, and Naoto Saito. "Carbon nanotube-based biomaterials for orthopaedic applications." Journal of Materials Chemistry B 8, no. 40 (2020): 9227–38. http://dx.doi.org/10.1039/d0tb01440k.
Full textAggarwal, Divyanshu, Vinod Kumar, and Siddharth Sharma. "Drug-loaded biomaterials for orthopedic applications: A review." Journal of Controlled Release 344 (April 2022): 113–33. http://dx.doi.org/10.1016/j.jconrel.2022.02.029.
Full textZaokari, Younis, Alicia Persaud, and Amr Ibrahim. "Biomaterials for Adhesion in Orthopedic Applications: A Review." Engineered Regeneration 1 (2020): 51–63. http://dx.doi.org/10.1016/j.engreg.2020.07.002.
Full textZaman, Hainol Akbar, Safian Sharif, Mohd Hasbullah Idris, and Anisah Kamarudin. "Metallic Biomaterials for Medical Implant Applications: A Review." Applied Mechanics and Materials 735 (February 2015): 19–25. http://dx.doi.org/10.4028/www.scientific.net/amm.735.19.
Full textMödinger, Yvonne, Graciosa Teixeira, Cornelia Neidlinger-Wilke, and Anita Ignatius. "Role of the Complement System in the Response to Orthopedic Biomaterials." International Journal of Molecular Sciences 19, no. 11 (October 27, 2018): 3367. http://dx.doi.org/10.3390/ijms19113367.
Full textR, Nagalakshmi, M. Kalpana, and M. Jeyakanthan. "Development of Hydroxyapatite Coating on Titanium Alloy for Orthopedic Applications." ECS Transactions 107, no. 1 (April 24, 2022): 18647–61. http://dx.doi.org/10.1149/10701.18647ecst.
Full textBarros, Joana, Fernando Jorge Monteiro, and Maria Pia Ferraz. "Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections." International Journal of Molecular Sciences 23, no. 19 (October 1, 2022): 11658. http://dx.doi.org/10.3390/ijms231911658.
Full textDissertations / Theses on the topic "Biomaterials for orthopedic applications"
Vidal, Girona Elia. "Development of metallic functionalized biomaterials with low elastic modulus for orthopedic applications." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671888.
Full textEl titani (Ti) i els seus aliatges s'han emprat durant dècades per a implants i pròtesis òssies a causa de la seva fiabilitat mecànica i bona biocompatibilítat. Tanmateix, les infeccions relacionades amb els implants, la manca d'osteointegració amb l'os circumdant i el desajust de les propietats mecàniques entre l'implant i l'os, continuen sent els principals motius de fallida de l'implant En la present tesi doctoral, s'han estudiat dues estratègies per augmentar la viabilitat de l'implant fabricació d'estructures poroses de Ti i funcionalització superficial. El desajust de la rigidesa entre l'implant de titani i l'os pot causar una reabsorció òssia important, que pot provocar complicacions greus com la fractura periprotètica durant o després de la cirurgia de revisió . La superfície del titani té un paper important en les interaccions os-pròtesi, no només per promoure l'adhesió inicial de les cèl·lules, sinó també per evitar l'adhesió bacteriana. Una estratègia estudiada a la tesi ha estat el desenvolupament i fabricació d'estructures poroses de Ti. S'ha preparat un andamiatge amb una porositat del 75% mitjançant Direct lnk Writing, amb l'objectiu de reduir l'elasticitat del mòdul aparent de les pròtesis de Ti. En aquest treball, s'han fabricat estructures poroses de Ti amb una rigidesa i resistència a la compressió de 2,6 GPa i 64,5 MPa respectivament. Per això, es va dissenyar una nova formulació de tinta basada en la barreja d'un hidrogel termosensible amb partícules de pols irregulars de Ti amb una mida mitjana de partícula de 22,45 µm. Es va optimitzar un tractament tèrmic per assegurar l’eliminació completa de l'aglutinant abans del procés de sinterització, per evitar la contaminació de les estructures de titani. La lluita contra les infeccions està estretament lligada al concepte de "carrera per la superfície". El guanyador d'aquesta carrera (cèl·lula contra bacteris) decideix si s'aconseguirà un ancoratge sòlid entre l'implant i l'os o si el creixement bacterià conduirà a una infecció periprotètica. Una altra estratègia estudiada en aquesta tesi se centra en la funcionalització de la superfície de Ti. En primer lloc, la superfície d'andamiatges de Ti es va funcionalitzar amb un fragment recombinant fibronectina d'adhesió cel·lular per optimitzar l’adhesió cel·lular. A més, també es va estudiar un recobriment multifuncional basat en l'ús de recobriments de fosfat de calci com a portadors per a l'alliberament de medicaments per aconseguir un equilibri entre la adhesió cel·lular i la reducció de l'adhesió bacteriana. Les estructures poroses de Ti s'han recobert amb èxit amb un procés d'electrodeposició polsada d'un pas, aconseguint una capa uniforme de fosfat de calci tant a la superfície interna com exterior de les estructures, amb resistències d’adhesió superiors a 22 MPa. La co-deposició d'un agent antibacterià amb una electrodeposició polsada i polsada inversa es va aconseguir tant a les superfícies de Ti d'estructura oberta coma les llises. La velocitat de l'agent antibacterià es pot modular en un terminí d'hores o dies ajustant les condicions de recobriment i sense alterar el potencial antimicrobià del propi agent antibacterià carregat. Els recobriments biofuncionalitzats van mostrar una notable activitat antibacteriana in vitro contra les soques de bacteris S. aureus i E. coli, amb una disminució significativa de bacteris adherits viables a les superfícies tractades. Les proves de cultiu cel·lular també van demostrar que les estructures de Ti carregades de l'agent antimicrobià presentaven una millor adhesió cel·lular en comparació amb la Ti no tractat. Per tant. les estratègies proposades poden millorar els implants ortopèdics de manera eficient en termes de millora de la biointegració la resistència a l'adherència microbiana.
Ciència i enginyeria de materials
Clem, William Charles. "Mesenchymal stem cell interaction with nanonstructured biomaterials for orthopaedic applications." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/clem.pdf.
Full textAdditional advisors: Yogesh K. Vohra, Xu Feng, Jack E. Lemons, Timothy M. Wick. Description based on contents viewed July 8, 2009; title from PDF t.p. Includes bibliographical references.
Smith, Michael E. "Method Development for On-Site Air Quality Analysis and Design of Hydrogen Sensors for Orthopedic Applications." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1583999801696302.
Full textRaghuraman, Kapil. "Synthesis and Evaluation of a Zn-Bioactive Glass Series to Prevent Post-Operative Infections in Craniofacial Applications." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1525241500626456.
Full textAhn, Edward Sun 1972. "Nanostructured apatites as orthopedic biomaterials." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8627.
Full textIncludes bibliographical references.
Historically, using suitable mechanical replacements for bone has been a priority in designing permanent, load-bearing orthopedic implants. As a result, the biomaterials used in these implants have been largely limited to bioinert titanium-based alloys, as well as to polycrystalline alumina and zirconia ceramics. However, analysis of implants incorporating these traditional biomaterials indicated that most failures involved an unstable implant-tissue interface and/or a mismatch of the mechanical behavior of the implant with the surrounding tissues. As a result, up to 20% of patients receiving permanent, load-bearing implants may undergo a revision operation. The objective of this research was to develop an alternative biomaterial that combined both mechanical resilience and an osteoconductive surface to provide a stable interface with the surrounding connective tissue so that the need for revision operations may be significantly reduced. In the effort to address the issue of mechanical strength and bioactivity simultaneously, hydroxyapatite (HAP) has generated considerable interest. Though a commonly used bioceramic, HAP has been limited by its processability. This material is sensitive to non-stoichiometry and impurities during synthesis and processing due to its complex composition and crystal structure (Ca10(P04)6(OH)2, P63/m).
(cont.) Consequently, conventionally processed HAP materials lack phase purity and homogeneity. Densification of HAP requires high temperatures that result in grain growth and decomposition into undesired phases with poor mechanical and chemical stability. To circumvent densification at high temperatures, glassy additives have been introduced to promote liquid-phase sintering at a lower temperature. However, the presence of a secondary glassy phase gave rise to poor mechanical characteristics. Hence, clinical applications of HAP have been limited to powders, coatings, porous bodies, and non-load-bearing implants. To overcome the deficiencies of conventionally processed HAP, nanostructure processing was applied, which allowed for materials design from the molecular level. By using an aqueous chemical precipitation technique, a fully dense, transparent, nanostructured HAP-based bioceramic that exhibited superior mechanical properties and enhanced tissue bonding was obtained. Processing parameters affecting the molecular and structural development of HAP were used to tailor HAP stoichiometry, crystallite size, morphology and surface chemistry for optimal thermal stability and sinterability. Unlike conventionally processed HAP, the stoichiometric, equiaxed, nanocrystalline HAP powders demonstrated significantly enhanced sinterability by fully densifying at a remarkably low temperature of 900ʻC with pressure-assisted sintering.
(cont.) Furthermore, high-resolution electron micrographs illustrated that the sintered compact possessed a uniform and ultrafine microstructure with an average grain size of -100 nm, with no glassy or amorphous interfaces along the grain boundaries. The crystallinity of the HAP grains and grain boundaries and the minimal flaw sizes could be credited for the superior strength of nanostructured HAP compared to conventional HAP. Compared to polycrystalline HAP, nanocrystalline HAP also provided greater osteoblast function. In vitro experiments indicated that nanocrystalline HAP surfaces enhanced cell attachment, proliferation and mineralization. The larger grain boundary volume resulting from the ultrafine microstructure might have enhanced protein adsorption, ...
by Edward Sun Ahn.
Ph.D.
Devlin, Sean M. "Improving Degradable Biomaterials for Orthopedic Fixation Devices." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/394989.
Full textPh.D.
Current degradable orthopedic fixation devices do not typically facilitate tissue integration during healing. Proposed here is a novel combination of processing methods to enhance the tissue integration capability of degradable thermoplastics used in temporary orthopedic fixation devices. The provision of open pores in devices used to affix reconstructed hard tissues would allow for local cells to infiltrate during the healing process. Any openly porous structure is inherently weakened in comparison to its monolithic peers (i.e. decreased relative bulk modulus), such that the matrix materials must be made more resilient in keep the device from becoming friable. These processing methods aim to improve degradable surgical fixation devices at multiple levels of design: both through the inclusion of porous morphology, processing changes, and additives to regain mechanical integrity. Biomimetic pores are added for cellular infiltration by dissolving a porogen’s interpenetrating polymer network. The addition of open pores significantly reduces the bulk stiffness. More uniform phase separation has led to better pores, but the objects still need more resilience. Carbon nanomaterials are used to improve on the mechanics and surface chemistry of the polymer matrix material, composites of polylactide/nanodiamond are produced through cryogenic milling and solid state polycondensation. The addition of minute amounts of functionalized nanodiamond has remedied the brittle failure of the material, by cryogenic milling and solid state polycondensation of poly((D,L)lactide-co-glycolide) and hydroxyl functionalized detonation nanodiamonds. This composite has also demonstrated increased cytocompatability with 7F2 osteoblasts, as analyzed by cellular adhesion through fluorescence microscopy and alamar blue assay.
Temple University--Theses
Ensing, Geert Tone. "Prevention and treatment of biomaterial related infection in orthopedics a study of application of ultrasound and of antibiotic release /." [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2006. http://irs.ub.rug.nl/ppn/291344038.
Full textGianforcaro, Anthony L. "Improvement Of Biodegradable Biomaterials For Use In Orthopedic Fixation Devices." Master's thesis, Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/599834.
Full textM.S.
Current orthopedic internal fixation devices, such as pins and screws, are typically made from metals and have a long list of complications associated with them. Most notably, complications such as infection or decreased wound healing arise from revisional surgeries needed to remove the used hardware. A new class of fixation devices is being produced from biodegradable biomaterials to eliminate the need for revisional surgery by being naturally broken down in the body. While currently available polymers lack the necessary mechanical properties to match bone strength, the incorporation of small amounts of hydroxylated nanodiamonds has been proven to increase the mechanical properties of the native polymer to better resemble native bone. Additionally, modern polymers used in biodegradable fixation devices have degradation rates that are too slow to match the growth of new bone. Poly-(D, L)-lactic-co-glycolic acid (PDLG) incorporated with hydroxylated nanodiamonds has not only been proven to start out stronger, but then also helps the polymer degrade faster when compared to the pure polymer in vivo and prevents effusion of the polymer into the surrounding environment. Nanodiamond incorporation is accomplished via solid state polycondensation of PDLG to create a uniform material with increased mechanical properties, faster degradation rates, and enhanced calcification when tested in simulated body fluid.
Temple University--Theses
Wong, Kai-lun, and 黄棨麟. "Strontium-substituted hydroxyapatite reinforced polyetheretherketone biomaterials in orthopaedic implants." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42182505.
Full textWong, Kai-lun. "Strontium-substituted hydroxyapatite reinforced polyetheretherketone biomaterials in orthopaedic implants." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42182505.
Full textBooks on the topic "Biomaterials for orthopedic applications"
Kim, Kyo-Han. Surface modification of titanium for biomaterial applications. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full text(Ramaswamy), Narayanan R., and Rautray Tapash R, eds. Surface modification of titanium for biomaterial applications. New York: Nova Science Publishers, 2010.
Find full textLi, Bingyun, and Thomas Webster, eds. Orthopedic Biomaterials. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89542-0.
Full textLi, Bingyun, and Thomas Webster, eds. Orthopedic Biomaterials. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73664-8.
Full textInc, Medical Data International. U.S. markets for orthopedic biomaterials. Santa Ana, Calif. (5 Hutton Centre Dr. Suite 1100, 92707): Medical Data International, 2000.
Find full textRavi, Prakash, and International Symposium on Biomaterials in Orthopaedics (1989 : Institute of Technology, Banaras Hindu University), eds. Biomaterials in orthopaedics. Varanasi, India: School of Biomedical Engineering, Institute of Technology, Banaras Hindu University, 1990.
Find full textWise, Donald L., Debra J. Trantolo, David E. Altobelli, Michael J. Yaszemski, and Joseph D. Gresser, eds. Human Biomaterials Applications. Totowa, NJ: Humana Press, 1996. http://dx.doi.org/10.1007/978-1-4757-2487-5.
Full text1937-, Wise Donald L., ed. Human biomaterials applications. Totowa, NJ: Humana Press, 1996.
Find full textBiomaterials for bone regenerative medicine. Stafa-Zuerich: Trans Tech, 2010.
Find full textJ, Yaszemski Michael, ed. Biomaterials in orthopedics. New York: M. Dekker, 2004.
Find full textBook chapters on the topic "Biomaterials for orthopedic applications"
Hickey, Dan, and Thomas Webster. "Nanotechnology for Orthopedic Applications: From Manufacturing Processes to Clinical Applications." In Orthopedic Biomaterials, 3–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89542-0_1.
Full textde Guzman, Roche C. "Materials for Orthopedic Applications." In Orthopedic Biomaterials, 367–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73664-8_14.
Full textYang, Ke, Lili Tan, Peng Wan, Xiaoming Yu, and Zheng Ma. "Biodegradable Metals for Orthopedic Applications." In Orthopedic Biomaterials, 275–309. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73664-8_11.
Full textNath, Shekhar, and Bikramjit Basu. "Materials for Orthopedic Applications." In Advanced Biomaterials, 53–100. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470891315.ch3.
Full textKang, Jason, Krystal Hughes, Malcolm Xing, and Bingyun Li. "Orthopedic Applications of Silver and Silver Nanoparticles." In Orthopedic Biomaterials, 63–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73664-8_3.
Full textNijsure, Madhura P., and Vipuil Kishore. "Collagen-Based Scaffolds for Bone Tissue Engineering Applications." In Orthopedic Biomaterials, 187–224. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73664-8_8.
Full textPrabhu, Balaji, Andreas Karau, Andrew Wood, Mahrokh Dadsetan, Harald Liedtke, and Todd DeWitt. "Bioresorbable Materials for Orthopedic Applications (Lactide and Glycolide Based)." In Orthopedic Biomaterials, 287–344. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89542-0_13.
Full textYang, Jingzhou. "Progress of Bioceramic and Bioglass Bone Scaffolds for Load-Bearing Applications." In Orthopedic Biomaterials, 453–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89542-0_18.
Full textKankilic, Berna, Eda Ciftci Dede, Petek Korkusuz, Muharrem Timuçin, and Feza Korkusuz. "Apatites for Orthopedic Applications." In Clinical Applications of Biomaterials, 65–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56059-5_3.
Full textJohnson, Ian, Jiajia Lin, and Huinan Liu. "Surface Modification and Coatings for Controlling the Degradation and Bioactivity of Magnesium Alloys for Medical Applications." In Orthopedic Biomaterials, 331–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73664-8_13.
Full textConference papers on the topic "Biomaterials for orthopedic applications"
Gong, Haibo, Antonios Kontsos, Yoontae Kim, Peter I. Lelkes, Qingwei Zhang, Donggang Yao, Kavan Hazeli, and Jack G. Zhou. "Micro Characterization of Mg and Mg Alloy for Biodegradable Orthopedic Implants Application." In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7395.
Full textMahmoud, Rahmatul, Quang Nguyen, Gordon Christopher, and Paul F. Egan. "3D Printed Food Design and Fabrication Approach for Manufacturability, Rheology, and Nutrition Trade-Offs." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-70663.
Full textSalahshoor, M., and Y. B. Guo. "Machining Characteristics of High Speed Dry Milling of Biodegradable Magnesium-Calcium Alloy." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34310.
Full textIskandar, Maria E., Jaclyn Y. Lock, Arash Aslani, and Huinan Liu. "Controlling the Biodegradation of Magnesium Implants Through Nanostructured Coatings." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65901.
Full textSivarasu, Sudesh, Sam Prasanna James, and T. Lazar Mathew. "Finite Element Method Oriented Failure Analysis of Medical Implants: Artificial Knee." In ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fmd2013-16145.
Full textSalahshoor, M., and Y. B. Guo. "Surface Integrity of Biodegradable Magnesium-Calcium (Mg-Ca) Alloy by Low Plasticity Burnishing." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41214.
Full textSalahshoor, M., and Y. B. Guo. "Surface Integrity of Magnesum-Calcium Orthopedic Biomaterial Procesed by Dry High-Speed Face Milling." In ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32062.
Full textWeng, L., D. A. Stout, and T. J. Webster. "Nanophase magnesium for orthopedic applications." In 2012 38th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2012. http://dx.doi.org/10.1109/nebc.2012.6207047.
Full textSharma, Anu, and Gayatri Sharma. "Biomaterials and their applications." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032847.
Full textPuckett, Sabrina, Jing Lu, and Thomas Webster. "Nano patterned titanium for orthopedic applications." In 2007 IEEE 33rd Annual Northeast Bioengineering Conference. IEEE, 2007. http://dx.doi.org/10.1109/nebc.2007.4413356.
Full text