Academic literature on the topic 'Bioinoculants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioinoculants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bioinoculants"
Ambawade, M. S., N. V. Manghwani, P. R. Madhyani, A. M. Shaikh, D. D. Patil, and G. R. Pathade. "Influence of Yeast Bioinoculant Isolated from Indian Date Palm Tree (Phoenix sylvestris) Sap on the Health of Wheat Crop and Soil." Nature Environment and Pollution Technology 22, no. 4 (December 1, 2023): 2093–101. http://dx.doi.org/10.46488/nept.2023.v22i04.034.
Full textNosheen, Asia, Asghari Bano, and Faizan Ullah. "Bioinoculants." Toxicology and Industrial Health 32, no. 2 (October 4, 2013): 270–77. http://dx.doi.org/10.1177/0748233713498453.
Full textChaudhary, Twinkle, and Pratyoosh Shukla. "Bioinoculant capability enhancement through metabolomics and systems biology approaches." Briefings in Functional Genomics 18, no. 3 (June 20, 2018): 159–68. http://dx.doi.org/10.1093/bfgp/elz011.
Full textAkshitha, H. J., K. Umesha, and T. H. Shankarappa. "Effects of Type of Cutting, IBA and Bioinoculants on Rooting in Madhunashini (Gymnema sylvestre Retz.)." Journal of Horticultural Sciences 9, no. 1 (June 30, 2014): 94–97. http://dx.doi.org/10.24154/jhs.v9i1.232.
Full textBerdeja, Mariam P., Qiuhong Ye, Taryn L. Bauerle, and Justine E. Vanden Heuvel. "Commercial Bioinoculants Increase Root Length Colonization and Improve Petiole Nutrient Concentration of Field-grown Grapevines." HortTechnology 33, no. 1 (February 2023): 48–58. http://dx.doi.org/10.21273/horttech05110-22.
Full textK.S, RAGHUWANSHI, PAWAR K.B, and PATIL J.D. "STANDARDIZATION OF LOAD OF BIOINOCULANT IN PEARLMILLET UNDER DRYLAND CONDITIONS." Madras Agricultural Journal 85, september (1998): 355–57. http://dx.doi.org/10.29321/maj.10.a00751.
Full textKandula, D. R. W., H. Alizadeh, C. S. P. Teixiera, D. Gale, A. Stewart, and J. G. Hampton. "Trichoderma bioinoculant improves seedling emergence plant growth and seed yield of Camelina sativa (L) Crantz." New Zealand Plant Protection 68 (January 8, 2015): 160–65. http://dx.doi.org/10.30843/nzpp.2015.68.5835.
Full textSelno, Silvester, Zulfa Zakiah, and Rikhsan Kurniatuhadi. "Kualitas Gaharu Aquilaria sp. dengan Pemberian Bioinokulan Fermentasi Batang Pisang yang Terkena Penyakit Layu Fusarium." JURNAL BIOS LOGOS 11, no. 2 (April 12, 2021): 94. http://dx.doi.org/10.35799/jbl.11.2.2021.32551.
Full textChakravarty*, Gargi. "Preparation of Plant Growth Enhancing Bioformulation from Agricultural Wastes by Solid State Fermentation." Current Agriculture Research Journal 12, no. 1 (April 20, 2024): 316–25. http://dx.doi.org/10.12944/carj.12.1.25.
Full textA. N. Ravindranath and U. S. Sarma. "BIOINOCULANTS FOR COIR RETTING." CORD 11, no. 01 (June 1, 1995): 34. http://dx.doi.org/10.37833/cord.v11i01.287.
Full textDissertations / Theses on the topic "Bioinoculants"
Bhattacharjee, Priyanka. "Molecular detection and diversity analysis of bipolaris sorokiniana (Sacc) shoemaker and induction of resistance in sorghum bicolor (L) moench using bioinoculants." Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2725.
Full textAcharya, Amrita. "Serological and molecular detection of foliar fungal pathogens of Persea bombycina Kost and activation of defense response using bioinoculants." Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/hdl.handle.net/123456789/2767.
Full textBatista, Bruna Durante. "Promoção de crescimento vegetal por Bacillus sp. RZ2MS9: dos genes ao campo." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11137/tde-15082017-170543/.
Full textTo feed the growing global population, a sustainable increase of agricultural production and crop yield is required. In this sense, Plant Growth Promoting Rhizobacteria (PGPR) have been continuously sought to inoculant formulation due to their capacity to increase plant yield along with their potential to reduce and/or replace the use of mineral fertilizers, inputs that cause serious impacts on environment, human health and economy. The PGPR Bacillus sp. RZ2MS9, a representative of the Brazilian Amazonian biodiversity, is a great candidate to bioinoculant because of its beneficial effect on a broad range of crops, including maize and soybean. These two crops represent more than 80% of the area planted with grains in Brazil, so relatively modest growth and yield increases could generate significant gains. Bacillus spp. have advantage in inoculant formulations, mainly due to their ability to form heat- and dissecation-resistant spores. Their modes of action are diverse, making the understanding of its interaction with plants quite challenging. Bacillus sp. RZ2MS9 displays, between the mechanisms involved in plant growth, Indole Acetic Acid (IAA) and siderophore production, phosphate solubilization and biological nitrogen fixation, in vitro. In the present work, we seek a detailed understanding of this rhizobacterium mechanisms of action, exploring from its genome to its performance in field conditions. The bacterial draft genome was obtained using Illumina sequencing technology, making possible the detection of genes involved in mechanisms potentially related to the beneficial effect of this bacterium, and range from its spore formation, attraction by root exudates, motility and competition in the rhizosphere to mechanisms of phosphate solubilization, siderophore production, among others. The information obtained allow a genetic exploration of these mechanisms, providing an opportunity to maximize this interaction and, in the future, favor benefits in field. Additionally, it was demonstrated the chemotaxis (attraction) potential of RZ2MS9 towards maize roots. A phylogenetic study of this PGPR, using a typing method with the pycA (pyruvate carboxylase) gene, showed that Bacillus sp. RZ2MS9 was distant from the highly monomorphic clade of B. anthracis, a human pathogen, and affiliated with B. thuringiensis (Bt) strains marketed as biopesticides for more than 60 years, suggesting the potential possibility of its safe use in the field. It is known that most, if not all, physiological activities of plants are regulated by phytormones such as the auxin IAA, which can also be synthesized by PGPRs. With more detail, genes involved in biosynthetic pathways of this phytormone were detected in the RZ2MS9 draft genome, indicating that its production occurs via the IPA (indole-3-pyruvate) pathway. In addition, plants of the dwarf tomato Micro-Tom (MT) and its mutant Δdgt, impaired in auxin sensibility, were used to specifically characterize the effects of IAA produced by Bacillus sp. RZ2MS9 in the plant growth promotion. The inoculation of RZ2MS9 caused inhibition in the primary roots growth, increase in lateral roots length and in roots total surface area of MT plants, characteristic effects of those provided by auxins. This root growth also reflected in an increase of MT plants shoot biomass. The same effects were not observed in Δdgt plants, insensitive to auxins, suggesting that the elicitation of growth promotion in MT by RZ2MS9 occurs through these phytormones. Finally, we demonstrated the effect of inoculation with Bacillus sp. RZ2MS9 on maize and soybean development and productivity under field conditions, being compared with the performance of commercial bioinoculants. In maize, the effect of bacterial inoculation was also associated with nitrogen fertilization to verify the possibility of reducing these inputs. Bacillus sp. RZ2MS9 showed significant effects on the development of both soybean (comparable to the effects of rhizobia) and maize, which, however, did not reflect a significant increase in productivity in both crops. However, the potential of this rhizobacterium is very clear because, with a cost of production of less than R$1.00 per hectare, its inoculation caused an increase of 16 sacks of maize per hectare with a 30% reduction in nitrogen fertilization, as well as an increase of 11 sacks of soybean per hectare, both compared to uninoculated control. The results presented in this study meet the great expectation of obtaining promising microbial strains aiming at more sustainable agricultural systems.
Bhutia, Lhanjey Phuti. "Screening of phosphate solubilizing fungi from tea rhizosphere of Sikkim and formulation of bioinoculants with a plant growth promoting rhizobacterium for management of charcoal stump root disease of tea." Thesis, University of North Bengal, 2010. http://hdl.handle.net/123456789/1465.
Full textOwen, Darren Wayne. "Increasing agricultural grass production using novel bio-inoculants." Thesis, Bangor University, 2015. https://research.bangor.ac.uk/portal/en/theses/increasing-agricultural-grass-production-using-novel-bioinoculants(cf36a835-9554-4911-8e3c-2da4c432a579).html.
Full textRuíz, Pedro O., Krystel C. Rojas, and Ewald Sieverding. "La distribución geográfica de los hongos de micorriza arbuscular: una prioridad de investigación en la Amazonía peruana." Pontificia Universidad Católica del Perú. Centro de Investigación en Geografía Aplicada, 2012. http://repositorio.pucp.edu.pe/index/handle/123456789/119637.
Full textMirzaei, Heydari Mohammad. "The role of bio-inoculants on phosphorous relations of barley." Thesis, Bangor University, 2013. https://research.bangor.ac.uk/portal/en/theses/the-role-of-bioinoculants-on-phosphorous-relations-of-barley(7fa4da0a-1d19-4df4-95ff-5da3905da1cc).html.
Full textAguilar, Rivera Katia Alejandra. "Aislamiento de bacterias solubilizadoras de fosfato,del suelo cultivado con papa (SolanumtuberosumL.)." Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2020. http://hdl.handle.net/20.500.11799/109176.
Full textRESUMEN El fósforo es el segundo nutriente necesario para el desarrollo de las plantas, y de los microorganismos que habitan la rizósfera. En un modelo agrícola convencional, la mayoría de los cultivos requieren cerca de 10 a 30 kg de fósforo por hectárea que se suministran en forma de fertilizantes sintéticos, los cuales debido a sus formas no disponibles tienden a acumularse y modificar las condiciones fisicoquímicas del suelo por la inmovilización química del elemento fierro, aluminio y calcio principalmente, si bien se incrementa el rendimiento de las cosechas, no se consideran los impactos negativos que se producen, como la eutrofización de cuerpos de agua, disminución de las principales reservas de nutrientes, inmovilización de nutrientes en el suelo con los consecuentes desbalances en cultivos, aumento de los costos de producción, entre otros. Atendiendo a esta problemática surge un concepto de agricultura sustentable a través de la generación de biofertilizantes, a partir del estudio, entendimiento y aplicación de microorganismos que actúan como promotores del crecimiento vegetal o que presentan rasgos que favorecen la disponibilidad de micro y macro elementos. El presente trabajo se orientó en el aislamiento de bacterias solubilizadoras de fósforo a partir de suelo cultivado con papa (Solanum tuberosum L.) en el Estado de México. Se llevó a cabo la caracterización fisicoquímica del suelo de las zonas muestreadas, se aislaron y contabilizaron la Bacterias Heterótrofas totales, y se seleccionaron bacterias efectivas para la solubilización de fosfato mediante la siembra en medio Pikovskaya sólido, obteniendo un total de 5 cepas de las que se determinó el diámetro de halo de solubilización, siendo la cepa A3 la que presento un mayor diámetro con 19mm aproximadamente. Al confirmar la capacidad solubilizadora de las cepas aisladas se puede esperar sean de uso potencial para la formulación de un bioinoculante efectivo para el cultivo de la papa.
la clave se otorgo por parte de la SIEA de la UAEM, sin financiamiento con clave: 4635/2019SF.
Cisneros, Moscol Jessica Elizabeth. "Aislamiento y selección de actinomicetos rizosféricos con potencial aplicación como bioinoculante en el cultivo de Solanum tuberosum sp. andigena (Papa)." Bachelor's thesis, Universidad Nacional Mayor de San Marcos, 2016. https://hdl.handle.net/20.500.12672/5183.
Full textTesis
Tschoeke, Bruno Augusto Prohmann. "Monitoramento da interação entre rizobactéria RZ2MS16 (Burkholderia ambifaria) promotora de crescimento e bioinoculantes comerciais aplicados nas culturas de soja e milho." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-05072016-160308/.
Full textThe soybean and corn are of great global economic importance and also to Brazil, where the area cultivated with these two crops is estimated at 45.8559 billion hectares, distributed in all producing states according to their characteristics. The estimate of the global soybean crop in 2015/16 showed a reduction in global production of oilseeds to 319.0 million tons, volume 1.1 million tons lower than the survey of December 2015. Still, it is a record volume. For corn, the total production was 967.9 million tons, with a reduction in volume of 5.9 million tons compared to the survey conducted in December 2015. In these two crops are nitrogen fixing bacteria commonly used (BFN), reducing or even eliminating the application of nitrogenous fertilizers. Studies show that the symbiosis between BFN and cultures soy and corn can be optimized by coinoculation with rhizobacteria promoting plant growth (PGPR). Although promising, the study of the use of BFN in association with RPCPs is incipient in Brazil. Thus, this study aimed to monitor, from the bacterial marking the interaction between the strain of Burkholderia ambifaria (RZ2MS16) a rhizobacteria from the guarana and previously described as a growth promoter in soybean and corn and strains of the species Bradyrhizobium japonicum (SEMIA5079), Bradyrhizobium diazoefficiens (SEMIA5080) and Azospirillum brasilense (Ab-v5 and v6-Ab) that are commercially used as inoculant these cultures respectively. The synergistic effects of the interaction between RZ2MS16 and commercial inoculant were evaluated in a greenhouse experiment. It was also evaluated the effect of coinoculation of inoculant with other rhizobacteria from the guarana, Bacillus sp. (RZ2MS9). The strains were inoculated separately and coinoculated, with best results seen with coinoculation lineages. The lines marked with fluorescence genes selected for study interactions were RZ2MS16, Ab-v5 and SEMIA5080, this interaction being observed by fluorescence microscopy with also by reisolation of the marked strains. Strains RZ2MS16: pNKGFP and Ab-v5: pWM1013 and SEMIA5080: pWM1013 colonizing all niches evaluated in corn and soybeans, respectively, also being characterized as endophytes. Thus it is observed that such studies are of great importance for a better understanding of the interaction between plant and bacteria coinoculation the effect of the improved development of plants used commercially.
Books on the topic "Bioinoculants"
Singh, Surender, Radha Prasanna, and Kumar Pranaw, eds. Bioinoculants: Biological Option for Mitigating global Climate Change. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2973-3.
Full textM, Reddy S., ed. Bioinoculants for sustainable agriculture and forestry: Proceedings of national symposium held on Feb. 16-18, 2001. Jodhpur: Scientific Publishers (India), 2002.
Find full textAbud, Yazmín Carreón. Hongos micorrízicos arbusculares: Conservación y bioinoculantes. Morelia, Michoacán, México: SEP, Secretaría de Educación Pública, Estados Unidos Mexicanos, 2013.
Find full textSomani, L. L. Organic Recycling and Bioinoculants ; For Sustainable Crop Production. Agrotech Publishing Academy, 2007.
Find full textReddy, S. M., Ram Reddy, and S. Girisham. Bioinoculants for sustainable agriculture and forestry: Proceedings of national symposium held on Feb. 16-18, 2001. Scientific Publishers,India, 2002.
Find full textBook chapters on the topic "Bioinoculants"
Subramanian, S. Bala, Song Yan, R. D. Tyagi, R. Y. Surampalli, and Tian C. Zhang. "Biofertilizers/Bioinoculants." In Sustainable Sludge Management, 203–30. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/9780784410516.ch09.
Full textKaur, Chandandeep, G. Selvakumar, and A. N. Ganeshamurthy. "Rhizocompetence of Applied Bioinoculants." In Plant-Microbe Interactions in Agro-Ecological Perspectives, 501–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5813-4_25.
Full textSingh, Manali, Shruti Bhasin, Neha Madan, Deep Chandra Suyal, Ravindra Soni, and Dipti Singh. "Bioinoculants for Agricultural Sustainability." In Microbiological Activity for Soil and Plant Health Management, 629–41. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2922-8_25.
Full textTallapragada, Padmavathi, and Swetha Seshagiri. "Application of Bioinoculants for Sustainable Agriculture." In Probiotics and Plant Health, 473–95. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3473-2_22.
Full textKhan, Mujeebur Rahman, and M. Arshad Anwer. "Fungal Bioinoculants for Plant Disease Management." In Microbes and Microbial Technology, 447–88. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7931-5_17.
Full textAjilogba, Caroline Fadeke, Oluwaseyi Samuel Olanrewaju, and Olubukola Oluranti Babalola. "Application of Bioinoculants for Seed Quality Improvement." In Microorganisms for Sustainability, 265–80. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6241-4_14.
Full textBottini, Rubén, Federico J. Berli, M. Victoria Salomon, and Patricia N. Piccoli. "Phytohormonal Role of Microorganisms Involved in Bioinoculants." In Microorganisms for Sustainability, 75–107. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9570-5_5.
Full textFlorence, Mukelabai, and Chimwamurombe Percy. "Sustainable Enhancement of Soil Fertility Using Bioinoculants." In Vermicomposting for Sustainable Food Systems in Africa, 249–60. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8080-0_15.
Full textKhan, Hammad, and Nagina Parmar. "Bioinoculants: Understanding Chickpea Rhizobia in Providing Sustainable Agriculture." In Bacteria in Agrobiology: Crop Productivity, 185–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37241-4_8.
Full textArchana, Gattupalli. "Engineering Nodulation Competitiveness of Rhizobial Bioinoculants in Soils." In Microbes for Legume Improvement, 157–94. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99753-6_8.
Full textConference papers on the topic "Bioinoculants"
Prihastini, L., A. H. Ramelan, P. Setyono, Pranoto, and A. Supriyanto. "Isolation and Identification of Mold in Banana Bunches and Their Potential as Bioinoculants to Accelerate Decomposition of Household Organic Waste." In 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210810.013.
Full textPANDEY, PIYUSH, SHRADHANJALI ARORA, ANCHAL SOOD, SANDEEP BISHT, and D. K. MAHESHWARI. "FORMULATION OF AN EFFECTIVE RHIZOBIUM BIOINOCULANT USING GREEN FLUORESCENT PROTEIN REPORTER SYSTEM." In Proceedings of the International Conference on CBEE 2009. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814295048_0093.
Full textLalitha, S., and S. Nithyapriya. "Production of Bacillibactin Siderophore from Soil Bacteria, Bacillus subtilis: A Bioinoculant Enhances Plant Growth in Arachis hypogaea L. Through Elevated Uptake of Nutrients." In International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210609.013.
Full text