Academic literature on the topic 'Biological Sequence Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biological Sequence Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biological Sequence Analysis"
Allison, L., L. Stern, T. Edgoose, and T. I. Dix. "Sequence complexity for biological sequence analysis." Computers & Chemistry 24, no. 1 (January 2000): 43–55. http://dx.doi.org/10.1016/s0097-8485(00)80006-6.
Full textLi, Hongliang, and Bin Liu. "BioSeq-Diabolo: Biological sequence similarity analysis using Diabolo." PLOS Computational Biology 19, no. 6 (June 20, 2023): e1011214. http://dx.doi.org/10.1371/journal.pcbi.1011214.
Full textPetti, Samantha, and Sean R. Eddy. "Constructing benchmark test sets for biological sequence analysis using independent set algorithms." PLOS Computational Biology 18, no. 3 (March 7, 2022): e1009492. http://dx.doi.org/10.1371/journal.pcbi.1009492.
Full textHorton, Robert M. "Biological Sequence Analysis Using Regular Expressions." BioTechniques 27, no. 1 (July 1999): 76–78. http://dx.doi.org/10.2144/99271ir01.
Full textYap, T. K., O. Frieder, and R. L. Martino. "Parallel computation in biological sequence analysis." IEEE Transactions on Parallel and Distributed Systems 9, no. 3 (March 1998): 283–94. http://dx.doi.org/10.1109/71.674320.
Full textPachter, L., and B. Sturmfels. "Parametric inference for biological sequence analysis." Proceedings of the National Academy of Sciences 101, no. 46 (November 8, 2004): 16138–43. http://dx.doi.org/10.1073/pnas.0406011101.
Full textMitrophanov, Alexander Yu, and Mark Borodovsky. "Statistical significance in biological sequence analysis." Briefings in Bioinformatics 7, no. 1 (March 1, 2006): 2–24. http://dx.doi.org/10.1093/bib/bbk001.
Full textDwivedi, Vivek Dhar, Indra Prasad Tripathi, Aman Chandra Kaushik, Shiv Bharadwaj, and Sarad Kumar Mishra. "Biological Data Analysis Program (BDAP): a multitasking biological sequence analysis program." Neural Computing and Applications 30, no. 5 (December 17, 2016): 1493–501. http://dx.doi.org/10.1007/s00521-016-2772-z.
Full textMurad, Taslim, Sarwan Ali, and Murray Patterson. "Exploring the Potential of GANs in Biological Sequence Analysis." Biology 12, no. 6 (June 14, 2023): 854. http://dx.doi.org/10.3390/biology12060854.
Full textHanif, Waqar, Hijab Fatima, Muhammad Qasim, Rana Muhammad Atif, and Muhammad Rizwan Javed. "SeqDown: An Efficient Sequence Retrieval Software and Comparative Sequence Retrieval Analysis." Current Trends in OMICS 1, no. 1 (August 2, 2021): 18–29. http://dx.doi.org/10.32350/cto.11.03.
Full textDissertations / Theses on the topic "Biological Sequence Analysis"
Yeats, Corin Anthony. "Biological investigations through sequence analysis." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614848.
Full textThompson, James. "Genetic algorithms applied to biological sequence analysis /." Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/2269.
Full textParbhane, R. V. "Analysis of DNA sequences: modeling sequence dependent features and their biological roles." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2000. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2285.
Full textVerzotto, Davide. "Advanced Computational Methods for Massive Biological Sequence Analysis." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3426282.
Full textCon l'avvento delle moderne tecnologie di sequenziamento, massive quantità di dati biologici, da sequenze proteiche fino a interi genomi, sono disponibili per la ricerca. Questo progresso richiede l'analisi e la classificazione automatica di tali collezioni di dati, al fine di migliorare la conoscenza nel campo delle Scienze della Vita. Nonostante finora siano stati proposti molti approcci per modellare matematicamente le sequenze biologiche, ad esempio cercando pattern e similarità tra sequenze genomiche o proteiche, questi metodi spesso mancano di strutture in grado di indirizzare specifiche questioni biologiche. In questa tesi, presentiamo nuovi metodi computazionali per tre problemi fondamentali della biologia molecolare: la scoperta di relazioni evolutive remote tra sequenze proteiche, l'individuazione di segnali biologici complessi in siti funzionali tra loro correlati, e la ricostruzione della filogenesi di un insieme di organismi, attraverso la comparazione di interi genomi. Il principale contributo è dato dall'analisi sistematica dei pattern che possono interessare questi problemi, portando alla progettazione di nuovi strumenti computazionali efficaci ed efficienti. Vengono introdotti così due paradigmi avanzati per la scoperta e il filtraggio di pattern, basati sull'osservazione che i motivi biologici funzionali, o pattern, sono localizzati in differenti regioni delle sequenze in esame. Questa osservazione consente di realizzare approcci parsimoniosi in grado di evitare un conteggio multiplo degli stessi pattern. Il primo paradigma considerato, ovvero irredundant common motifs, riguarda la scoperta di pattern comuni a coppie di sequenze che hanno occorrenze non coperte da altri pattern, la cui copertura è definita da una maggiore specificità e/o possibile estensione dei pattern. Il secondo paradigma, ovvero underlying motifs, riguarda il filtraggio di pattern che hanno occorrenze non sovrapposte a quelle di altri pattern con maggiore priorità, dove la priorità è definita da proprietà lessicografiche dei pattern al confine tra pattern matching e analisi statistica. Sono stati sviluppati tre metodi computazionali basati su questi paradigmi avanzati. I risultati sperimentali indicano che i nostri metodi sono in grado di identificare le principali similitudini tra sequenze biologiche, utilizzando l'informazione presente in maniera non ridondante. In particolare, impiegando gli irredundant common motifs e le statistiche basate su questi pattern risolviamo il problema della rilevazione di omologie remote tra proteine. I risultati evidenziano che il nostro approccio, chiamato Irredundant Class, ottiene ottime prestazioni su un benchmark impegnativo, e migliora i metodi allo stato dell'arte. Inoltre, per individuare segnali biologici complessi utilizziamo la nozione di underlying motifs, definendo così alcune modalità per il confronto e il filtraggio di motivi degenerati ottenuti tramite moderni strumenti di pattern discovery. Esperimenti su grandi famiglie proteiche dimostrano che il nostro metodo riduce drasticamente il numero di motivi che gli scienziati dovrebbero altrimenti ispezionare manualmente, mettendo in luce inoltre i motivi funzionali identificati in letteratura. Infine, combinando i due paradigmi proposti presentiamo una nuova e pratica funzione di distanza tra interi genomi. Con il nostro metodo, chiamato Unic Subword Approach, relazioniamo tra loro le diverse regioni di due sequenze genomiche, selezionando i motivi conservati durante l'evoluzione. I risultati sperimentali evidenziano che il nostro approccio offre migliori prestazioni rispetto ad altri metodi allo stato dell'arte nella ricostruzione della filogenesi di organismi quali virus, procarioti ed eucarioti unicellulari, identificando inoltre le sottoclassi principali di queste specie.
Margolin, Yelena 1977. "Analysis of sequence-selective guanine oxidation by biological agents." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42381.
Full textVita.
Includes bibliographical references.
Oxidatively damaged DNA has been strongly associated with cancer, chronic degenerative diseases and aging. Guanine is the most frequently oxidized base in the DNA, and generation of a guanine radical cation (G'") as an intermediate in the oxidation reaction leads to migration of a resulting cationic hole through the DNA n-stack until it is trapped at the lowest-energy sites. These sites reside at runs of guanines, such as 5'-GG-3' sequences, and are characterized by the lowest sequence-specific ionization potentials (IPs). The charge transfer mechanism suggests that hotspots of oxidative DNA damage induced by electron transfer reagents can be predicted based on the primary DNA sequence. However, preliminary data indicated that nitrosoperoxycarbonate (ONOOCO2"), a mediator of chronic inflammation and a one-electron oxidant, displayed unusual guanine oxidation properties that were the focus of present work. As a first step in our study, we determined relative levels of guanine oxidation, induced by ONOOCO2 in all possible three-base sequence contexts (XGY) within double-stranded oligonucleotides. These levels were compared to the relative oxidation induced within the same guanines by photoactivated riboflavin, a one-electron reagent. We found that, in agreement with previous studies, photoactivated riboflavin was selective for guanines of lowest IPs located within 5'-GG-3' sequences. In contrast, ONOOCO2" preferentially reacted with guanines located within 5'-GC-3' sequences characterized by the highest IPs. This demonstrated that that sequence-specific IP was not a determinant of guanine reactivity with ONOOCO2". Sequence selectivities for both reagents were double-strand specific. Selectivity of ONOOCO2 for 5'-GC-3' sites was also observed in human genomic DNA after ligation-mediated PCR analysis.
(cont.) Relative yields of different guanine lesions produced by both ONOOCO2" and riboflavin varied 4- to 5-fold across all sequence contexts. To assess the role of solvent exposure in mediating guanine oxidation by ONOOCO2", relative reactivities of mismatched guanines with ONOOCO2" were measured. The majority of the mismatches displayed an increased reactivity with ONOOCO2 as compared to the fully matched G-C base-pairs. The extent of reactivity enhancement was sequence context-dependent, and the greatest levels of enhancement were observed for the conformationally flexible guanine- guanine (G-G) mismatches and for guanines located across from a synthetic abasic site. To test the hypothesis that the negative charge of an oxidant influences its reactivity with guanines in DNA, sequence-selective guanine oxidation by a negatively charged reagent, Fe+2-EDTA, was assessed and compared to guanine oxidation produced by a neutral oxidant, y-radiation. Because both of these agents cause high levels of deoxyribose oxidation, a general method to quantify sequence-specific nucleobase oxidation in the presence of direct strand breaks was developed. This method exploited activity of exonuclease III (Exo III), a 3' to 5' exonuclease, and utilized phosphorothioate-modified synthetic oligonucleotides that were resistant to Exo III activity. This method was employed to determine sequence-selective guanine oxidation by Fe+2-EDTA complex and y-radiation and to show that both agents produced identical guanine oxidation pattems and were equally reactive with all guanines, irrespective of their sequence-specific IPs or sequence context.
(cont.) This showed that negative charge was not a determinant of Fe+2-EDTA-mediated guanine oxidation. Finally, the role of oxidant binding on nucleobase damage was assessed by studying sequence-selective oxidation produced by DNA-bound Fe+2 ions in the presence of H202. We found that the major oxidation targets were thymines located within 5'-TGG-3' motifs, demonstrating that while guanines were a required element for coordination of Fe+2 to DNA, they were not oxidized. Our results suggest that factors other than sequence-specific IPs can act as major determinants of sequence-selective guanine oxidation, and that current models of guanine oxidation and charge transfer in DNA cannot be used to adequately predict the location and identity of mutagenic lesions in the genome.
by Yelena Margolin.
Ph.D.
Kim, Eagu. "Inverse Parametric Alignment for Accurate Biological Sequence Comparison." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/193664.
Full textBehr, Jonathan Robert. "Novel tools for sequence and epitope analysis of glycosaminoglycans." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42383.
Full textIncludes bibliographical references.
Our understanding of glycosaminoglycan (GAG) biology has been limited by a lack of sensitive and efficient analytical tools designed to deal with these complex molecules. GAGs are heterogeneous and often sulfated linear polys accharides found throughout the extracellular environment, and available to researchers only in limited mixtures. A series of sensitive label-free analytical tools were developed to provide sequence information and to quantify whole epitopes from GAG mixtures. Three complementary sets of tools were developed to provide GAG sequence information. Two novel exolytic sulfatases from Flavobacterium heparinum that degrade heparan/heparan sulfate glycosaminoglycans (HSGAGs) were cloned and characterized. These exolytic enzymes enabled the exo-sequencing of a HSGAG oligosaccharide. Phenylboronic acids (PBAs) were specifically reacted with unsulfated chondroitin sulfate (CS) disaccharides from within a larger mixture. The resulting cyclic esters were easily detected in mass spectrometry (MS) using the distinct isotopic abundance of boron. Electrospray ionization tandem mass spectrometry (ESI-MSn) was employed to determine the fragmentation patterns of HSGAG disaccharides. These patterns were used to quantify relative amounts of isomeric disaccharides in a mixture. Fragmentation information is valuable for building methods for oligosaccharide sequencing, and the general method can be applied to quantify any isomers using MSn. Three other tools were developed to quantify GAG epitopes. Two microfluidic devices were characterized as HSGAG sensors. Sensors were functionalized either with protamine to quantify total HSGAGs or with antithrombin-III (AT-III) to quantify a specific anticoagulant epitope.
(cont.) A charge sensitive silicon field effect sensor accurately quantified clinically relevant anticoagulants including low molecular weight heparins (LMWH), even out of serum. A mass sensitive suspended microchannel resonator (SMR) measured the same clinically relevant HSGAGs. When these two sensors were compared, the SMR proved more robust and versatile. The SMR signal is more stable, it can be reused ad infinitum, and surface modifications can be automated and monitored. The field effect sensor provided an advantage in selectivity by preferentially detecting highly charged HSGAGs instead of any massive, non-specifically bound proteins. Lastly, anti-HSGAG single chain variable fragments (scFv) were evolved using yeast surface display towards generating antibodies for HSGAG epitope sensing and clinical GAG neutralization.
by Jonathan Robert Behr.
Ph.D.
Tångrot, Jeanette. "Structural Information and Hidden Markov Models for Biological Sequence Analysis." Doctoral thesis, Umeå universitet, Institutionen för datavetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1629.
Full textBioinformatik är ett område där datavetenskapliga och statistiska metoder används för att analysera och strukturera biologiska data. Ett viktigt område inom bioinformatiken försöker förutsäga vilken tredimensionell struktur och funktion ett protein har, utifrån dess aminosyrasekvens och/eller likheter med andra, redan karaktäriserade, proteiner. Det är känt att två proteiner med likande aminosyrasekvenser också har liknande tredimensionella strukturer. Att två proteiner har liknande strukturer behöver dock inte betyda att deras sekvenser är lika, vilket kan göra det svårt att hitta strukturella likheter utifrån ett proteins aminosyrasekvens. Den här avhandlingen beskriver två metoder för att hitta likheter mellan proteiner, den ena med fokus på att bestämma vilken familj av proteindomäner, med känd 3D-struktur, en given sekvens tillhör, medan den andra försöker förutsäga ett proteins veckning, d.v.s. ge en grov bild av proteinets struktur. Båda metoderna använder s.k. dolda Markov modeller (hidden Markov models, HMMer), en statistisk metod som bland annat kan användas för att beskriva proteinfamiljer. Med hjälp en HMM kan man förutsäga om en viss proteinsekvens tillhör den familj modellen representerar. Båda metoderna använder också strukturinformation för att öka modellernas förmåga att känna igen besläktade sekvenser, men på olika sätt. Det mesta av arbetet i avhandlingen handlar om strukturellt förankrade HMMer (structure-anchored HMMs, saHMMer). För att bygga saHMMerna används strukturbaserade sekvensöverlagringar, vilka genereras utifrån hur proteindomänerna kan läggas på varandra i rymden, snarare än utifrån vilka aminosyror som ingår i deras sekvenser. I varje proteinfamilj används bara ett särskilt, representativt urval av domäner. Dessa är valda så att då sekvenserna jämförs parvis, finns det inget par inom familjen med högre sekvensidentitet än ca 20%. Detta urval görs för att få så stor spridning som möjligt på sekvenserna inom familjen. En programvaruserie har utvecklats för att välja ut representanter för varje familj och sedan bygga saHMMer baserade på dessa. Det visar sig att saHMMerna kan hitta rätt familj till en hög andel av de testade sekvenserna, med nästan inga fel. De är också bättre än den ofta använda metoden Pfam på att hitta rätt familj till helt nya proteinsekvenser. saHMMerna finns tillgängliga genom FISH-servern, vilken alla kan använda via Internet för att hitta vilken familj ett intressant protein kan tillhöra. Den andra metoden som presenteras i avhandlingen är sekundärstruktur-HMMer, ssHMMer, vilka är byggda från vanliga multipla sekvensöverlagringar, men också från information om vilka sekundärstrukturer proteinsekvenserna i familjen har. När en proteinsekvens jämförs med ssHMMen används en förutsägelse om sekundärstrukturen, och den beräknade sannolikheten att sekvensen tillhör familjen kommer att baseras både på sekvensen av aminosyror och på sekundärstrukturen. Vid en jämförelse visar det sig att HMMer baserade på flera sekvenser är bättre än sådana baserade på endast en sekvens, när det gäller att hitta rätt veckning för en proteinsekvens. HMMerna blir ännu bättre om man också tar hänsyn till sekundärstrukturen, både då den riktiga sekundärstrukturen används och då man använder en teoretiskt förutsagd.
Jeanette Hargbo.
Won, Kyoung-Jae. "Exploring the structure of Hidden Markov Models for biological sequence analysis." Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427702.
Full textTörnkvist, Maria. "Synovial sarcoma : molecular, biological and clinical implications /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-024-9/.
Full textBooks on the topic "Biological Sequence Analysis"
Ophir, Frieder, and Martino Robert L, eds. High performance computational methods for biological sequence analysis. Boston: Kluwer Academic Publishers, 1996.
Find full textYap, Tieng K., Ophir Frieder, and Robert L. Martino. High Performance Computational Methods for Biological Sequence Analysis. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1391-5.
Full textKnut, Reinert, ed. Biological sequence analysis using the SeqAn C++ library. Boca Raton: Chapman & Hall/CRC Taylor & Francis, 2009.
Find full textGogol-Döring, Andreas. Biological sequence analysis using the SeqAn C++ library. Boca Raton: CRC Press, 2010.
Find full textGogol-Döring, Andreas. Biological sequence analysis using the SeqAn C++ library. Boca Raton: Chapman & Hall/CRC Taylor & Francis, 2009.
Find full textYap, Tieng K. High Performance Computational Methods for Biological Sequence Analysis. Boston, MA: Springer US, 1996.
Find full textRichard, Durbin, ed. Biological sequence analysis: Probabalistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University Press, 1998.
Find full textS, Eddy, and Krogh A. et al, eds. Biological Sequence Analysis: Probabilistic Models of Protein & Nucleic Acids. New York: Cambridge University Press, 1998.
Find full textauthor, Belazzougui Djamal, Cunial Fabio author, and Tomescu Alexandru I. author, eds. Genome-scale algorithm design: Biological sequence analysis in the era of high-throughput sequencing. Cambridge, United Kingdom: University Printing House, 2015.
Find full textBiological microarrays: Methods and protocols. New York: Humana Press, 2011.
Find full textBook chapters on the topic "Biological Sequence Analysis"
Cawley, Simon E. "Biological Sequence Analysis." In Selected Works of Terry Speed, 563–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1347-9_14.
Full textChiang, David. "Biological Sequence Analysis: Basics." In Grammars for Language and Genes, 69–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20444-9_5.
Full textChiang, David. "Biological Sequence Analysis: Intersection." In Grammars for Language and Genes, 89–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20444-9_6.
Full textYap, Tieng K., Ophir Frieder, and Robert L. Martino. "Sequence Analysis Algorithms." In High Performance Computational Methods for Biological Sequence Analysis, 51–97. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1391-5_3.
Full textYap, Tieng K., Ophir Frieder, and Robert L. Martino. "Biological Background." In High Performance Computational Methods for Biological Sequence Analysis, 15–49. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1391-5_2.
Full textManning, A. M., J. A. Keane, A. Brass, and C. A. Goble. "Clustering techniques in biological sequence analysis." In Principles of Data Mining and Knowledge Discovery, 315–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63223-9_130.
Full textLiu, Jun S., and T. Logvinenko. "Bayesian Methods in Biological Sequence Analysis." In Handbook of Statistical Genetics, 67–96. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470061619.ch3.
Full textYap, Tieng K., Ophir Frieder, and Robert L. Martino. "Multiprocessor Sequence Alignment." In High Performance Computational Methods for Biological Sequence Analysis, 111–41. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1391-5_5.
Full textBlanchet, Christophe, Christophe Combet, Vladimir Daric, and Gilbert Deléage. "Web Services Interface to Run Protein Sequence Tools on Grid, Testcase of Protein Sequence Alignment." In Biological and Medical Data Analysis, 240–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11946465_22.
Full textSrinivasa, K. G., M. Jagadish, K. R. Venugopal, and L. M. Patnaik. "Non-repetitive DNA Sequence Compression Using Memoization." In Biological and Medical Data Analysis, 402–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11946465_36.
Full textConference papers on the topic "Biological Sequence Analysis"
Nguyen, Thuy-Diem, and Chee-Keong Kwoh. "Efficient agglomerative hierarchical clustering for biological sequence analysis." In TENCON 2015 - 2015 IEEE Region 10 Conference. IEEE, 2015. http://dx.doi.org/10.1109/tencon.2015.7373194.
Full textSpell, R., R. Brady, and F. Dierich. "BARD: a visualization tool for biological sequence analysis." In IEEE Symposium on Information Visualization 2003. IEEE, 2003. http://dx.doi.org/10.1109/infvis.2003.1249029.
Full textSchwartz, Daniel. "Invited: “Going viral” with biological sequence analysis." In 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2011. http://dx.doi.org/10.1109/iccabs.2011.5729861.
Full textWeindl, J., and J. Hagenauer. "Applying Techniques from Frame Synchronization for Biological Sequence Analysis." In 2007 IEEE International Conference on Communications. IEEE, 2007. http://dx.doi.org/10.1109/icc.2007.142.
Full textDelibaltov, Diana, S. Karthikeyan, Vignesh Jagadeesh, and B. S. Manjunath. "Robust biological image sequence analysis using graph based approaches." In 2012 46th Asilomar Conference on Signals, Systems and Computers. IEEE, 2012. http://dx.doi.org/10.1109/acssc.2012.6489297.
Full textLiu, Pei, Ahmed Hemani, and Kolin Paul. "3D-stacked many-core architecture for biological sequence analysis problems." In 2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE, 2015. http://dx.doi.org/10.1109/samos.2015.7363678.
Full textPlotz, T., and G. A. Fink. "Feature extraction for improved profile HMM based biological sequence analysis." In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334187.
Full textNguyen, Khoa Tan, and Timo Ropinski. "Large-scale multiple sequence alignment visualization through gradient vector flow analysis." In 2013 IEEE Symposium on Biological Data Visualization (BioVis). IEEE, 2013. http://dx.doi.org/10.1109/biovis.2013.6664341.
Full textLiu, Jun-ang, Jian-hong Zhou, and Guo-ying Zhou. "ITS DNA Sequence Analysis of Colletotrichum gloeosporioides and Its Biological Control." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516794.
Full textChengpeng Bi. "A Genetic-Based EM Motif-Finding Algorithm for Biological Sequence Analysis." In 2007 4th Symposium on Computational Intelligence in Bioinformatics and Computational Biology. IEEE, 2007. http://dx.doi.org/10.1109/cibcb.2007.4221233.
Full textReports on the topic "Biological Sequence Analysis"
Wang, Ying yuan, Zechang Chen, Luxin Zhang, Shuangyi Chen, Zhuomiao Ye, Tingting Xu, and Yingying Zhang c. A systematic review and network meta-analysis: Role of SNPs in predicting breast carcinoma risk. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2022. http://dx.doi.org/10.37766/inplasy2022.2.0092.
Full textTorney, D. C., W. Bruno, and V. Detours. Nonlinear analysis of biological sequences. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674921.
Full textParan, Ilan, and Molly Jahn. Analysis of Quantitative Traits in Pepper Using Molecular Markers. United States Department of Agriculture, January 2000. http://dx.doi.org/10.32747/2000.7570562.bard.
Full textZhou, Ting, Roni Shapira, Peter Pauls, Nachman Paster, and Mark Pines. Biological Detoxification of the Mycotoxin Deoxynivalenol (DON) to Improve Safety of Animal Feed and Food. United States Department of Agriculture, July 2010. http://dx.doi.org/10.32747/2010.7613885.bard.
Full textGrumet, R., J. Burger, Y. Tadmor, A. Gur, C. Barry, A. Schäffer, and M. Petreikov. Cucumis fruit surface biology: Genetic analysis of fruit exocarp features in melon (C. melo) and cucumber (C. sativus). Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134155.bard.
Full textMevarech, Moshe, Jeremy Bruenn, and Yigal Koltin. Virus Encoded Toxin of the Corn Smut Ustilago Maydis - Isolation of Receptors and Mapping Functional Domains. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7613022.bard.
Full textBarefoot, Susan F., Bonita A. Glatz, Nathan Gollop, and Thomas A. Hughes. Bacteriocin Markers for Propionibacteria Gene Transfer Systems. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7573993.bard.
Full textDavidson, Irit, Hsing-Jien Kung, and Richard L. Witter. Molecular Interactions between Herpes and Retroviruses in Dually Infected Chickens and Turkeys. United States Department of Agriculture, January 2002. http://dx.doi.org/10.32747/2002.7575275.bard.
Full textZchori-Fein, Einat, Judith K. Brown, and Nurit Katzir. Biocomplexity and Selective modulation of whitefly symbiotic composition. United States Department of Agriculture, June 2006. http://dx.doi.org/10.32747/2006.7591733.bard.
Full textMawassi, Munir, and Valerian Dolja. Role of RNA Silencing Suppression in the Pathogenicity and Host Specificity of the Grapevine Virus A. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592114.bard.
Full text