Academic literature on the topic 'Biomarkers of neurodegenerative disease'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomarkers of neurodegenerative disease.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biomarkers of neurodegenerative disease"
Raghunathan, Rekha, Kathleen Turajane, and Li Chin Wong. "Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease." International Journal of Molecular Sciences 23, no. 16 (August 18, 2022): 9299. http://dx.doi.org/10.3390/ijms23169299.
Full textMartínez-Iglesias, Olaia, Vinogran Naidoo, Natalia Cacabelos, and Ramón Cacabelos. "Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders." International Journal of Molecular Sciences 23, no. 1 (December 21, 2021): 13. http://dx.doi.org/10.3390/ijms23010013.
Full textMiller, Elżbieta, Agnieszka Morel, Luciano Saso, and Joanna Saluk. "Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases." Oxidative Medicine and Cellular Longevity 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/572491.
Full textAzevedo, Rita, Chloé Jacquemin, Nicolas Villain, François Fenaille, Foudil Lamari, and François Becher. "Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications." Cells 11, no. 8 (April 9, 2022): 1279. http://dx.doi.org/10.3390/cells11081279.
Full textLemieszewska, Marta, Agnieszka Zabłocka, and Joanna Rymaszewska. "Parkinson’s disease: Etiopathogenesis, molecular basis and potential treatment opportunities." Postępy Higieny i Medycyny Doświadczalnej 73 (May 15, 2019): 256–68. http://dx.doi.org/10.5604/01.3001.0013.2021.
Full textHarrington, Karra D., Andrew J. Aschenbrenner, Paul Maruff, Colin L. Masters, Anne M. Fagan, Tammie L. S. Benzinger, Brian A. Gordon, Carlos Cruchaga, John C. Morris, and Jason Hassenstab. "Undetected Neurodegenerative Disease Biases Estimates of Cognitive Change in Older Adults." Psychological Science 32, no. 6 (May 27, 2021): 849–60. http://dx.doi.org/10.1177/0956797620985518.
Full textGasecka, Aleksandra, Dominika Siwik, Magdalena Gajewska, Miłosz J. Jaguszewski, Tomasz Mazurek, Krzysztof J. Filipiak, Marek Postuła, and Ceren Eyileten. "Early Biomarkers of Neurodegenerative and Neurovascular Disorders in Diabetes." Journal of Clinical Medicine 9, no. 9 (August 30, 2020): 2807. http://dx.doi.org/10.3390/jcm9092807.
Full textMaciejczyk, Mateusz, Anna Zalewska, and Karolina Gerreth. "Salivary Redox Biomarkers in Selected Neurodegenerative Diseases." Journal of Clinical Medicine 9, no. 2 (February 12, 2020): 497. http://dx.doi.org/10.3390/jcm9020497.
Full textBetts, Matthew J., Evgeniya Kirilina, Maria C. G. Otaduy, Dimo Ivanov, Julio Acosta-Cabronero, Martina F. Callaghan, Christian Lambert, et al. "Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases." Brain 142, no. 9 (July 20, 2019): 2558–71. http://dx.doi.org/10.1093/brain/awz193.
Full textMollinari, Cristiana, Chiara De Dominicis, Leonardo Lupacchini, Luigi Sansone, Davide Caprini, Carlo Massimo Casciola, Ying Wang, et al. "Detection of Pathological Markers of Neurodegenerative Diseases following Microfluidic Direct Conversion of Patient Fibroblasts into Neurons." International Journal of Molecular Sciences 23, no. 4 (February 15, 2022): 2147. http://dx.doi.org/10.3390/ijms23042147.
Full textDissertations / Theses on the topic "Biomarkers of neurodegenerative disease"
Rittman, Timothy. "Connectivity biomarkers in neurodegenerative tauopathies." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/248866.
Full textBoman, Andrea. "Lysosomal network proteins as biomarkers and therapeutic targets in neurodegenerative disease." Doctoral thesis, Linköpings universitet, Avdelningen för cellbiologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122347.
Full textRaby, Samantha Jade. "The development of biomarkers for neurodegenerative diseases." Thesis, Lancaster University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.734440.
Full textMarková, Veronika. "Potential Neurophysiological Biomarkers for the Diagnosis of Age-related Neurodegenerative Diseases." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18839.
Full textYousef, Jamil. "Development of Sandwich Assays for Potential Protein Biomarkers in Neurodegenerative Diseases." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278727.
Full textPrevalensen av neurodegenerativa sjukdomar såsom Alzheimers sjukdom (AD), Parkinsonssjukdom (PD), frontallobsdemens (FTD) och amyotrofisk lateralskleros (ALS) ökar i takt med denåldrande populationen. Pålitliga biomarkörer som kan hjälpa till vid diagnostiseringen av dessasjukdomar behövs för att starta rätt behandling så tidigt som möjligt. Ryggmärgsvätska, enkroppsvätska tillhörande det centrala nervsystemet, kan ge en inblick i det centrala nervsystemetstillstånd. Förändrade proteinnivåer i denna kroppsvätska skulle därför kunna fungera sombiomarkörer. Målet i detta projekt var att validera tidigare föreslagna proteinbiomarkörer iryggmärgsvätska. Utifrån en lista av 80 tidigare analyserade proteiner i ryggmärgsvätska hospatienter, inkluderades åtta proteiner i detta valideringsförsök. En antikroppsbaserad så kalladsandwich assay användes i en suspension bead array för att testa 21 stycken antikroppar i ett initialtscreeningsförsök. Antikroppspar som kunde mäta proteinnivåer på ett spädningsberoende vis i detinitiala screeningsförsöket optimerades vidare innan den utvecklade sandwich assayn användes föratt analysera proteinnivåer i individuella prover. Sandwich assays gentemot Amphiphysin(AMPH), Chitotriosidase-1 (CHIT1) och Beta-synuclein (SNCB) kunde bli framtagna ochkorrelerade gentemot tidigare genererat data från en single binder assay på ett framgångsrikt sätt.Projektet kunde därmed validera tidigare fynd som indikerat förhöjda nivåer av AMPH och SNCBi AD patienter, samt förhöjda nivåer av CHIT1 i ALS patienter.
Farajipour, Parisa. "In Vitro Biomarker Detection for Early Diagnosis of Neurodegenerative Diseases via the Ocular Fluid." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1259778648.
Full textCameron, James R. "Eye as a window to the brain : investigating the clinical utility of retinal imaging derived biomarkers in the phenotyping of neurodegenerative disease." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31379.
Full textIsmail, Kurimun. "Development and utilization of Luminex biomarker assays for diagnosis and monitoring of neurodegenerative disease." Thesis, Lancaster University, 2016. http://eprints.lancs.ac.uk/82998/.
Full textGavidia, Bovadilla Giovana. "Study of longitudinal neurodegeneration biomarkers to support the early diagnosis of Alzheimer’s disease." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/666067.
Full textLa enfermedad de Alzheimer (AD) es un trastorno progresivo y neurodegenerativo caracterizado por cambios patológicos en el cerebro que comienzan varios años antes de aparecer los primeros síntomas clínicos. La identificación temprana y precisa de estos cambios ayuda a mejorar el diagnóstico y la monitorización, permitiendo que la enfermedad sea abordada en sus primeras etapas, antes de producirse un deterioro morfológico y mental irreversible. El cerebro de los sujetos con AD se reduce significativamente a medida que avanza la enfermedad, siendo el envejecimiento el principal factor de riesgo para la AD esporádica, donde los cerebros de la gente mayor son más susceptibles que los más jóvenes. Sin embargo, ha sido observado que los cerebros de los adultos mayores y de los sujetos en una fase anterior con deterioro cognitivo leve (MCI) pierden materia en regiones relacionadas con AD. Esta tesis propone dos métodos basados en métodos de aprendizaje estadísticos, que se centran en caracterizar los cambios relacionados con el envejecimiento en estructuras cerebrales de controles sanos de edad avanzada (HC), MCI y AD, y en abordar la estimación del diagnóstico actual (ECD) de estos grupos, así como la predicción de su diagnóstico futuro (PFD), principalmente en el diagnóstico precoz de la conversión de MCI a AD. Los datos utilizados corresponden a biomarcadores de neurodegeneración longitudinal obtenidas de imágenes de Resonancia Magnética (MRI). Estos biomarcadores se obtuvieron a partir de los estudios Alzheimer?s Disease Neuroimaging Initiative (ADNI) y Open Access Series of Imaging Studies (OASIS). Los datos de ADNI incluyeron biomarcadores de MRI disponibles en un seguimiento de 5 años en sujetos HC, MCI y AD, mientras que los datos de OASIS solo incluyeron biomarcadores medidos al inicio del estudio en HC y AD. En el primer método, denominado M-res, los biomarcadores que cambiaron significativamente (vr) y los que cambiaron en una reducida escala (qvr) fueron identificados en sujetos HC utilizando modelos lineales de efectos mixtos (LME). Asimismo, modelos nulos basados en el normal envejecimiento del cerebro fueron construidos para cada género. A través de estos ellos se buscó caracterizar la atrofia normal y los patrones de crecimiento de los biomarcadores vr y qvr, así como la correlación entre ellos. Estos modelos fueron utilizados en los sujetos HC, MCI y AD restantes para inferir los valores normales de los biomarcadores vr y luego calcular sus desviaciones (residuos) respecto a los biomarcadores observados. A diferencia de M-res, el segundo método denominado M-raw, se centra en el análisis de los valores directos de los biomarcadores MRI, estratificados por grupos de edad de cinco años. M-raw incluye un método de selección de características específicas del diagnóstico diferencial aplicado antes de la clasificación. En ambos métodos, se entrenaron máquinas soporte vectorial (SVM) para abordar tres experimentos: AD vs. HC, MCI vs. HC y AD vs. MCI. En M-res, los modelos SVM fueron entrenados a partir de los residuos calculados para los biomarcadores vr más la edad, mientras que en M-raw, se utilizó el grupo de características seleccionadas más la edad, el sexo y los años de educación. El avance de la predicción temprana de la enfermedad fue calculada como el promedio de años avanzados en el PFD con respecto al último diagnóstico clínico conocido. Los resultados confirman una reducción en todos los biomarcadores corticales a medida que la edad avanza, siendo el cambio de algunas regiones más acelerados que otras. Asimismo, se observó un patrón de atrofia frontotemporal en los tres grupos de sujetos. Con respecto al problema ECD, todos los modelos SVM obtuvieron mejor desempeño en la clasificación que los métodos comparables en la literatura, especialmente en AD vs. HC. Ambos métodos también mejoraron la PFD, tanto en los indicadores de calidad de predicción como en el tiempo de avance en el diagnóstico (hasta 1.87 años antes en sujetos de 80-84 años).
Chaney, Aisling. "Investigating imaging biomarkers of neuroinflammation and neurodegeneration in rodent models of Alzheimer's disease." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/investigating-imaging-biomarkers-of-neuroinflammation-and-neurodegeneration-in-rodent-models-of-alzheimers-disease(16750cf1-eb30-49c5-b9eb-9f01d4a0560f).html.
Full textBooks on the topic "Biomarkers of neurodegenerative disease"
Peplow, Philip V., Bridget Martinez, and Thomas A. Gennarelli, eds. Neurodegenerative Diseases Biomarkers. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1712-0.
Full textIngelsson, Martin, and Lars Lannfelt, eds. Immunotherapy and Biomarkers in Neurodegenerative Disorders. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3560-4.
Full textLovestone, Simon. Biomarkers in brain disease. Boston, Mass: Published by Blackwell Pub. on behalf of the New York Academy of Sciences, 2009.
Find full textservice), ScienceDirect (Online, ed. Biomarkers in kidney disease. London: Academic, 2010.
Find full textde Lemos, James A., ed. Biomarkers in Heart Disease. Oxford, UK: Blackwell Publishing Ltd., 2008. http://dx.doi.org/10.1002/9781444300208.
Full textPatel, Vinood B., and Victor R. Preedy, eds. Biomarkers in Bone Disease. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-7693-7.
Full textPatel, Vinood B., and Victor R. Preedy, eds. Biomarkers in Cardiovascular Disease. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-7741-5.
Full textPreedy, Victor R., ed. Biomarkers in Liver Disease. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-7742-2.
Full textPreedy, Victor R., ed. Biomarkers in Bone Disease. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-7745-3.
Full textPatel, Vinood B., ed. Biomarkers in Kidney Disease. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-7743-9.
Full textBook chapters on the topic "Biomarkers of neurodegenerative disease"
Surguchov, Andrei. "Biomarkers in Parkinson’s Disease." In Neurodegenerative Diseases Biomarkers, 155–80. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1712-0_7.
Full textHarker, Donald M. R., Bridget Martinez, and Ruben K. Dagda. "Possible Biomarkers for Frontotemporal Dementia and to Differentiate from Alzheimer’s Disease and Amyotrophic Lateral Sclerosis." In Neurodegenerative Diseases Biomarkers, 387–403. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1712-0_16.
Full textMattsson, Niklas, Sotirios Grigoriou, and Henrik Zetterberg. "Fluid Biomarkers in Alzheimer’s Disease and Frontotemporal Dementia." In Neurodegenerative Diseases, 221–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72938-1_11.
Full textBozzali, Marco, and Laura Serra. "Biomarkers for Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Imaging." In Neurodegenerative Diseases, 253–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72938-1_12.
Full textBozzali, Marco, and Laura Serra. "Biomarkers for Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Imaging." In Neurodegenerative Diseases, 159–78. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6380-0_10.
Full textMattsson, Niklas, and Henrik Zetterberg. "Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease and Frontotemporal Dementia." In Neurodegenerative Diseases, 131–57. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6380-0_9.
Full textKilloran, Annie. "Biomarkers in Huntington’s." In Neurodegenerative Diseases Biomarkers, 235–62. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1712-0_10.
Full textDe Natale, Edoardo Rosario, Heather Wilson, and Marios Politis. "Imaging in Huntington’s." In Neurodegenerative Diseases Biomarkers, 457–505. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1712-0_19.
Full textXi, Hui, and Yang Zhang. "Aptamer Detection of Neurodegenerative." In Neurodegenerative Diseases Biomarkers, 361–86. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1712-0_15.
Full textHor, Jin-Hui, Munirah Mohamad Santosa, and Shi-Yan Ng. "Role of SIRT3 and in Neurodegeneration." In Neurodegenerative Diseases Biomarkers, 99–120. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1712-0_5.
Full textConference papers on the topic "Biomarkers of neurodegenerative disease"
Faria, Gustavo Hugo de Souza. "The impact of epigenetics on the development of neurodegenerative diseases." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.654.
Full textRizzi, Liara, and Marcio Balthazar. "THE SUSPECTED NON-ALZHEIMER’S DISEASE PATHOPHYSIOLOGY." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda070.
Full textPinheiro, Mariana Maciel, Victor Albuquerque, Pedro Albuquerque, Eduardo Maranhão, Jonathan Diniz, and Breno Barbosa. "CORTICOBASAL SYNDROME DUE TO ALZHEIMER’S DISEASE." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda055.
Full textMariano, Luciano, Larissa Salvador, Patrícia Peles, Clarisse Friedlaender, Viviane Carvalho, Etelvina dos Santos, Leonardo de Souza, and Paulo Caramelli. "AT(N) MODEL AND ITS ASSOCIATION WITH NEUROPSYCHOLOGICAL MARKERS." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda019.
Full textParmera, Jacy, Artur Coutinho, Isabel Almeida, Camila Carneiro, Carla Ono, Adalberto Studart-Neto, Egberto Barbosa, Carlos Buchpiguel, Ricardo Nitrini, and Sonia Brucki. "CORTICOBASAL SYNDROME: A PROSPECTIVE STUDY OF CLINICAL PROFILES AND IMAGING BIOMARKERS." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda010.
Full textChiu, Shu-I., Chin-Hsien Lin, Wee Shin Lim, Ming-Jang Chiu, Ta-Fu Chen, and Jyh-Shing Roger Jang. "Predicting Neurodegenerative Diseases Using a Novel Blood Biomarkers-based Model by Machine Learning." In 2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI). IEEE, 2019. http://dx.doi.org/10.1109/taai48200.2019.8959854.
Full textArisi, Ivan, Patrizia Mecocci, Giuseppe Bruno, Marco Canevelli, Magda Tsolaki, Natalia Pelteki, Fabrizio Stocchi, et al. "Mining clinical and laboratory data of neurodegenerative diseases by Machine Learning: transcriptomic biomarkers." In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2018. http://dx.doi.org/10.1109/bibm.2018.8621072.
Full textMeghdadi, Amir H., Marija Stevanovic Karic, and Chris Berka. "EEG analytics: benefits and challenges of data driven EEG biomarkers for neurodegenerative diseases." In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914065.
Full textInnocencio, Giovanna de Camargo, Juliana de Souza Rosa, Patrick de Abreu Cunha Lopes, Paulo Roberto Hernandes Júnior, and Jhoney Francieis Feitosa. "Clinical overview and therapeutic management of the cognitive and behavorial aspects of Huntington’s disease." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.177.
Full textIwabuchi, Manna, Marcel Hetu, Eric Maxwell, Jean S. Pradel, Sashary Ramos, and William G. Tong. "Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases." In SPIE Optical Engineering + Applications, edited by G. Groot Gregory, Arthur J. Davis, and Cornelius F. Hahlweg. SPIE, 2015. http://dx.doi.org/10.1117/12.2188797.
Full textReports on the topic "Biomarkers of neurodegenerative disease"
Lim, Soojin. Fluorescent Indicators for Disease Biomarkers. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.262.
Full textPotashkin, Judith. Splice Variant Biomarkers for Parkinson's Disease. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada600497.
Full textBailey, Charles L. Infectious Disease Proteome Biomarkers: Final Technical Report. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1090082.
Full textHakuna, Lovemore. Selective Indicators for Optical Determination of Disease Biomarkers. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2052.
Full textGordon, Terry. Development of Biomarkers for Chronic Beryllium Disease in Mice. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060004.
Full textMillhorn, David E. Signal Transduction and Gene Regulation During Hypoxic Stress: A Potential Role in Neurodegenerative Disease. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada383039.
Full textMillhorn, David E. Signal Transduction and Gene Regulation During Hypoxia Stress: A Potential Role in Neurodegenerative Disease. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada416979.
Full textMillhorn, David E. Signal Transduction and Gene Regulation During Hypoxic Stress: A Potential Role in Neurodegenerative Disease. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada397765.
Full textMayes, Maureen D. Predicting Disease Progression in Scleroderma with Skin and Blood Biomarkers. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada613314.
Full textVlad, Anda. Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada568359.
Full text