Academic literature on the topic 'Biological Carbon Pum'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biological Carbon Pum.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biological Carbon Pum"
O'Neill, Cameron M., Andrew McC Hogg, Michael J. Ellwood, Bradley N. Opdyke, and Stephen M. Eggins. "Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study." Climate of the Past 17, no. 1 (January 15, 2021): 171–201. http://dx.doi.org/10.5194/cp-17-171-2021.
Full textRusso, Vincent M., and John Wright. "Nuclear Magnetic Resonance for Monitoring Carbon Metabolism in Sweet Corn." HortScience 30, no. 4 (July 1995): 889C—889. http://dx.doi.org/10.21273/hortsci.30.4.889c.
Full textBuchanan, Pearse J., Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge. "The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle." Climate of the Past 12, no. 12 (December 22, 2016): 2271–95. http://dx.doi.org/10.5194/cp-12-2271-2016.
Full textSoedarmanto, H., and E. Setiawati. "The Analysis of Plywood Industrial Wastewater Treatment in South Kalimantan." IOP Conference Series: Earth and Environmental Science 950, no. 1 (January 1, 2022): 012045. http://dx.doi.org/10.1088/1755-1315/950/1/012045.
Full textWalia, Abhishek, Preeti Mehta, Shiwani Guleria, Anjali Chauhan, and C. K. Shirkot. "Impact of Fungicide Mancozeb at Different Application Rates on Soil Microbial Populations, Soil Biological Processes, and Enzyme Activities in Soil." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/702909.
Full textMoreno, Allison R., George I. Hagstrom, Francois W. Primeau, Simon A. Levin, and Adam C. Martiny. "Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO<sub>2</sub>." Biogeosciences 15, no. 9 (May 9, 2018): 2761–79. http://dx.doi.org/10.5194/bg-15-2761-2018.
Full textBoufeldja, Linda, Dennis Brandt, Caroline Guzman, Manon Vitou, Frederic Boudard, Sylvie Morel, Adrien Servent, et al. "Effect of Elevated Carbon Dioxide Exposure on Nutrition-Health Properties of Micro-Tom Tomatoes." Molecules 27, no. 11 (June 2, 2022): 3592. http://dx.doi.org/10.3390/molecules27113592.
Full textG. N. SHREEVANI, A.G. SREENIVAS, R.V. BELADHADI, and B.S. JANAGOUDAR. "Environmental change and the phenology of Bt cotton aphid, Aphis gossypii Glover." Journal of Agrometeorology 19, no. 4 (December 1, 2017): 312–18. http://dx.doi.org/10.54386/jam.v19i4.597.
Full textMphahlele, Ipoteng Justice, Soraya Phumzile Malinga, and Langelihle Nsikayezwe Dlamini. "Combined Biological and Photocatalytic Degradation of Dibutyl Phthalate in a Simulated Wastewater Treatment Plant." Catalysts 12, no. 5 (April 30, 2022): 504. http://dx.doi.org/10.3390/catal12050504.
Full textXue, Z., R. He, K. Fennel, W. J. Cai, S. Lohrenz, W. J. Huang, and H. Tian. "Modeling <i>p</i>CO<sub>2</sub> variability in the Gulf of Mexico." Biogeosciences Discussions 11, no. 8 (August 27, 2014): 12673–95. http://dx.doi.org/10.5194/bgd-11-12673-2014.
Full textDissertations / Theses on the topic "Biological Carbon Pum"
Terrats, Louis. "Le flux de carbone particulaire et le lien avec la communauté phytoplanctonique : une approche par flotteurs-profileurs biogéochimiques." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS550.pdf.
Full textThe ocean plays a key role in the climate by exchanging large quantities of carbon with the atmosphere. Atmospheric carbon is fixed at the ocean surface by phytoplankton that transforms it into biogenic carbon, part of which is transported to the deep ocean by physical and biological mechanisms; this is the Biological Carbon Pump (BCP). A tiny fraction of this biogenic carbon reaches sufficient depths to be sequestered for several centuries before it returns to the atmosphere, thus regulating concentrations of atmospheric CO2. Today, we know enough about the BCP to recognize its importance in climate, but our knowledge of its functioning is limited due to insufficient sampling of biogenic carbon fluxes. Here, we used BioGeoChimical-Argo floats, observational platforms designed to solve the undersampling problem, to explore a major mechanism of the BCP called the gravitational pump. The gravitational pump is the transport of biogenic carbon in the form of organic particles (POC) that sink from the surface into the deep ocean. Our study of the gravitational pump is divided into three axes. The first axis consisted of developing a method to detect blooms of coccolithophores, a major phytoplankton group that potentially has an important control on the transport of POC at depth. The second axis focused on the seasonal and regional variability of POC fluxes in the Southern Ocean, an undersampled area in which several floats have been deployed with an optical sediment trap (OST). Only ten floats were equipped with an OST, which is low compared to the whole BGC-Argo fleet (i.e. several hundred floats). Therefore, in the third axis, we developed a method to estimate the POC flux with the standard sensors of BGC-Argo floats. This method was then applied to hundreds of floats to describe the seasonal variability of the POC flux in many regions. In this study, we also highlighted the link between the POC flux and the nature of surface particles. For example, we calculated relationships between phytoplankton community composition and POC flux at 1000m. Using these relationships, we then used satellite observations to extrapolate POC flux to large spatial scales, such as the entire Southern Ocean and the global ocean
Books on the topic "Biological Carbon Pum"
Steinberg, Deborah. Zooplankton Biogeochemical Cycles. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199233267.003.0006.
Full textBook chapters on the topic "Biological Carbon Pum"
Rixen, Tim, Niko Lahajnar, Tarron Lamont, Rolf Koppelmann, Bettina Martin, Luisa Meiritz, Claire Siddiqui, and Anja K. Van der Plas. "The Marine Carbon Footprint: Challenges in the Quantification of the CO2 Uptake by the Biological Carbon Pump in the Benguela Upwelling System." In Sustainability of Southern African Ecosystems under Global Change, 729–57. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-10948-5_25.
Full textGlaeser, Robert M., Kenneth Downing, David DeRosier, Wah Chiu, and Joachim Frank. "Specimen Preparation." In Electron Crystallography Of Biological Macromolecules, 139–66. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195088717.003.0006.
Full textDolman, Han. "The Carbon Cycle." In Biogeochemical Cycles and Climate, 129–58. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198779308.003.0009.
Full textKirchman, David L. "Carbon Pumps in the Oceans." In Microbes, 48–71. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/oso/9780197688564.003.0004.
Full textKumar Ameta, Rakesh. "Carbon-Based Nanomaterials for Sensing Applications." In Recent Advances in Biosensor Technology, 30–44. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123739123010005.
Full textKirchman, David L. "Microbial Solutions." In Microbes, 151–76. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/oso/9780197688564.003.0009.
Full textLahiri, Susmita, Debarati Ghosh, and Jatindra Nath Bhakta. "Role of Microbes in Eco-Remediation of Perturbed Aquatic Ecosystem." In Handbook of Research on Inventive Bioremediation Techniques, 70–107. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2325-3.ch004.
Full textLahiri, Susmita, Debarati Ghosh, and Jatindra Nath Bhakta. "Role of Microbes in Eco-Remediation of Perturbed Aquatic Ecosystem." In Oceanography and Coastal Informatics, 25–61. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7308-1.ch002.
Full textHolbourn, Ann, Wolfgang Kuhnt, Karlos G. D. Kochhann, Kenji M. Matsuzaki, and Nils Andersen. "Middle Miocene climate–carbon cycle dynamics: Keys for understanding future trends on a warmer Earth?" In Understanding the Monterey Formation and Similar Biosiliceous Units across Space and Time. Geological Society of America, 2022. http://dx.doi.org/10.1130/2022.2556(05).
Full textGehlen, Marion, and Nicolas Gruber. "Biogeochemical Consequences of Ocean Acidification and Feedbacks to the Earth System." In Ocean Acidification. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199591091.003.0017.
Full textConference papers on the topic "Biological Carbon Pum"
Tabeta, Shigeru, and Haruki Yoshimoto. "Investigation of Carbon Budget Around Artificial Upwelling Generator by a Coupled Physical-Biological Model." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29653.
Full textSubramanian, Karthikeyan, and Gopi Sankar. "A Review on Hydrogen Fuel and Storage System Product Design for PEM Fuel Cell Vehicle Applications." In International Conference on Automotive Materials and Manufacturing AMM 2023. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-1335.
Full textSquibb, Carson, LoriAnne Groo, Adrian Bialy, and Michael Philen. "Biologically Inspired Fluidic Flexible Matrix Composite Pumps for Wave Energy Conversion." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9321.
Full textTrikis, Spyridon, Vaibhav Sumant, Muhammad Arshad, Anna Olliver, Meshaal Jarallah Abushereeda, and John Brown. "Implementation of Odour Control Systems for Nuisance-free and Public Friendly Environment in Qatar." In The 2nd International Conference on Civil Infrastructure and Construction. Qatar University Press, 2023. http://dx.doi.org/10.29117/cic.2023.0164.
Full textDimić, Dušan, Dejan Milenković, Edina Avdović, Goran Kaluđerović, and Jasmina Dimitrić Marković. "MOLECULAR DOCKING AND MOLECULAR DYNAMICS STUDIES OF THE INTERACTION BETWEEN COUMARIN-NEUROTRANSMITTER DERIVATIVES AND CARBONIC ANHYDRASE IX." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac,, 2021. http://dx.doi.org/10.46793/iccbi21.056d.
Full textKrishnamoorthi, M., S. Sreedhara, and Pavan Prakash Duvvuri. "Modelling of Soot Formation and Experimental Study for Different Octane Number Fuels in Dual Fuel Combustion Engine With Diesel." In ASME 2020 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icef2020-2914.
Full textA˚mand, Lars-Erik, Bo Leckner, Solvie Herstad Sva¨rd, Marianne Gyllenhammar, David Eskilsson, and Claes Tullin. "Co-Combustion of Pulp- and Paper Sludge With Wood: Emissions of Nitrogen, Sulphur and Chlorine Compounds." In 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-097.
Full textReports on the topic "Biological Carbon Pum"
Buesseler, Ken O., Di Jin, Melina Kourantidou, David S. Levin, Kilaparti Ramakrishna, and Philip Renaud. The ocean twilight zone’s role in climate change. Woods Hole Oceanographic Institution, February 2022. http://dx.doi.org/10.1575/1912/28074.
Full textTsikos, Hariloas, Sipesihle Rafuza, Zolane R. Mhlanga, Paul B. H. Oonk, Vlassis Papadopoulos, Adrian C. Boyce, Paul R. D. Mason, Christopher Harris, Darren R. Gröcke, and Timothy W. Lyons. Carbon isotope evidence for water-column carbon and iron cycling in the Paleoproterozoic ocean and implications for the early biological pump: supplementary data file. Rhodes University, Department of Geology, 2020. http://dx.doi.org/10.21504/10962/138395.
Full textBécu, V., A.-A. Sappin, and S. Larmagnat. User-friendly toolkits for geoscientists: how to bring geology experts to the public. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331220.
Full textArtificial upwelling: More power for the ocean’s biological carbon pump. CDRmare, 2023. http://dx.doi.org/10.3289/cdrmare.31.
Full textKnowledge summary, Artificial upwelling: More power for the ocean’s biological carbon pump. CDRmare, 2023. http://dx.doi.org/10.3289/cdrmare.30.
Full text