Journal articles on the topic 'Bioinformatics, metalloproteins, metal-binding proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bioinformatics, metalloproteins, metal-binding proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Yan, and Junge Zheng. "Bioinformatics of Metalloproteins and Metalloproteomes." Molecules 25, no. 15 (July 24, 2020): 3366. http://dx.doi.org/10.3390/molecules25153366.
Full textAndreini, Claudia, and Antonio Rosato. "Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications." International Journal of Molecular Sciences 23, no. 14 (July 12, 2022): 7684. http://dx.doi.org/10.3390/ijms23147684.
Full textWang, Kai, Nan Lyu, Hongjuan Diao, Shujuan Jin, Tao Zeng, Yaoqi Zhou, and Ruibo Wu. "GM-DockZn: a geometry matching-based docking algorithm for zinc proteins." Bioinformatics 36, no. 13 (May 5, 2020): 4004–11. http://dx.doi.org/10.1093/bioinformatics/btaa292.
Full textMonette, Anne, and Andrew J. Mouland. "Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates." Viruses 12, no. 10 (October 18, 2020): 1179. http://dx.doi.org/10.3390/v12101179.
Full textAramini, James M., and Hans J. Vogel. "Quadrupolar metal ion NMR studies of metalloproteins." Biochemistry and Cell Biology 76, no. 2-3 (May 1, 1998): 210–22. http://dx.doi.org/10.1139/o98-037.
Full textDudev, Todor, Luis Manuel Frutos, and Obis Castaño. "How mechanical forces can modulate the metal affinity and selectivity of metal binding sites in proteins." Metallomics 12, no. 3 (2020): 363–70. http://dx.doi.org/10.1039/c9mt00283a.
Full textArnesano, Fabio, Lucia Banci, and Mario Piccioli. "NMR structures of paramagnetic metalloproteins." Quarterly Reviews of Biophysics 38, no. 2 (May 2005): 167–219. http://dx.doi.org/10.1017/s0033583506004161.
Full textYu, Yue, Ruobing Wang, and Ruijie D. Teo. "Machine Learning Approaches for Metalloproteins." Molecules 27, no. 4 (February 14, 2022): 1277. http://dx.doi.org/10.3390/molecules27041277.
Full textCarugo, Oliviero. "Metalloproteins: metal binding predicted on the basis of the amino acid sequence." Journal of Applied Crystallography 41, no. 1 (January 16, 2008): 104–9. http://dx.doi.org/10.1107/s0021889807065235.
Full textÖz, Gülin, Dean L. Pountney, and Ian M. Armitage. "NMR spectroscopic studies of I = 1/2 metal ions in biological systems." Biochemistry and Cell Biology 76, no. 2-3 (May 1, 1998): 223–34. http://dx.doi.org/10.1139/o98-059.
Full textNguyen, Kiet T., Kristina Piastro, and Keith M. Derbyshire. "LpqM, a Mycobacterial Lipoprotein-Metalloproteinase, Is Required for Conjugal DNA Transfer in Mycobacterium smegmatis." Journal of Bacteriology 191, no. 8 (February 20, 2009): 2721–27. http://dx.doi.org/10.1128/jb.00024-09.
Full textLIN, CHIN-TENG, KEN-LI LIN, CHIH-HSIEN YANG, I.-FANG CHUNG, CHUEN-DER HUANG, and YUH-SHYONG YANG. "PROTEIN METAL BINDING RESIDUE PREDICTION BASED ON NEURAL NETWORKS." International Journal of Neural Systems 15, no. 01n02 (February 2005): 71–84. http://dx.doi.org/10.1142/s0129065705000116.
Full textChipinda, Itai, Justin M. Hettick, and Paul D. Siegel. "Haptenation: Chemical Reactivity and Protein Binding." Journal of Allergy 2011 (June 30, 2011): 1–11. http://dx.doi.org/10.1155/2011/839682.
Full textLin, Ying-Wu. "Uranyl Binding to Proteins and Structural-Functional Impacts." Biomolecules 10, no. 3 (March 16, 2020): 457. http://dx.doi.org/10.3390/biom10030457.
Full textDudev, Todor. "How Theoretical Evaluations Can Generate Guidelines for Designing/Engineering Metalloproteins with Desired Metal Affinity and Selectivity." Molecules 28, no. 1 (December 28, 2022): 249. http://dx.doi.org/10.3390/molecules28010249.
Full textBraga, Camila Pereira, José Cavalcante Souza Vieira, Ryan A. Grove, Cory H. T. Boone, Aline de Lima Leite, Marília Afonso Rabelo Buzalaf, Ana Angélica Henrique Fernandes, Jiri Adamec, and Pedro de Magalhaes Padilha. "A proteomic approach to identify metalloproteins and metal-binding proteins in liver from diabetic rats." International Journal of Biological Macromolecules 96 (March 2017): 817–32. http://dx.doi.org/10.1016/j.ijbiomac.2016.12.073.
Full textWilson, Corey J., David Apiyo, and Pernilla Wittung-Stafshede. "Role of cofactors in metalloprotein folding." Quarterly Reviews of Biophysics 37, no. 3-4 (November 2004): 285–314. http://dx.doi.org/10.1017/s003358350500404x.
Full textWatly, Joanna, Aleksandra Hecel, Paulina Kolkowska, Henryk Kozlowski, and Magdalena Rowinska-Zyrek. "Poly-Xaa Sequences in Proteins - Biological Role and Interactions with Metal Ions: Chemical and Medical Aspects." Current Medicinal Chemistry 25, no. 1 (January 22, 2018): 22–48. http://dx.doi.org/10.2174/0929867324666170428104928.
Full textWang, Michael S., Kenric J. Hoegler, and Michael H. Hecht. "Unevolved De Novo Proteins Have Innate Tendencies to Bind Transition Metals." Life 9, no. 1 (January 9, 2019): 8. http://dx.doi.org/10.3390/life9010008.
Full textMoulis, Jean-Marc. "Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry." Biomolecules 10, no. 11 (November 21, 2020): 1584. http://dx.doi.org/10.3390/biom10111584.
Full textAl Bratty, Mohammed, Hassan A. Alhazmi, Sadique A. Javed, Zia Ur Rehman, Asim Najmi, and Karam A. El-Sharkawy. "Rapid Screening and Estimation of Binding Constants for Interactions of Fe3+ with Two Metalloproteins, Apotransferrin and Transferrin, Using Affinity Mode of Capillary Electrophoresis." Journal of Spectroscopy 2021 (November 19, 2021): 1–10. http://dx.doi.org/10.1155/2021/6987454.
Full textLippi, M., A. Passerini, M. Punta, B. Rost, and P. Frasconi. "MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence." Bioinformatics 24, no. 18 (July 16, 2008): 2094–95. http://dx.doi.org/10.1093/bioinformatics/btn371.
Full textLevy, Mark A., Yu-Hwai Tsai, Andrew Reaume, and Tammy M. Bray. "Cellular response of antioxidant metalloproteins in Cu/Zn SOD transgenic mice exposed to hyperoxia." American Journal of Physiology-Lung Cellular and Molecular Physiology 281, no. 1 (July 1, 2001): L172—L182. http://dx.doi.org/10.1152/ajplung.2001.281.1.l172.
Full textSaponja, Jillian A., and Hans J. Vogel. "Quadrupolar central transition (QCT) and 13C NMR competition studies of metal ion binding to ovotransferrin." Canadian Journal of Chemistry 89, no. 7 (July 2011): 779–88. http://dx.doi.org/10.1139/v11-019.
Full textChasapis, Christos T. "Interactions between metal binding viral proteins and human targets as revealed by network-based bioinformatics." Journal of Inorganic Biochemistry 186 (September 2018): 157–61. http://dx.doi.org/10.1016/j.jinorgbio.2018.06.012.
Full textBerniyanti, Titiek, Alexander Patera Nugraha, Novi Nurul Hidayati, Viol Dhea Kharisma, Albertus Putera Nugraha, and Tengku Natasha Eleena Binti Tengku Ahmad Noor. "Computational study of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ binding sites identification on cytokines to predict dental metal allergy: An in silico study." Journal of Pharmacy & Pharmacognosy Research 10, no. 4 (July 1, 2022): 687–94. http://dx.doi.org/10.56499/jppres22.1372_10.4.687.
Full textZhang, Tuo, Eziz Kuliyev, Dexin Sui, and Jian Hu. "The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport." Biochemical Journal 476, no. 12 (June 28, 2019): 1791–803. http://dx.doi.org/10.1042/bcj20190108.
Full textLi, Dandan, Tengbing He, Muhammad Saleem, and Guandi He. "Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress." International Journal of Molecular Sciences 23, no. 3 (February 3, 2022): 1734. http://dx.doi.org/10.3390/ijms23031734.
Full textLee, Myungwoon, Tuo Wang, Olga V. Makhlynets, Yibing Wu, Nicholas F. Polizzi, Haifan Wu, Pallavi M. Gosavi, et al. "Zinc-binding structure of a catalytic amyloid from solid-state NMR." Proceedings of the National Academy of Sciences 114, no. 24 (May 31, 2017): 6191–96. http://dx.doi.org/10.1073/pnas.1706179114.
Full textMaret, Wolfgang. "Zinc proteomics and the annotation of the human zinc proteome." Pure and Applied Chemistry 80, no. 12 (January 1, 2008): 2679–87. http://dx.doi.org/10.1351/pac200880122679.
Full textZaman, Saif, Boris I. Chobrutskiy, Jay S. Patel, Blake M. Callahan, Moody Mihyu, Andrea Diviney, Wei Lue Tong, and George Blanck. "Abstract B12: Potential neoantigen release and increased lymphocyte activity is facilitated by matrix metalloproteinase-dependent cleavage of mutant matrisome peptides in cutaneous melanoma." Cancer Research 80, no. 19_Supplement (October 1, 2020): B12. http://dx.doi.org/10.1158/1538-7445.mel2019-b12.
Full textPrabhakaran, Rajkumar, Sebastin Nirmal Rajkumar, Tharmarajan Ramprasath, and Govindan Sadasivam Selvam. "Identification of promoter PcadR, in silico characterization of cadmium resistant gene cadR and molecular cloning of promoter PcadR from Pseudomonas aeruginosa BC15." Toxicology and Industrial Health 34, no. 12 (November 8, 2018): 819–33. http://dx.doi.org/10.1177/0748233718795934.
Full textTaherkhani, Amir, Zahra Khamverdi, Mahdi Sayafi, and Shirin Moradkhani. "Investigation on Chemical Constituents of Foeniculum vulgare Essential Oil and the Molecular Docking Studies of its Components for Possible Matrix Metalloproteinase-13 Inhibition." Avicenna Journal of Pharmaceutical Research 1, no. 2 (December 30, 2020): 65–71. http://dx.doi.org/10.34172/ajpr.2020.12.
Full textFontes, Marcos, Carlos Fernandes, Juliana dos Santos, Guilherme Salvador, Rafael Borges, Angelo Magro, Fabio Cardoso, and Thiago Dreyer. "Structural basis for a novel model for myotoxic activity on phospholipases A2." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C114. http://dx.doi.org/10.1107/s2053273314098854.
Full textAkers, Johnny C., HoangMinh HoDac, Richard H. Lathrop, and Ming Tan. "Identification and Functional Analysis of CT069 as a Novel Transcriptional Regulator in Chlamydia." Journal of Bacteriology 193, no. 22 (September 9, 2011): 6123–31. http://dx.doi.org/10.1128/jb.05976-11.
Full textFonseca-García, Citlali, Claudia Marina López-García, Ronal Pacheco, Elisabeth Armada, Noreide Nava, Rocío Pérez-Aguilar, Jorge Solis-Miranda, and Carmen Quinto. "Metallothionein1A Regulates Rhizobial Infection and Nodulation in Phaseolus vulgaris." International Journal of Molecular Sciences 23, no. 3 (January 27, 2022): 1491. http://dx.doi.org/10.3390/ijms23031491.
Full textNeuman, Benjamin W., Jeremiah S. Joseph, Kumar S. Saikatendu, Pedro Serrano, Amarnath Chatterjee, Margaret A. Johnson, Lujian Liao, et al. "Proteomics Analysis Unravels the Functional Repertoire of Coronavirus Nonstructural Protein 3." Journal of Virology 82, no. 11 (March 26, 2008): 5279–94. http://dx.doi.org/10.1128/jvi.02631-07.
Full textAgrelli, Almerinda, Niedja Fittipaldi Vasconcelos, Rayane Cristine Santos da Silva, Carina Lucena Mendes-Marques, Isabel Renata de Souza Arruda, Priscilla Stela Santana de Oliveira, Luzia Rejane Lisbôa Santos, et al. "Peptides for Coating TiO2 Implants: An In Silico Approach." International Journal of Molecular Sciences 23, no. 22 (November 14, 2022): 14048. http://dx.doi.org/10.3390/ijms232214048.
Full textHuang, Ke, Yaotang Deng, Wenya Yuan, Jian Geng, Guanghai Wang, and Fei Zou. "Phospholipase D1 Ameliorates Apoptosis in Chronic Renal Toxicity Caused by Low-Dose Cadmium Exposure." BioMed Research International 2020 (March 31, 2020): 1–12. http://dx.doi.org/10.1155/2020/7091053.
Full textPhilpott, Caroline C., Avery G. Frey, Moon-Suhn Ryu, Daniel Palenchar, Justin Wildemann, Ajay A. Vashisht, James Wohlschlegel, and Kymberly Bullough. "Special Delivery: The Role of Iron Chaperones in the Distribution of Iron in Developing Red Cells." Blood 126, no. 23 (December 3, 2015): SCI—45—SCI—45. http://dx.doi.org/10.1182/blood.v126.23.sci-45.sci-45.
Full textAkcapinar, Gunseli Bayram, and Osman Ugur Sezerman. "Computational approaches for de novo design and redesign of metal-binding sites on proteins." Bioscience Reports 37, no. 2 (March 27, 2017). http://dx.doi.org/10.1042/bsr20160179.
Full textAptekmann, A. A., J. Buongiorno, D. Giovannelli, M. Glamoclija, D. U. Ferreiro, and Y. Bromberg. "mebipred: identifying metal binding potential in protein sequence." Bioinformatics, May 27, 2022. http://dx.doi.org/10.1093/bioinformatics/btac358.
Full textKlein, Andreas S., and Cathleen Zeymer. "Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis." Protein Engineering, Design and Selection 34 (2021). http://dx.doi.org/10.1093/protein/gzab003.
Full textLu, Chih-Hao, Chih-Chieh Chen, Chin-Sheng Yu, Yen-Yi Liu, Jia-Jun Liu, Sung-Tai Wei, and Yu-Feng Lin. "MIB2: Metal ion-binding site prediction and modeling server." Bioinformatics, July 29, 2022. http://dx.doi.org/10.1093/bioinformatics/btac534.
Full textAnirudhan, Athira, Paola Isabel Angulo-Bejarano, Prabu Paramasivam, Kalaivani Manokaran, S. Manjunath Kamath, Ram Murugesan, Ashutosh Sharma, and Shiek S. S. J. Ahmed. "RPL6: A Key Molecule Regulating Zinc- and Magnesium-Bound Metalloproteins of Parkinson’s Disease." Frontiers in Neuroscience 15 (March 11, 2021). http://dx.doi.org/10.3389/fnins.2021.631892.
Full textRoumenina, Lubka T., and Jordan D. Dimitrov. "Assessment of the breadth of binding promiscuity of heme towards human proteins." Biological Chemistry, October 18, 2022. http://dx.doi.org/10.1515/hsz-2022-0226.
Full textRoy, Parthajit, and Dhananjay Bhattacharyya. "MetBP: A Software Tool for Detection of Interaction between Metal Ion-RNA Base Pairs." Bioinformatics, June 13, 2022. http://dx.doi.org/10.1093/bioinformatics/btac392.
Full textBellotti, Denise, Magdalena Rowińska-Żyrek, and Maurizio Remelli. "How Zinc-binding Systems, Expressed by Human Pathogens, Acquire Zinc from the Colonized Host Environment: A Critical Review on Zincophores." Current Medicinal Chemistry 28 (May 14, 2021). http://dx.doi.org/10.2174/1389200222666210514012945.
Full textTaherkhani, Amir, Shirin Moradkhani, Athena Orangi, Alireza Jalalvand, and Zahra Khamverdi. "Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition." Journal of Basic and Clinical Physiology and Pharmacology, December 11, 2020. http://dx.doi.org/10.1515/jbcpp-2020-0036.
Full textHirakawa, Yoshihisa, Miki Senda, Kodai Fukuda, Hong Yang Yu, Masaki Ishida, Masafumi Taira, Kazushi Kinbara, and Toshiya Senda. "Characterization of a novel type of carbonic anhydrase that acts without metal cofactors." BMC Biology 19, no. 1 (May 18, 2021). http://dx.doi.org/10.1186/s12915-021-01039-8.
Full text