Academic literature on the topic 'Biology - Carbohydrate Functionalized Nanomaterials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biology - Carbohydrate Functionalized Nanomaterials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biology - Carbohydrate Functionalized Nanomaterials"

1

Fakayode, Olayemi J., Ncediwe Tsolekile, Sandile P. Songca, and Oluwatobi S. Oluwafemi. "Applications of functionalized nanomaterials in photodynamic therapy." Biophysical Reviews 10, no. 1 (2018): 49–67. http://dx.doi.org/10.1007/s12551-017-0383-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guan, Guijian, and Ming‐Yong Han. "Functionalized Hybridization of 2D Nanomaterials." Advanced Science 6, no. 23 (2019): 1901837. http://dx.doi.org/10.1002/advs.201901837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Horrick, and Somrita Mondal. "Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine." International Journal of Molecular Sciences 21, no. 17 (2020): 6280. http://dx.doi.org/10.3390/ijms21176280.

Full text
Abstract:
The usage of nanomaterials for cancer treatment has been a popular research focus over the past decade. Nanomaterials, including polymeric nanomaterials, metal nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials such as graphene oxide (GO), have been used for cancer cell imaging, chemotherapeutic drug targeting, chemotherapy, photothermal therapy, and photodynamic therapy. In this review, we discuss the concept of targeted nanoparticles in cancer therapy and summarize the in vivo biocompatibility of graphene-based nanomaterials. Specifically, we discuss in detail the chem
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Yangkun, Gongmeiyue Su, Ruoyao Zhang, Rongji Dai, and Zhao Li. "Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds." International Journal of Molecular Sciences 24, no. 1 (2022): 336. http://dx.doi.org/10.3390/ijms24010336.

Full text
Abstract:
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainl
APA, Harvard, Vancouver, ISO, and other styles
5

Alshamrani, Meshal. "Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials." Polymers 14, no. 6 (2022): 1221. http://dx.doi.org/10.3390/polym14061221.

Full text
Abstract:
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the
APA, Harvard, Vancouver, ISO, and other styles
6

Branderhorst, Hilbert M., Rob Ruijtenbeek, Rob M. J. Liskamp, and Roland J. Pieters. "Multivalent Carbohydrate Recognition on a Glycodendrimer‐Functionalized Flow‐Through Chip." ChemBioChem 9, no. 11 (2008): 1836–44. http://dx.doi.org/10.1002/cbic.200800195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dutta, Sutapa, Stefano Corni, and Giorgia Brancolini. "Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications." International Journal of Molecular Sciences 23, no. 3 (2022): 1484. http://dx.doi.org/10.3390/ijms23031484.

Full text
Abstract:
Nanoscale biosensors, a highly promising technique in clinical analysis, can provide sensitive yet label-free detection of biomolecules. The spatial and chemical specificity of the surface coverage, the proper immobilization of the bioreceptor as well as the underlying interfacial phenomena are crucial elements for optimizing the performance of a biosensor. Due to experimental limitations at the microscopic level, integrated cross-disciplinary approaches that combine in silico design with experimental measurements have the potential to present a powerful new paradigm that tackles the issue of
APA, Harvard, Vancouver, ISO, and other styles
8

Koukalová, Tereza, Petr Kovaříček, Pavla Bojarová, et al. "Reversible Lectin Binding to Glycan-Functionalized Graphene." International Journal of Molecular Sciences 22, no. 13 (2021): 6661. http://dx.doi.org/10.3390/ijms22136661.

Full text
Abstract:
The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands—chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agg
APA, Harvard, Vancouver, ISO, and other styles
9

David, Christopher A. W., Michael Barrow, Patricia Murray, Matthew J. Rosseinsky, Andrew Owen, and Neill J. Liptrott. "In Vitro Determination of the Immunogenic Impact of Nanomaterials on Primary Peripheral Blood Mononuclear Cells." International Journal of Molecular Sciences 21, no. 16 (2020): 5610. http://dx.doi.org/10.3390/ijms21165610.

Full text
Abstract:
Investigation of the potential for nanomaterials to generate immunogenic effects is a key aspect of a robust preclinical evaluation. In combination with physicochemical characterization, such assessments also provide context for how material attributes influence biological outcomes. Furthermore, appropriate models for these assessments allow accurate in vitro to in vivo extrapolation, which is vital for the mechanistic understanding of nanomaterial action. Here we have assessed the immunogenic impact of a small panel of commercially available and in-house prepared nanomaterials on primary huma
APA, Harvard, Vancouver, ISO, and other styles
10

Vázquez-González, Margarita, and Itamar Willner. "Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications." International Journal of Molecular Sciences 22, no. 4 (2021): 1803. http://dx.doi.org/10.3390/ijms22041803.

Full text
Abstract:
Sequence-specific nucleic acids exhibiting selective recognition properties towards low-molecular-weight substrates and macromolecules (aptamers) find growing interest as functional biopolymers for analysis, medical applications such as imaging, drug delivery and even therapeutic agents, nanotechnology, material science and more. The present perspective article introduces a glossary of examples for diverse applications of aptamers mainly originated from our laboratory. These include the introduction of aptamer-functionalized nanomaterials such as graphene oxide, Ag nanoclusters and semiconduct
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!