Academic literature on the topic 'BioGeoChemical-Argo (BGC-Argo) floats'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'BioGeoChemical-Argo (BGC-Argo) floats.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "BioGeoChemical-Argo (BGC-Argo) floats"
Ford, David. "Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design." Biogeosciences 18, no. 2 (January 21, 2021): 509–34. http://dx.doi.org/10.5194/bg-18-509-2021.
Full textTeruzzi, Anna, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini. "Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment." Biogeosciences 18, no. 23 (November 30, 2021): 6147–66. http://dx.doi.org/10.5194/bg-18-6147-2021.
Full textIzett, Robert W., Katja Fennel, Adam C. Stoer, and David P. Nicholson. "Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats." Biogeosciences 21, no. 1 (January 2, 2024): 13–47. http://dx.doi.org/10.5194/bg-21-13-2024.
Full textMignot, Alexandre, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, et al. "Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design." Biogeosciences 20, no. 7 (April 12, 2023): 1405–22. http://dx.doi.org/10.5194/bg-20-1405-2023.
Full textWang, Bin, Katja Fennel, and Liuqian Yu. "Can assimilation of satellite observations improve subsurface biological properties in a numerical model? A case study for the Gulf of Mexico." Ocean Science 17, no. 4 (August 26, 2021): 1141–56. http://dx.doi.org/10.5194/os-17-1141-2021.
Full textClaustre, Hervé, Kenneth S. Johnson, and Yuichiro Takeshita. "Observing the Global Ocean with Biogeochemical-Argo." Annual Review of Marine Science 12, no. 1 (January 3, 2020): 23–48. http://dx.doi.org/10.1146/annurev-marine-010419-010956.
Full textTerzić, Elena, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan. "Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry." Biogeosciences 16, no. 12 (July 1, 2019): 2527–42. http://dx.doi.org/10.5194/bg-16-2527-2019.
Full textShu, Chan, Peng Xiu, Xiaogang Xing, Guoqiang Qiu, Wentao Ma, Robert J. W. Brewin, and Stefano Ciavatta. "Biogeochemical Model Optimization by Using Satellite-Derived Phytoplankton Functional Type Data and BGC-Argo Observations in the Northern South China Sea." Remote Sensing 14, no. 5 (March 7, 2022): 1297. http://dx.doi.org/10.3390/rs14051297.
Full textGermineaud, Cyril, Jean-Michel Brankart, and Pierre Brasseur. "An Ensemble-Based Probabilistic Score Approach to Compare Observation Scenarios: An Application to Biogeochemical-Argo Deployments." Journal of Atmospheric and Oceanic Technology 36, no. 12 (December 2019): 2307–26. http://dx.doi.org/10.1175/jtech-d-19-0002.1.
Full textRenosh, Pannimpullath Remanan, Jie Zhang, Raphaëlle Sauzède, and Hervé Claustre. "Vertically Resolved Global Ocean Light Models Using Machine Learning." Remote Sensing 15, no. 24 (December 7, 2023): 5663. http://dx.doi.org/10.3390/rs15245663.
Full textDissertations / Theses on the topic "BioGeoChemical-Argo (BGC-Argo) floats"
Terrats, Louis. "Le flux de carbone particulaire et le lien avec la communauté phytoplanctonique : une approche par flotteurs-profileurs biogéochimiques." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS550.pdf.
Full textThe ocean plays a key role in the climate by exchanging large quantities of carbon with the atmosphere. Atmospheric carbon is fixed at the ocean surface by phytoplankton that transforms it into biogenic carbon, part of which is transported to the deep ocean by physical and biological mechanisms; this is the Biological Carbon Pump (BCP). A tiny fraction of this biogenic carbon reaches sufficient depths to be sequestered for several centuries before it returns to the atmosphere, thus regulating concentrations of atmospheric CO2. Today, we know enough about the BCP to recognize its importance in climate, but our knowledge of its functioning is limited due to insufficient sampling of biogenic carbon fluxes. Here, we used BioGeoChimical-Argo floats, observational platforms designed to solve the undersampling problem, to explore a major mechanism of the BCP called the gravitational pump. The gravitational pump is the transport of biogenic carbon in the form of organic particles (POC) that sink from the surface into the deep ocean. Our study of the gravitational pump is divided into three axes. The first axis consisted of developing a method to detect blooms of coccolithophores, a major phytoplankton group that potentially has an important control on the transport of POC at depth. The second axis focused on the seasonal and regional variability of POC fluxes in the Southern Ocean, an undersampled area in which several floats have been deployed with an optical sediment trap (OST). Only ten floats were equipped with an OST, which is low compared to the whole BGC-Argo fleet (i.e. several hundred floats). Therefore, in the third axis, we developed a method to estimate the POC flux with the standard sensors of BGC-Argo floats. This method was then applied to hundreds of floats to describe the seasonal variability of the POC flux in many regions. In this study, we also highlighted the link between the POC flux and the nature of surface particles. For example, we calculated relationships between phytoplankton community composition and POC flux at 1000m. Using these relationships, we then used satellite observations to extrapolate POC flux to large spatial scales, such as the entire Southern Ocean and the global ocean
Reports on the topic "BioGeoChemical-Argo (BGC-Argo) floats"
Cossarini, Gianpiero. Results of the BGC data assimilation. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d4.10.
Full textFourrier, Marine. Integration of in situ and satellite multi-platform data (estimation of carbon flux for trop. Atlantic). EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d7.6.
Full text