Academic literature on the topic 'Biomass pre-treatment'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomass pre-treatment.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biomass pre-treatment"
Özbay, Nurgül, and Elif Yaman. "Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass." International Journal of Renewable Energy Development 7, no. 2 (July 10, 2018): 163–69. http://dx.doi.org/10.14710/ijred.7.2.163-169.
Full textSulaiman, Shaharin Anwar, Nor Hazwani Mat Razali, Mohamad Nazmi Zaidi Bin Moni, and Muddasser Inayat. "Pre-treatment of oil palm fronds biomass for gasification." MATEC Web of Conferences 131 (2017): 03016. http://dx.doi.org/10.1051/matecconf/201713103016.
Full textBhutto, Abdul Waheed, Khadija Qureshi, Khanji Harijan, Rashid Abro, Tauqeer Abbas, Aqeel Ahmed Bazmi, Sadia Karim, and Guangren Yu. "Insight into progress in pre-treatment of lignocellulosic biomass." Energy 122 (March 2017): 724–45. http://dx.doi.org/10.1016/j.energy.2017.01.005.
Full textSrivastava, N. K., S. S. Parhi, M. K. Jha, and T. R. Sreekrishnan. "Optimization of effect of pre-treatment on Chromium removal by algal biomass using Response Surface Methodology." International Journal of Engineering Research 3, no. 3 (March 1, 2014): 167–71. http://dx.doi.org/10.17950/ijer/v3s3/308.
Full textStephanidis, S., C. Nitsos, K. Kalogiannis, E. F. Iliopoulou, A. A. Lappas, and K. S. Triantafyllidis. "Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: Effect of hydrothermal pre-treatment of biomass." Catalysis Today 167, no. 1 (June 2011): 37–45. http://dx.doi.org/10.1016/j.cattod.2010.12.049.
Full textCarneiro-Junior, José Airton de Mattos, Eduardo Oliveira Teles, Fabio Matos Fernandes, Carine Tondo Alves, Silvio Alexandre Beisl Vieira de Melo, and Ednildo Andrade Torres. "Torrefaction as a Pre-Treatment of Biomass: A Bibliometric Analysis." International Journal for Innovation Education and Research 9, no. 1 (January 1, 2021): 289–313. http://dx.doi.org/10.31686/ijier.vol9.iss1.2898.
Full textRizal, Nur, Mohamad Ibrahim, Mohd Zakaria, Suraini Abd-Aziz, Phang Yee, and Mohd Hassan. "Pre-treatment of Oil Palm Biomass for Fermentable Sugars Production." Molecules 23, no. 6 (June 7, 2018): 1381. http://dx.doi.org/10.3390/molecules23061381.
Full textRasid, R. Abdul, and M. H. M. Yusoff. "The Potential of CO2 Torrefaction as Biomass Pre- Treatment Method." Indian Journal of Science and Technology 10, no. 7 (February 1, 2017): 1–5. http://dx.doi.org/10.17485/ijst/2017/v10i7/111462.
Full textOnumaegbu, C., J. Mooney, A. Alaswad, and A. G. Olabi. "Pre-treatment methods for production of biofuel from microalgae biomass." Renewable and Sustainable Energy Reviews 93 (October 2018): 16–26. http://dx.doi.org/10.1016/j.rser.2018.04.015.
Full textHarun, Razif, W. S. Y. Jason, Tamara Cherrington, and Michael K. Danquah. "Exploring alkaline pre-treatment of microalgal biomass for bioethanol production." Applied Energy 88, no. 10 (October 2011): 3464–67. http://dx.doi.org/10.1016/j.apenergy.2010.10.048.
Full textDissertations / Theses on the topic "Biomass pre-treatment"
Randall, Warren. "Development of a biomass gasification pre-treatment system." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/16848.
Full textLopes, André Miguel da Costa. "Pre-treatment of lignocellulosic biomass with ionic liquids." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/9521.
Full textO objetivo deste trabalho foi estudar o pré-tratamento de biomassa lignocelulósica, como a palha de trigo, usando líquidos iónicos (LIs) de modo a obter a separação dos principais componentes, nomeadamente, celulose, hemicelulose e lignina. O processo de pré-tratamento foi otimizado com base em duas metodologias descritas na literatura utilizando o líquido iónico acetato de 1-etil-3-metilimidazólio ([emim][CH3COO]). A metodologia otimizada permitiu separar as frações ricas em hidratos de carbono das frações de lignina, ambas com elevada pureza, e com uma recuperação de LIs até um máximo de 97% da sua massa inicial. Desta forma, o LI pode ser reusado confirmando a flexibilidade do processo desenvolvido. A versatilidade do método foi testada com a investigação de três líquidos iónicos diferentes, nomeadamente hidrogenossulfato de 1-butil-3-metilimidazólio ([bmim][HSO4]), tiocianato de 1-butil-3-metilimidazólio ([bmim][SCN]) e dicianamida de 1-butil-3-metilimidazólio ([bmim][N(CN)2]). No processo de dissolução de palha de trigo observou-se uma dissolução completa a nível macroscópico apenas para os líquidos iónicos [emim][CH3COO] e [bmim][HSO4]. O [emim][CH3COO] apresentou maior eficiência no processo de dissolução e regeneração da biomassa. Contrariamente, o [bmim][SCN] demonstrou ser o menos eficiente em todo o processo de pré-tratamento. Um comportamento diferente foi observado para o [bmim][HSO4], cujo pré-tratamento apresentou similaridades a uma hidrólise ácida. Os pré-tratamentos com [bmim][HSO4] e [bmim][N(CN)2] permitiram a obtenção de frações ricas em celulose com um conteúdo em hidratos de carbono de 87 a 90%. Para as frações ricas em celulose provenientes do pré-tratamento com [emim][CH3COO] foram efetuados ensaios de hidrólise enzimática para verificar a potencial aplicação destas frações, bem como, avaliar a eficiência das metodologias de pré-tratamento estudadas. Os resultados obtidos demonstraram elevado índice de digestibilidade da celulose e confirmou o elevado teor de glucose presente na fração celulósica obtida pela metodologia otimizada. A técnica de Espectroscopia de Infravermelho com Transformadas de Fourier (FT-IR) permitiu efetuar análises qualitativas e quantitativas de todas as amostras obtidas nos pré-tratamentos realizados. Para avaliar a pureza dos LIs após os pré-tratamentos utilizou-se a técnica espectroscópica de ressonância magnética nuclear (RMN). Os resultados provenientes dos ensaios de hidrólise enzimática foram obtidos através da técnica cromatográfica de HPLC.
This work is devoted to the pre-treatment of lignocellulosic biomass using ionic liquids (ILs) to separate cellulose, hemicellulose and lignin fractions. Particularly, research was focused on studying the influence of various ILs on the pre-treatment of wheat straw. The pre-treatment procedure was optimised basing on two methodologies presented in the literature. In the optimised method 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) IL was used. The developed method is beneficial as allows a separation of highly-purified carbohydrate and lignin-rich samples and permits to recover ILs with a yield of 97wt%. Therefore, the IL could be reused confirming a great flexibility of the developed method. Furthermore, versatility of the method was confirmed by examination of different ILs such as 1-butyl-3-methylimidazolium hydrogensulfate ([bmim][HSO4]), 1-butyl-3-methylimidazolium thiocyanate ([bmim][SCN]) and 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]). Only [emim][CH3COO] and [bmim][HSO4] ILs were found to be capable to achieve a macroscopic complete dissolution of wheat straw. Considering dissolution and regeneration process, [emim][CH3COO] was the most efficient among investigated ILs. On the contrary, [bmim][SCN] demonstrated the lowest efficiency either in dissolution and regeneration or fractionation processes. The [bmim][HSO4] showed different behaviour from other ILs exhibiting similarities to acid hydrolysis pre-treatment. Pre-treatments with [bmim][HSO4] and [bmim][N(CN)2] allowed to recover cellulose rich-samples with a carbohydrate content between 87 to 90wt%. In order to verify the potential further applicability of obtained carbohydrate-rich fractions as well as to evaluate the pre-treatment efficiency, the cellulose-rich fraction obtained from treatment with [emim][CH3COO] was applied for the enzymatic hydrolysis. Achieved results showed a high digestibility of cellulose-rich samples and confirmed a high glucose yield for the optimised methodology. Qualitative and quantitative analyses of the pre-treatment with ILs were made using the Fourier-Transform Infrared Spectroscopy (FT-IR). The NMR analysis was used to evaluate the purity of ILs after pre-treatments. Results of enzymatic hydrolysis analysis were controlled by the HPLC.
McKinnie-Hill, J. S. "Mechanochemistry : an interesting approach to the pre-treatment of biomass." Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.679263.
Full textJoão, Karen Andreína Godinho. "Pre-treatment of different types of lignocellulosic biomass using ionic liquids." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10386.
Full textThe pre-treatment of biomass by ionic liquid (IL) is a method opening new possibilities of biomass fractionation for further valorisation of low value feedstock. This work is dedicated to study on the pre-treatment and fractionation of different types of lignocellulosic biomass into its major constituent fractions (cellulose, hemicellulose and lignin), using ILs. The biomass tested was: wheat straw, sugarcane bagasse, rice straw and triticale. Initially, the optimised methods were development basing on two methodologies described in the literature. This method allows the separation into high purity carbohydrate-rich (cellulose and hemicellulose) and lignin-rich fractions and permits an efficient IL recovery. The possibility of IL reuse was confirmed, demonstrating the great potential of the established method. The pre-treatment of various biomasses confirms the versatility and efficiency of the optimised methodology since not only the complete macroscopic dissolution of each biomass was achieved but also the fractionation process was successfully performed. Pre-treatment of sugarcane bagasse and triticale allowed to obtained cellulose samples rich in carbohydrate up to 90 wt %. In order to verify the potential further applicability of the obtained carbohydrate-rich fractions, as well as to evaluate the pre-treatment efficiency, the cellulose-rich fraction resulting from 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) pre-treatment was subjected to enzymatic hydrolysis. Results showed a very high digestibility of the cellulose-rich samples and confirmed a high glucose yield for the optimised pre-treatment methodology. The samples obtained after the pre-treatment with ILs were qualitatively and quantitatively analysed by Fourier Transform Infrared Spectroscopy (FTIR). After the pre-treatment, the purity of the recovered ILs was evaluated through Nuclear Magnetic Resonance spectroscopy (NMR). The enzymatic hydrolysis results were analysed by High-Performance Liquid Chromatography(HPLC).
Tran, Khanh Cong. "Anaerobic digestion of microalgal biomass : effects of solid concentration and pre-treatment." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/415791/.
Full textBronson, Benjamin. "The Effects of Feedstock Pre-treatment on the Fluidized Bed Gasification of Biomass." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30690.
Full textRupar-Gadd, Katarina. "Biomass Pre-treatment for the Production of Sustainable Energy : Emissions and Self-ignition." Doctoral thesis, Växjö : Växjö University Press, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-510.
Full textHague, Robert A. "Pre-treatment and pyrolysis of biomass for the production of liquids for fuels and speciality chemicals." Thesis, Aston University, 1998. http://publications.aston.ac.uk/10064/.
Full textFivga, Antzela. "Comparison of the effect of pre-treatment and catalysts on liquid quality from fast pyrolysis of biomass." Thesis, Aston University, 2012. http://publications.aston.ac.uk/16524/.
Full textRocha, Glauco Yves Gomes dos Santos. "Hidrólise ácida do albedo de laranja lima." Universidade Federal de Alagoas, 2016. http://www.repositorio.ufal.br/handle/riufal/1628.
Full textTendo o Estado de Alagoas como o terceiro maior produtor de citrus da região Nordeste do Brasil, cultivando especificamente Laranja Lima, sendo de fundamental importância o estudo do hidrolisado do albedo de Laranja Lima para o planejamento da produção de bioetanol. A caracterização do albedo da Laranja Lima da indústria de suco da Cooplal do município de Santana do Mundaú, foi realizado no Laboratório Industrial Bioflex 01 da GRANBIO. Para o processo de hidrólise da biomassa foram utilizados os ácidos: clorídrico, nítrico, fosfórico e sulfúrico com concentrações de 0,5 e 1,0% e períodos de 30, 60, 90 e 120 minutos. O delineamento experimental utilizado foi o inteiramente casualizado no esquema fatorial de 4 x 2 x 4, com três repetições. As comparações das médias de tipos de ácidos dentro das concentrações e dentro dos períodos de avaliação foram feitas através pelo teste de Tukey a 5% de probabilidade. A hidrólise com o ácido sulfúrico obteve os melhores resultados para todas variáveis estudados. Conclui-se que o processo de hidrólise torna os açúcares fermentescíveis da celulose e hemicelulose disponíveis para o processo fermentativo.
Books on the topic "Biomass pre-treatment"
Roy, Shyamal. Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production. Taylor & Francis Group, 2021.
Find full textRoy, Shyamal. Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production. Taylor & Francis Group, 2021.
Find full textPre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production. Taylor & Francis Group, 2021.
Find full textRoy, Shyamal. Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production. Taylor & Francis Group, 2021.
Find full textBradstock, Ross A., A. Malcolm Gill, and Richard J. Williams, eds. Flammable Australia. CSIRO Publishing, 2012. http://dx.doi.org/10.1071/9780643104839.
Full textBook chapters on the topic "Biomass pre-treatment"
Sohail Toor, Saqib, Lasse Rosendahl, Jessica Hoffmann, Jens Bo Holm-Nielsen, and Ehiaze Augustine Ehimen. "Lignocellulosic Biomass—Thermal Pre-treatment with Steam." In Pretreatment Techniques for Biofuels and Biorefineries, 59–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32735-3_3.
Full textRoy, Shyamal. "Conclusions and Recommendations." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 61–62. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-10.
Full textRoy, Shyamal. "Physicochemical Pretreatments." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 13–22. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-3.
Full textRoy, Shyamal. "Physical Pretreatments." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 6–12. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-2.
Full textRoy, Shyamal. "Economics of Different Pretreatment Technologies." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 56–58. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-8.
Full textRoy, Shyamal. "Biological Pretreatment." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 45–49. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-5.
Full textRoy, Shyamal. "Combined Pretreatment." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 50–51. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-6.
Full textRoy, Shyamal. "Chemical Pretreatments." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 23–44. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-4.
Full textRoy, Shyamal. "Introduction." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 1–5. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-1.
Full textRoy, Shyamal. "Problems of the Industrial Adaptation." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 52–55. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-7.
Full textConference papers on the topic "Biomass pre-treatment"
Tom L. Richard, Sophie Proulx, Kenneth J. Moore, and Shawn Shouse. "Ensilage Technology for Biomass Pre-treatment and Storage." In 2001 Sacramento, CA July 29-August 1,2001. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2001. http://dx.doi.org/10.13031/2013.7304.
Full textGoldsteins, Linards, Raimonds Valdmanis, and Maija Zake. "Activated combustion of biomass blends by microwave pre-treatment of straw." In 20th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2021. http://dx.doi.org/10.22616/erdev.2021.20.tf028.
Full textSalleh, Shanti F., Fiouna D. Wan, Nazeri A. Rahman, and Mohd F. Atan. "Pre-Treatment of Lignocellulosic Biomass (Empty Fruit Bunch) using Ionic Liquids as Solvents." In Proceedings of the International Engineering Conference. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-4587-9_p06.
Full textCheong, Yuen Theng, Adeline Seak May Chua, and Gek Cheng Ngoh. "Optimization of Deep Eutectic Solvent Pretreatment of Oil Palm Empty Fruit Bunch Incorporated Assistive Heating Methods." In International Technical Postgraduate Conference 2022. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.141.17.
Full textKadir, Wan Nadiah Amalina, Man Kee Lam, Yoshimitsu Uemura, Jun-Wei Lim, and Keat Teong Lee. "Harvesting and pre-treatment of microalgae biomass via ozonation for lipid extraction: A preliminary study." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST’18). Author(s), 2018. http://dx.doi.org/10.1063/1.5055466.
Full textWang, Qichen, Brendan T. Higgins, Haodong Ji, and Dongye Zhao. "Improved microalgae biomass production and wastewater treatment: Pre-treating municipal anaerobic digestate for algae cultivation." In 2018 Detroit, Michigan July 29 - August 1, 2018. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2018. http://dx.doi.org/10.13031/aim.201801333.
Full textHerlambang, Aldillah, Shafwan Amrullah, Daniyanto Daniyanto, Yano Surya Pradana, Rochmadi, and Arief Budiman. "The effect of temperature and biomass pre-treatment on non-catalytic gasification of Indonesian sugarcane bagasse." In 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). Author(s), 2018. http://dx.doi.org/10.1063/1.5064992.
Full textBursche, Jamile, Johannes Kramer, Frank Rogener, and Christiane Rieker. "Effects of using green waste compost as a biological pre-treatment of lignocellulosic biomass to produce bioenergy." In 2018 7th International Energy and Sustainability Conference (IESC). IEEE, 2018. http://dx.doi.org/10.1109/iesc.2018.8439975.
Full textGera, Suchita, Prakash Kumar BG, and Ramachandran Subramanian. "Development of Pre-treatment Methods for Biomass-based Substrates for Fermentation Processes with a focus on Ziziphus sp." In Annual International Conference on Advances in Biotechnology. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2251-2489_biotech14.66.
Full textChaussy, Mariann, Morgan Chabannes, Arnaud Day, David Bulteel, Frederic Becquart, and Boubker Laidoudi. "Plant Biomass Used for Green Concrete: A Review of Treatment Methods." In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.601.
Full text