Journal articles on the topic 'Biogeochemistry'

To see the other types of publications on this topic, follow the link: Biogeochemistry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Biogeochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bianchi, Thomas S., Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson. "Ideas and perspectives: Biogeochemistry – some key foci for the future." Biogeosciences 18, no. 10 (May 19, 2021): 3005–13. http://dx.doi.org/10.5194/bg-18-3005-2021.

Full text
Abstract:
Abstract. Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible implementation of solutions, offered by biogeochemistry, will need further integration of disciplines. Here, we refocus on how further developing and strengthening ties between biology, geology, chemistry, and social sciences will advance biogeochemistry through (1) better incorporation of mechanisms, including contemporary evolutionary adaptation, to predict changing biogeochemical cycles, and (2) implementing new and developing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges for biogeochemists in the 21st century are formidable and will require both the capacity to respond fast to pressing issues (e.g., catastrophic weather events and pandemics) and intense collaboration with government officials, the public, and internationally funded programs. Keys to success will be the degree to which biogeochemistry can make biogeochemical knowledge more available to policy makers and educators about predicting future changes in the biosphere, on timescales from seasons to centuries, in response to climate change and other anthropogenic impacts. Biogeochemistry also has a place in facilitating sustainable and equitable responses by society.
APA, Harvard, Vancouver, ISO, and other styles
2

Walbridge, Mark R. "Phosphorus Biogeochemistry." Ecology 81, no. 5 (May 2000): 1474–75. http://dx.doi.org/10.1890/0012-9658(2000)081[1474:pb]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Osborn, D. "Environmental biogeochemistry." Biological Conservation 32, no. 2 (1985): 189–90. http://dx.doi.org/10.1016/0006-3207(85)90085-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brooks, Jim. "Environment Biogeochemistry." Geoderma 39, no. 2 (December 1986): 157–58. http://dx.doi.org/10.1016/0016-7061(86)90073-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poorter, R. P. E. "Environmental biogeochemistry." Palaeogeography, Palaeoclimatology, Palaeoecology 52, no. 1-2 (November 1985): 179–80. http://dx.doi.org/10.1016/0031-0182(85)90049-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tardy, Y. "Environmental biogeochemistry." Earth-Science Reviews 22, no. 3 (November 1985): 243. http://dx.doi.org/10.1016/0012-8252(85)90065-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burdige, David J. "Biogeochemistry of Estuaries." Eos, Transactions American Geophysical Union 88, no. 52 (December 25, 2007): 581. http://dx.doi.org/10.1029/2007eo520011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oremland, R. S., and J. J. McCarthy. "Foreword: Methane Biogeochemistry." Global Biogeochemical Cycles 2, no. 4 (December 1988): ii. http://dx.doi.org/10.1029/gb002i004p000ii.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reeburgh, William S. "Oceanic Methane Biogeochemistry." Chemical Reviews 107, no. 2 (February 2007): 486–513. http://dx.doi.org/10.1021/cr050362v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duursma, Egbert K. "Perspectives on Biogeochemistry." Marine Chemistry 37, no. 3-4 (April 1992): 286–88. http://dx.doi.org/10.1016/0304-4203(92)90084-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Smith, H. J. "BIOGEOCHEMISTRY: Fish Stories." Science 297, no. 5583 (August 9, 2002): 899b—899. http://dx.doi.org/10.1126/science.297.5583.899b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Veizer, Ján. "Perspectives on biogeochemistry." Earth-Science Reviews 32, no. 3 (April 1992): 208–9. http://dx.doi.org/10.1016/0012-8252(92)90042-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dunn, Colin E. "Workshop 1: Biogeochemistry." Journal of Geochemical Exploration 29, no. 1-3 (January 1987): 355–57. http://dx.doi.org/10.1016/0375-6742(87)90086-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Turner, Andrew, and Jörg Schäfer. "Twelfth International Estuarine Biogeochemistry Symposium — “An integrated approach to estuarine biogeochemistry”." Marine Chemistry 167 (December 2014): 1. http://dx.doi.org/10.1016/j.marchem.2014.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Inskeep, William P. "Diversity of Environmental Biogeochemistry." Journal of Environmental Quality 21, no. 3 (July 1992): 513. http://dx.doi.org/10.2134/jeq1992.00472425002100030038x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sheppard, Stephen C. "Biogeochemistry of Trace Metals." Journal of Environmental Quality 22, no. 2 (April 1993): 381–82. http://dx.doi.org/10.2134/jeq1993.00472425002200020028x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Schlesinger, William H. "BETTER LIVING THROUGH BIOGEOCHEMISTRY." Ecology 85, no. 9 (September 2004): 2402–7. http://dx.doi.org/10.1890/03-0242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

TAKEUCHI, Akinori, Yasuyuki SHIBATA, and Atsushi TANAKA. "Mercury (Hg) Isotope Biogeochemistry." Journal of Environmental Chemistry 19, no. 1 (2009): 1–11. http://dx.doi.org/10.5985/jec.19.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Canfield, D. E. "Biogeochemistry of Sulfur Isotopes." Reviews in Mineralogy and Geochemistry 43, no. 1 (January 1, 2001): 607–36. http://dx.doi.org/10.2138/gsrmg.43.1.607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sugden, Andrew M. "Terrestrial biogeochemistry of silicon." Science 369, no. 6508 (September 3, 2020): 1203.2–1203. http://dx.doi.org/10.1126/science.369.6508.1203-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Selinus, O., A. Frank, and V. Galgan. "Biogeochemistry and metal biology." Geological Society, London, Special Publications 113, no. 1 (1996): 81–89. http://dx.doi.org/10.1144/gsl.sp.1996.113.01.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mahadevan, Amala. "Eddy effects on biogeochemistry." Nature 506, no. 7487 (January 29, 2014): 168–69. http://dx.doi.org/10.1038/nature13048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Röling, Wilfred. "Subsurface Microbiology and Biogeochemistry." Organic Geochemistry 32, no. 12 (December 2001): 1459. http://dx.doi.org/10.1016/s0146-6380(01)00112-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

KAYE, J., P. GROFFMAN, N. GRIMM, L. BAKER, and R. POUYAT. "A distinct urban biogeochemistry?" Trends in Ecology & Evolution 21, no. 4 (April 2006): 192–99. http://dx.doi.org/10.1016/j.tree.2005.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wolff, G. A. "Biogeochemistry of intertidal sediments." Marine Geology 148, no. 1-2 (June 1998): 113–14. http://dx.doi.org/10.1016/s0025-3227(98)00027-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Greenland, D. J. "Diversity of Environmental Biogeochemistry." Geoderma 58, no. 3-4 (October 1993): 245. http://dx.doi.org/10.1016/0016-7061(93)90045-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

R. Townsend, Alan. "The lessons of biogeochemistry." Biogeochemistry 133, no. 3 (March 30, 2017): 241–43. http://dx.doi.org/10.1007/s10533-017-0329-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wangersky, Peter J. "Introduction to marine biogeochemistry." Marine Chemistry 42, no. 3-4 (June 1993): 253–54. http://dx.doi.org/10.1016/0304-4203(93)90016-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cerling, Thure E., Janet E. Barnette, Gabriel J. Bowen, Lesley A. Chesson, James R. Ehleringer, Christopher H. Remien, Patrick Shea, Brett J. Tipple, and Jason B. West. "Forensic Stable Isotope Biogeochemistry." Annual Review of Earth and Planetary Sciences 44, no. 1 (June 29, 2016): 175–206. http://dx.doi.org/10.1146/annurev-earth-060115-012303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ussher, Simon J., Eric P. Achterberg, and Paul J. Worsfold. "Marine Biogeochemistry of Iron." Environmental Chemistry 1, no. 2 (2004): 67. http://dx.doi.org/10.1071/en04053.

Full text
Abstract:
Environmental Context. Several trace elements are essential to the growth of microorganisms, iron being arguably the most important. Marine microorganisms, which affect the global carbon cycle and consequently indirectly influence the world’s climate, are therefore sensitive to the presence of iron. This link means iron-related oceanic processes are a significant ecological and political issue. Abstract. The importance of the role of iron as a limiting micronutrient for primary production in the World Ocean has become increasingly clear following large-scale in situ iron fertilization experiments in high-nutrient, low-chlorophyll (HNLC) regions.[1] This has led to intensive international research with the aim of understanding the marine biogeochemistry of iron and quantifying the spatial distribution and transport of the element in the oceans. Recent studies have benefited from improved trace metal handling protocols and sensitive analytical techniques, but uncertainties remain concerning fundamental processes such as redox transfer, solubility, adsorption, biological uptake, and remineralization. This review summarizes our present knowledge of iron biogeochemistry. It begins with a discussion of the effects of the physicochemical speciation of iron in seawater from a thermodynamic perspective, including important topics such as inorganic and organic complexation and redox chemistry. This is followed by an overview of the fluxes of iron to the ocean interface and a description of iron cycling within the open ocean water column. Current uncertainties of iron biogeochemistry are highlighted and suggestions of future work provided.
APA, Harvard, Vancouver, ISO, and other styles
31

Froneman, Pierre William. "Biogeochemistry of Marine Systems." African Journal of Aquatic Science 30, no. 1 (January 2005): 91. http://dx.doi.org/10.2989/16085910509503840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lewis, W. M. "Biogeochemistry of tropical lakes." SIL Proceedings, 1922-2010 30, no. 10 (April 2010): 1595–603. http://dx.doi.org/10.1080/03680770.2009.11902383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Southam, G., M. F. Lengke, L. Fairbrother, and F. Reith. "The Biogeochemistry of Gold." Elements 5, no. 5 (October 1, 2009): 303–7. http://dx.doi.org/10.2113/gselements.5.5.303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Megonigal, J. Patrick. "“Frontiers in Wetland Biogeochemistry”." Archives of Agronomy and Soil Science 54, no. 3 (June 2008): 237–38. http://dx.doi.org/10.1080/03650340802132685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Windom, Herbert L. "Biogeochemistry of model estuaries." Eos, Transactions American Geophysical Union 70, no. 45 (1989): 1473. http://dx.doi.org/10.1029/89eo00348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, L., P. D’Odorico, S. Ringrose, S. Coetzee, and S. A. Macko. "Biogeochemistry of Kalahari sands." Journal of Arid Environments 71, no. 3 (November 2007): 259–79. http://dx.doi.org/10.1016/j.jaridenv.2007.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Degens, E. T. "Silicon geochemistry and biogeochemistry." Chemical Geology 48, no. 1-4 (March 1985): 363–64. http://dx.doi.org/10.1016/0009-2541(85)90063-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kögel-Knabner, Ingrid, Wulf Amelung, Zhihong Cao, Sabine Fiedler, Peter Frenzel, Reinhold Jahn, Karsten Kalbitz, Angelika Kölbl, and Michael Schloter. "Biogeochemistry of paddy soils." Geoderma 157, no. 1-2 (June 2010): 1–14. http://dx.doi.org/10.1016/j.geoderma.2010.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hydes, D. J. "Silicon geochemistry and biogeochemistry." Estuarine, Coastal and Shelf Science 25, no. 4 (October 1987): 489. http://dx.doi.org/10.1016/0272-7714(87)90046-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nihoul, J. C. J. "Biogeochemistry of Marine Systems." Journal of Marine Systems 50, no. 3-4 (October 2004): 283–84. http://dx.doi.org/10.1016/j.jmarsys.2004.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wangersky, Peter J., Rolf J. Hermes, and Michael Matthies. "Biogeochemistry of small catchments." Environmental Science and Pollution Research 1, no. 4 (December 1994): 284–85. http://dx.doi.org/10.1007/bf02986547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chang, Scott. "BOOK REVIEW: Modern Biogeochemistry." Forest Science 51, no. 5 (October 1, 2005): 511–12. http://dx.doi.org/10.1093/forestscience/51.5.511.

Full text
Abstract:
Abstract Professor Bashkin's recent book “Modern Biogeochemistry” provides an in-depth analysis of the many aspects of biogeochemistry of some key chemical elements in a wide variety of ecosystems. The book essentially evolved from the lectures professor Bashkin gave at the Universities of Cornell, Moscow, Pushchino, Seoul, and Bangkok.
APA, Harvard, Vancouver, ISO, and other styles
43

Gürses, Özgür, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck. "Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3." Geoscientific Model Development 16, no. 16 (August 30, 2023): 4883–936. http://dx.doi.org/10.5194/gmd-16-4883-2023.

Full text
Abstract:
Abstract. The cycling of carbon in the oceans is affected by feedbacks driven by changes in climate and atmospheric CO2. Understanding these feedbacks is therefore an important prerequisite for projecting future climate. Marine biogeochemistry models are a useful tool but, as with any model, are a simplification and need to be continually improved. In this study, we coupled the Finite-volumE Sea ice–Ocean Model (FESOM2.1) to the Regulated Ecosystem Model version 3 (REcoM3). FESOM2.1 is an update of the Finite-Element Sea ice–Ocean Model (FESOM1.4) and operates on unstructured meshes. Unlike standard structured-mesh ocean models, the mesh flexibility allows for a realistic representation of small-scale dynamics in key regions at an affordable computational cost. Compared to the previous coupled model version of FESOM1.4–REcoM2, the model FESOM2.1–REcoM3 utilizes a new dynamical core, based on a finite-volume discretization instead of finite elements, and retains central parts of the biogeochemistry model. As a new feature, carbonate chemistry, including water vapour correction, is computed by mocsy 2.0. Moreover, REcoM3 has an extended food web that includes macrozooplankton and fast-sinking detritus. Dissolved oxygen is also added as a new tracer. In this study, we assess the ocean and biogeochemical state simulated with FESOM2.1–REcoM3 in a global set-up at relatively low spatial resolution forced with JRA55-do (Tsujino et al., 2018) atmospheric reanalysis. The focus is on the recent period (1958–2021) to assess how well the model can be used for present-day and future climate change scenarios on decadal to centennial timescales. A bias in the global ocean–atmosphere preindustrial CO2 flux present in the previous model version (FESOM1.4–REcoM2) could be significantly reduced. In addition, the computational efficiency is 2–3 times higher than that of FESOM1.4–REcoM2. Overall, it is found that FESOM2.1–REcoM3 is a skilful tool for ocean biogeochemical modelling applications.
APA, Harvard, Vancouver, ISO, and other styles
44

Bocherens, H. "Isotopic biogeochemistry as a marker of Neandertal diet." Anthropologischer Anzeiger 55, no. 2 (June 1, 1997): 101–20. http://dx.doi.org/10.1127/anthranz/55/1997/101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xia, Xuelian, Yanguo Teng, and Yuanzheng Zhai. "Biogeochemistry of Iron Enrichment in Groundwater: An Indicator of Environmental Pollution and Its Management." Sustainability 14, no. 12 (June 9, 2022): 7059. http://dx.doi.org/10.3390/su14127059.

Full text
Abstract:
Iron (Fe) is one of the most biochemically active and widely distributed elements and one of the most important elements for biota and human activities. Fe plays important roles in biological and chemical processes. Fe redox reactions in groundwater have been attracting increasing attention in the geochemistry and biogeochemistry fields. This study reviews recent research into Fe redox reactions and biogeochemical Fe enrichment processes, including reduction, biotic and abiotic oxidation, adsorption, and precipitation in groundwater. Fe biogeochemistry in groundwater and the water-bearing medium (aquifer) often involves transformation between Fe(II) and Fe(III) caused by the biochemical conditions of the groundwater system. Human activities and anthropogenic pollutants strongly affect these conditions. Generally speaking, acidification, anoxia and warming of groundwater environments, as well as the inputs of reducing pollutants, are beneficial to the migration of Fe into groundwater (Fe(III)→Fe(II)); conversely, it is beneficial to the migration of it into the media (Fe(II)→Fe(III)). This study describes recent progress and breakthroughs and assesses the biogeochemistry of Fe enrichment in groundwater, factors controlling Fe reactivity, and Fe biogeochemistry effects on the environment. This study also describes the implications of Fe biogeochemistry for managing Fe in groundwater, including the importance of Fe in groundwater monitoring and evaluation, and early groundwater pollution warnings.
APA, Harvard, Vancouver, ISO, and other styles
46

Wahyudi, A’an Johan. "Trends and Future Projections for Marine Biogeochemistry Research in Indonesia (Tren dan Proyeksi Penelitian Biogeokimia Laut di Indonesia)." ILMU KELAUTAN: Indonesian Journal of Marine Sciences 19, no. 3 (September 2, 2014): 121. http://dx.doi.org/10.14710/ik.ijms.19.3.121-130.

Full text
Abstract:
Biogeokimia sebagai ilmu sistem merupakan bidang yang relatif baru di Indonesia, jadi proyeksi kedepan perlu dilakukan untuk riset di bidang kelautan. Tujuan dari kajian ini adalah untuk memilah tren penelitian di bidang biogeokimia sekaligus menentukan kesempatan penelitian biogeokimia kelautan di Indonesia di masa yang akan datang. Analisis bibliometrik dipergunakan dalam kajian ini dengan basis data sitasi publikasi ilmiah sebagai sumber data utama. Kata kunci 'marine biogeochemistry' dipakai untuk memilah basis data secara otomatis. Analisis lanjutan yang lebih detil dilakukan pada publikasi pada tahun 2011-2013. Selain itu, data mengenai tema penelitian oseanografi pada Pusat Penelitian Oseanografi dan Badan Penelitian dan Observasi Kelautan. Berdasarkan analisis tersebut, prediksi tema riset biogeokimia kelautan di Indonesia dapat dilakukan. Topik yang mungkin menjadi riset kedepan adalah: efek pemanasan global terhadap mangrove dan terumbu karang, efek pengasaman air laut terhadap produksi primer atau organisme bentik, pergeseran distribusi spesies, peran biogeokimia spesies tertentu pada transfer materi organik. Sebagai bidang ilmu yang relatif baru, biogeokimia dapat menjadi bagian esensial pada berbagai kajian komprehensif pada ilmu kelautan, khususnya pada tema yang signifikan seperti perubahan iklim global dan pengasaman air laut. Kata kunci: bibliometri, biogeokimia kelautan, tren, global, proyeksi Biogeochemistry as the science system is relatively new field in Indonesia, therefore, projection is needed for the future research in marine science. The objectives of this study are to specify the trends in biogeochemistry research topics and to determine the opportunities for marine biogeochemistry research in Indonesia. Bibliometric analysis was used with citation databases as the main data. The keyword ‘marine biogeochemistry’ was used to sort the database. We conducted the further analysis mostly in publications from 2011-2013. The data about research themes related to oceanography in Indonesia were collected from Research Center for Oceanography and Institute for Marine Research and Observation). On the basis of the analyses, we tried to predict the likely main themes in marine biogeochemistry in Indonesia in the future. The likely topics are: the effects of global warming on mangroves and coral reefs, the effects of ocean acidification on primary production or benthic organisms, shifts in species distribution, and the biogeochemical role of certain species in organic material transfer. It is suggested that the relatively new discipline of biogeochemistry must be an essential part of any comprehensive study of marine science, especially in significant areas such as global climate change and ocean acidification. Keywords: bibliometry, marine biogeochemistry, trend, global, projection
APA, Harvard, Vancouver, ISO, and other styles
47

Ermakov, V. V. "Current development of V.I. Vernadsky's biogeochemical ideas." Геохимия 68, no. 10 (October 1, 2023): 995–1008. http://dx.doi.org/10.31857/s0016752523100047.

Full text
Abstract:
The essence and development of a new scientific direction in geochemistry and biology – biogeochemistry, created by V.I. Vernadsky, are considered. The special attention is focused on the concepts - living matter, biogenic migration of chemical elements, chemical elemental composition of organisms and its ecological significance. The analysis of the development of the functions of the biosphere (ecological, concentration, information) is given. The differentiation of the chemical elemental composition of organisms in the conditions of man-made of the biosphere is shown. The role of biogeochemistry in the development of biotechnology and the formation of biogeochemical indication of the ecological state of biosphere taxon is presented. The analysis of the achievements of biogeochemistry and existing problems is given.
APA, Harvard, Vancouver, ISO, and other styles
48

Young, Kristina E., Sasha C. Reed, Scott Ferrenberg, Akasha Faist, Daniel E. Winkler, Catherine Cort, and Anthony Darrouzet-Nardi. "Incorporating Biogeochemistry into Dryland Restoration." BioScience 71, no. 9 (May 5, 2021): 907–17. http://dx.doi.org/10.1093/biosci/biab043.

Full text
Abstract:
Abstract Dryland degradation is a persistent and accelerating global problem. Although the mechanisms initiating and maintaining dryland degradation are largely understood, returning productivity and function through ecological restoration remains difficult. Water limitation commonly drives slow recovery rates within drylands; however, the altered biogeochemical cycles that accompany degradation also play key roles in limiting restoration outcomes. Addressing biogeochemical changes and resource limitations may help improve restoration efforts within this difficult-to-restore biome. In the present article, we present a synthesis of restoration literature that identifies multiple ways biogeochemical understandings might augment dryland restoration outcomes, including timing restoration around resource cycling and uptake, connecting heterogeneous landscapes, manipulating resource pools, and using organismal functional traits to a restoration advantage. We conclude by suggesting ways to incorporate biogeochemistry into existing restoration frameworks and discuss research directions that may help improve restoration outcomes in the world's highly altered dryland landscapes.
APA, Harvard, Vancouver, ISO, and other styles
49

Puckett, Larry. "Biogeochemistry of a Subalpine Ecosystem." Ecology 74, no. 4 (June 1993): 1289. http://dx.doi.org/10.2307/1940499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Matson, Pamela A. "Biogeochemistry and Perspectives on Change." Ecology 73, no. 2 (April 1992): 712–13. http://dx.doi.org/10.2307/1940783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography