Academic literature on the topic 'Biogeochemical cycles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biogeochemical cycles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biogeochemical cycles"
Akaiwa, Hideo. "Biogeochemical Cycles." TRENDS IN THE SCIENCES 3, no. 4 (1998): 58–59. http://dx.doi.org/10.5363/tits.3.4_58.
Full textWALKER, J. C. G. "Biogeochemical Cycles." Science 253, no. 5020 (August 9, 1991): 686–87. http://dx.doi.org/10.1126/science.253.5020.686-a.
Full textWackett, Lawrence P. "Global biogeochemical cycles." Environmental Microbiology 18, no. 3 (March 2016): 1088–89. http://dx.doi.org/10.1111/1462-2920.13280.
Full textRastetter, Edward B. "Modeling coupled biogeochemical cycles." Frontiers in Ecology and the Environment 9, no. 1 (February 2011): 68–73. http://dx.doi.org/10.1890/090223.
Full textOffre, Pierre, Anja Spang, and Christa Schleper. "Archaea in Biogeochemical Cycles." Annual Review of Microbiology 67, no. 1 (September 8, 2013): 437–57. http://dx.doi.org/10.1146/annurev-micro-092412-155614.
Full textVan Cappellen, P. "Biomineralization and Global Biogeochemical Cycles." Reviews in Mineralogy and Geochemistry 54, no. 1 (January 1, 2003): 357–81. http://dx.doi.org/10.2113/0540357.
Full textSchlesinger, William H., Jonathan J. Cole, Adrien C. Finzi, and Elisabeth A. Holland. "Introduction to coupled biogeochemical cycles." Frontiers in Ecology and the Environment 9, no. 1 (February 2011): 5–8. http://dx.doi.org/10.1890/090235.
Full textTREVORS, J. T., P. KUIKMAN, and B. WATSON. "Transgenic plants and biogeochemical cycles." Molecular Ecology 3, no. 1 (April 14, 2008): 57–64. http://dx.doi.org/10.1111/j.1365-294x.1994.tb00045.x.
Full textBush, T., I. B. Butler, A. Free, and R. J. Allen. "Redox regime shifts in microbially-mediated biogeochemical cycles." Biogeosciences Discussions 12, no. 4 (February 17, 2015): 3283–314. http://dx.doi.org/10.5194/bgd-12-3283-2015.
Full textBush, T., I. B. Butler, A. Free, and R. J. Allen. "Redox regime shifts in microbially mediated biogeochemical cycles." Biogeosciences 12, no. 12 (June 17, 2015): 3713–24. http://dx.doi.org/10.5194/bg-12-3713-2015.
Full textDissertations / Theses on the topic "Biogeochemical cycles"
Brunner, Benjamin. "The sulfur cycle: from bacterial microenvironment to global biogeochemical cycles /." Zürich : [s.n.], 2003. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=15197.
Full textFormolo, Michael J. "The biogeochemical cycling of sulfur in two distinct redox regimes /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164506.
Full textMeixner, Thomas. "Alpine biogeochemical modeling case studies, improvements, and parameter estimation /." Diss., The University of Arizona, 1999. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1999_256_sip1_w.pdf&type=application/pdf.
Full textBagnara, Maurizio. "Modelling biogeochemical cycles in forest ecosystems: a Bayesian approach." Doctoral thesis, country:IT, 2015. http://hdl.handle.net/10449/25094.
Full textBagnara, Maurizio <1985>. "Modelling biogeochemical cycles in forest ecosystems: a Bayesian approach." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/7188/1/Bagnara_Maurizio_tesi.pdf.
Full textBagnara, Maurizio <1985>. "Modelling biogeochemical cycles in forest ecosystems: a Bayesian approach." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/7188/.
Full textStamenkovic, Jelena. "The role of vegetation and soil in the biogeochemical cycling of mercury." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3339148.
Full textMcKee, Conor Michael. "Biogeochemical cycles of ammonia and dimethylsulphide in the marine environment." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368388.
Full textZhang, Rong 1971. "Self sustained thermohaline oscillations and their implications for biogeochemical cycles." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8232.
Full textIncludes bibliographical references (p. 150-156).
An ocean general circulation model (OGCM) configured with a paleo ocean bathymetry such as late Permian shows that different modes of ocean circulation might exist in warm climate: a strong 'thermal mode' induced by cooling at high latitudes and a weak 'haline mode' induced by evaporation at subtropics. The 'haline mode', obtained with enhanced freshwater flux and reduced vertical diffusivity, is inherently unstable, flushed by thermally-driven polar convection every few thousand years. A 3-box model of the thermohaline circulation is developed to study the basic physical mechanism of thermohaline oscillations. By including convective adjustment and a parameterization of the localized nature of convection, the box model shows that haline mode is unstable over a certain freshwater forcing/vertical diffusivity range.
(cont.) Self-sustained oscillatory thermohaline circulations, with periods ranging from centuries to several millennia, are supported. When the amplitude of surface freshwater flux exceeds a certain threshold the haline mode stabilizes. The relationship between oscillation periods and the freshwater flux/vertical diffusivity is also studied. Biogeochemical modeling of the late Permian ocean shows that the strong 'thermal mode' leads to well oxygenated deep ocean, the weak 'haline mode' leads to depletion of deep ocean oxygen. Biogeochemical cycles driven by the thermohaline oscillation found in the 3-box model shows that: the quasi-steady 'haline mode' is correlated with lower biological productivity, depleted deep ocean oxygen, heavier surface 613C due to weak vertical mixing, the transient 'thermal mode' is correlated with higher biological productivity, oxygenated deep ocean and lighter surface 613C due to strong vertical mixing. Those correlations are consistent with rhythmic paleo records. The 613C shift during mode switch is proportional to mean ocean nutrient level.
by Rong Zhang.
Ph.D.
Singh, Shweta. "Incorporating Biogeochemical Cycles and Utilizing Complexity Theory for Sustainability Analysis." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345519020.
Full textBooks on the topic "Biogeochemical cycles"
Rachael, James, and Open University. Oceanography Course Team., eds. Marine biogeochemical cycles. 2nd ed. Oxford, UK: Elsevier Butterworth Heinemann, 2005.
Find full textGadd, Geoffrey Michael, ed. Fungi in Biogeochemical Cycles. Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/cbo9780511550522.
Full textAstrid, Sigel, Sigel Helmut, and Sigel Roland K. O, eds. Biogeochemical cycles of elements. Boca Raton: Taylor&Francis, 2005.
Find full textM, Gadd Geoffrey, and British Mycological Society, eds. Fungi in biogeochemical cycles. Cambridge: Cambridge University Press, 2006.
Find full textKasibhatla, Prasad, Martin Heimann, Peter Rayner, Natalie Mahowald, Ronald G. Prinn, and Dana E. Hartley, eds. Inverse Methods in Global Biogeochemical Cycles. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm114.
Full textDury, G. H., Reiner Eiden, James R. Holton, and L. Johnson. The Natural Environment and the Biogeochemical Cycles. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-540-39463-1.
Full textDelmas, Robert J., ed. Ice Core Studies of Global Biogeochemical Cycles. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-51172-1.
Full textBowen, H. J. M., T. Frevert, W. D. Grant, G. Kratz, and P. E. Long. The Natural Environment and the Biogeochemical Cycles. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39209-5.
Full textFyfe, W. S., Harald Puchelt, and Mieczyslaw Taube. The Natural Environment and the Biogeochemical Cycles. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-46995-7.
Full text1956-, Varotsos Costas, ed. Biogeochemical cycles in globalization and sustainable development. Berlin: Springer, 2008.
Find full textBook chapters on the topic "Biogeochemical cycles"
Schneider, Bernd, Olaf Dellwig, Karol Kuliński, Anders Omstedt, Falk Pollehne, Gregor Rehder, and Oleg Savchuk. "Biogeochemical cycles." In Biological Oceanography of the Baltic Sea, 87–122. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-0668-2_3.
Full textFernández-Remolar, David C. "Biogeochemical Cycles." In Encyclopedia of Astrobiology, 172–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_173.
Full textBertrand, Jean-Claude, Patricia Bonin, Pierre Caumette, Jean-Pierre Gattuso, Gérald Grégori, Rémy Guyoneaud, Xavier Le Roux, Robert Matheron, and Franck Poly. "Biogeochemical Cycles." In Environmental Microbiology: Fundamentals and Applications, 511–617. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9118-2_14.
Full textFernández-Remolar, David C. "Biogeochemical Cycles." In Encyclopedia of Astrobiology, 279–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_173.
Full textSibi, G. "Biogeochemical Cycles." In Environmental Biotechnology, 5–33. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003272618-2.
Full textReitner, Joachim, and Volker Thiel. "Biogeochemical Cycles." In Encyclopedia of Geobiology, 137. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_28.
Full textBache, Bryon W., and Ward Chesworth. "Biogeochemical Cycles." In Encyclopedia of Soil Science, 56–60. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_61.
Full textSummons, Roger E. "Biogeochemical Cycles." In Topics in Geobiology, 3–21. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2890-6_1.
Full textFernandez-Remolar, David C. "Biogeochemical Cycles." In Encyclopedia of Astrobiology, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_173-4.
Full textFernández-Remolar, David C. "Biogeochemical Cycles." In Encyclopedia of Astrobiology, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_173-3.
Full textConference papers on the topic "Biogeochemical cycles"
Müller, Gerrit, Janine Börker, Appy Sluijs, and Jack Middelburg. "River particles in biogeochemical cycles." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9778.
Full textBanfield, Jillian F., Alexander Thomas, Paula Matheus Carnevali, Adi Lavy, Jacob West-Roberts, Alexander Crits-Christoph, Kenneth Hurst-Williams, and Susan Hubbard. "Microbial Mediation of Watershed Biogeochemical Cycles." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.124.
Full textCLEMENTE, J. B., H. A. ADORNA, and J. J. S. VILLAR. "WEAK BISIMULATION BETWEEN TWO BIOGEOCHEMICAL CYCLES." In Third Workshop on Computing: Theory and Practice, WCTP 2013. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814612883_0004.
Full textConnock, Gregory T., Jeremy D. Owens, and Xiaolei Liu. "BIOMARKERS AS A TOOL TO CONSTRAIN ANCIENT BIOGEOCHEMICAL CYCLES." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-352014.
Full textCervantes, F. J. "Key roles of humic substances in global biogeochemical cycles." In Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems». CLUB PRINT ltd., 2019. http://dx.doi.org/10.36291/hit.2019.cervantes.012.
Full textTian, Zheyu, Graham Shields, Ying Zhou, Maoyan Zhu, and Miao Lu. "Reconstructing Biogeochemical Cycles during and after the Ediacaran DOUNCE (Shuram) Excursion." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2598.
Full textRahman, Aleksandra, Niko Finke, Kai Blumberg, Rachel L. Simister, Celine Michiels, Alyse Hawley, Sean A. Crowe, and Steven J. Hallam. "NOVEL EPSILONPROTEOBACTERIA FROM SAANICH INLET COUPLES BIOGEOCHEMICAL CYCLES IN ANOXIC MARINE ENVIRONMENTS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-307626.
Full textClaustre, Hervé, David Antoine, Lars Boehme, Emmanuel Boss, Fabrizio D'Ortenzio, Odile Fanton D'Andon, Christophe Guinet, et al. "Guidelines Towards an Integrated Ocean Observation System for Ecosystems and Biogeochemical Cycles." In OceanObs'09: Sustained Ocean Observations and Information for Society. European Space Agency, 2010. http://dx.doi.org/10.5270/oceanobs09.pp.14.
Full textTouche, Jeanne, Marie-Pierre Turpault, Christophe Calvaruso, and Philippe De Donato. "Impacts of drought events on the biogeochemical cycles of a temperate beech forest." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11132.
Full textBoden, Joanne, Eva Stüeken, and Rika Anderson. "Exploring the role of alternative phosphorus species in Precambrian biogeochemical cycles: A genomics approach." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.14982.
Full textReports on the topic "Biogeochemical cycles"
Vertenstein, Mariana. Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC). Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1234244.
Full textLiu, Xiaohong. Development of Modal Aerosol Module in CAM5 for Biogeochemical Cycles. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1409289.
Full textGalloway, J. N., W. H. Schlesinger, C. M. Clark, N. B. Grimm, R. B. Jackson, B. E. ;. Law, P. E. Thornton, A. R. Townsend, and R. Martin. Ch. 15: Biogeochemical Cycles. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 2014. http://dx.doi.org/10.7930/j0x63jt0.
Full textReed, Sasha. Final Technical Report: Dryland feedbacks to future climate change: how species mortality and replacement will affect coupled biogeochemical cycles and energy balance. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1608533.
Full textArnott, James, and Emily Jack-Scott. Interdisciplinary Workshop on the Impacts of Land Use and Land Management on Earth System Evolution, Biogeochemical Cycles, Extremes, and Inter-Sectoral Dynamics. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1749946.
Full textStanley, Rachel H. R., Thomas Thomas, Yuan Gao, Cassandra Gaston, David Ho, David Kieber, Kate Mackey, et al. US SOLAS Science Report. Woods Hole Oceanographic Institution, December 2021. http://dx.doi.org/10.1575/1912/27821.
Full textCooley, S. R., D. J. P. Moore, S. R. Alin, D. Butman, D. W. Clow, N. H. F. French, R. A. Feely, et al. Chapter 17: Biogeochemical Effects of Rising Atmospheric Carbon Dioxide. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch17.
Full textLiu, Shuguang, Larry L. Tieszen, Shuqing Zhao, Zhengpeng Li, and Jinxun Liu. Developing a Spatially Distributed Terrestrial Biogeochemical Cycle Modeling System to Support the Management of Fort Benning and its Surrounding Areas. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada578897.
Full textBerkowitz, Jacob, Nathan Beane, Kevin Philley, Nia Hurst, and Jacob Jung. An assessment of long-term, multipurpose ecosystem functions and engineering benefits derived from historical dredged sediment beneficial use projects. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41382.
Full textMicrobes in Models: Integrating Microbes into Earth System Models for Understanding Climate Change. American Society for Microbiology, June 2023. http://dx.doi.org/10.1128/aamcol.jun.2023.
Full text