To see the other types of publications on this topic, follow the link: Biogas. biomethane. landfill gas.

Dissertations / Theses on the topic 'Biogas. biomethane. landfill gas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Biogas. biomethane. landfill gas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dixit, Onkar. "Upgrading Biogas to Biomethane Using Absorption." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-189059.

Full text
Abstract:
Questions that were answered in the dissertation: Which process is suitable to desulphurize biogas knowing that chemical absorption will be used to separate CO2? Which absorption solvent is suitable to separate CO2 from concentrated gases such as biogas at atmospheric pressure? What properties of the selected solvent, namely aqueous diglycolamine (DGA), are already known? How to determine solvent properties such as equilibrium CO2 solubility under absorption and desorption conditions using simple, but robust apparatuses? What values do solvent properties such as density, viscosity and surface tension take at various DGA contents and CO2 loadings? How do primary alkanolamine content and CO2 loading influence solvent properties? What is the optimal DGA content in the solvent? What is the optimal desorption temperature at atmospheric pressure? How can equilibrium CO2 solubility in aqueous DGA solvents be simulated? What is the uncertainty in the results? How to debottleneck an absorber and increase its gas-treating capacity? How to determine the optimal lean loading of the absorption solvent? What are the characteristics of the absorption process that uses aqueous DGA as the solvent to separate CO2 from biogas and is more energy efficient and safer than the state-of-the-art processes? How to quantitatively compare the hazards of absorption solvents? What is the disposition of the German population towards hazards from biogas plants? What are the favourable and adverse environmental impacts of biomethane?
Fragen, die in der Dissertation beantwortet wurden: Welches Verfahren ist zur Entschwefelung von Biogas geeignet, wenn die chemische Absorption zur CO2-Abtrennung genutzt wird? Welches Absorptionsmittel ist geeignet, um CO2 aus konzentrierten Gasen, wie Biogas, bei atmosphärischem Druck abzutrennen? Welche Eigenschaften des ausgewählten Absorptionsmittels, wässriges Diglykolamin (DGA), sind bereits bekannt? Wie wird die CO2-Gleichgewichtsbeladung unter Absorptions- und Desorptionsbedingungen mit einfachen und robusten Laborapparaten bestimmt? Welche Werte nehmen die Absorptionsmitteleigenschaften wie Dichte, Viskosität und Oberflächenspannung bei verschiedenen DGA-Gehalten und CO2-Beladungen? Wie werden die Absorptionsmitteleigenschaften durch den Primäramin-Gehalt und die CO2-Beladung beeinflusst? Was ist der optimale DGA-Gehalt im Absorptionsmittel? Was ist die optimale Desorptionstemperatur bei atmosphärischem Druck? Wie wird die CO2-Gleichgewichtsbeladung im wässrigen DGA simuliert? Welche Ungenauigkeit ist zu erwarten? Wie wird eine Absorptionskolonne umgerüstet, um die Kapazität zu erweitern? Wie wird die optimale CO2-Beladung des Absorptionsmittels am Absorbereintritt (im unbeladenen Absorptionsmittel) bestimmt? Was sind die Prozesseigenschaften eines Absorptionsverfahrens, das wässriges DGA als Absorptionsmittel nutzt sowie energieeffizienter und sicherer als Verfahren auf dem Stand der Technik ist? Wie kann das Gefahrenpotenzial von Absorptionsmittel quantitativ verglichen werden? Wie werden Gefahren aus einer Biogasanlage durch die deutsche Bevölkerung wahrgenommen? Welche positive und negative Umweltauswirkung hat Biomethan?
APA, Harvard, Vancouver, ISO, and other styles
2

Koliopoulos, Telemachus C. "Numerical modelling of landfill gas and associated risk assessment." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lecharlier, Aurore. "Caractérisation des composés trace dans le biogaz et biométhane : développement d'une méthode d'échantillonnage, de préconcentration in situ et d'analyse." Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3008.

Full text
Abstract:
Afin d’accroître les connaissances sur les composés traces présents dans les biogaz et biométhane et de garantir l’intégration durable de ces gaz dans le mix énergétique européen, une chaîne analytique complète a été développée dont un élément central est un dispositif d’échantillonnage de terrain permettant la préconcentration directe in situ des composés traces en prélevant ces gaz à leur pression actuelle (≤ 200 bara). Les composés traces ciblés dans ce travail incluent : alcanes (linéaires, cycliques, polycycliques), aromatiques, terpènes, alcènes, espèces organiques halogénées, espèces organiques oxygénées (alcools, aldéhydes, esters, éthers, cétones), siloxanes, composés soufrés organiques et inorganiques.L’état de l’art des techniques de prélèvement de gaz et de préconcentration pour la détermination de composés traces dans des matrices gazeuses a premièrement été réalisé. Sur base de cette étude, il fut choisi d’effectuer la préconcentration sur des tubes d’adsorbants multi-lits (TAM) assemblés manuellement. Le système de préconcentration fut élaboré et optimisé au laboratoire en sélectionnant des adsorbants commerciaux; les procédures d’assemblage et de conditionnement des nouveaux TAM furent établies; l’efficacité de quatre configurations de TAM à adsorber et libérer des composés traces ciblés fut testée en utilisant des mélanges de gaz synthétiques certifiés contenant des composés à l’état de traces (1 ppmmol) dans une matrice N2 ou CH4. Les analytes préconcentrés sur les TAM sont récupérés par désorption thermique (DT) des tubes au moyen d’un nouveau prototype de DT pour être analysés par chromatographie en phase gazeuse (CG) couplée à la spectrométrie de masse (SM).Deuxièmement, la méthode analytique et le prototype de DT ont été validés. Il fut démontré que le pouvoir résolutif du prototype de DT était plus élevé que celui obtenu par d’autres techniques de préconcentration ou d’autres méthodes d’injection en CG, telles que la microextraction en phase solide ou l’injection directe de gaz. Par ailleurs, les paramètres de CG-SM furent optimisés pour détecter le large spectre de composés traces potentiellement présents dans le biogaz et biométhane.Troisièmement, un prototype haute-pression innovant fut évalué, permettant le prélèvement de gaz pressurisés (≤ 200 bara) à travers les TAM pour la préconcentration directe et sous haute-pression des composés traces présents dans ces gaz. Ce prototype fut validé au laboratoire au moyen de mélanges de gaz synthétiques pressurisés avant d’être utilisé sur le terrain pour prélever du biométhane à 40 bara au niveau d’un poste d’injection dans le réseau de gaz naturel.Ensuite, la chaîne d’échantillonnage fut assemblée pour mener 6 campagnes de prélèvement durant lesquelles 6 flux différents de biogaz et biométhane furent prélevés sur une installation de stockage de déchets non dangereux et deux sites de méthanisation valorisant divers intrants. Les composés traces de ces gaz furent qualitativement déterminés via la méthode de DT-CG-SM élaborée. En un unique prélèvement et utilisant des volumes de gaz réduits (0.5 – 2 LN), un large spectre de composés traces issus de diverses familles chimiques (alcools, aldéhydes, alcènes, aromatiques, alcanes, esters, éthers, halogénés, cétones, soufrés, siloxanes et terpènes) furent identifiés. Des variations de composition en composés traces furent observées dans les différents gaz et les corrélations potentielles entre intrants, procédés de traitement des gaz et composés traces identifiés, furent discutées. La génération du mono-terpène p-cymène et d’autres terpènes dans les méthaniseurs digérant surtout des résidus alimentaires, a notamment été mise en évidence. La procédure de préconcentration haute-pression in situ développée dans ce travail peut certainement contribuer à faciliter les opérations de prélèvements de gaz sur le terrain pour déterminer les composés traces dans des matrices gazeuses telles que le biogaz et le biométhane
In pursuance of enhancing knowledge on biogas and biomethane’s trace compounds to help guarantee their sustainable integration in today’s European energy mix, a field sampling set-up enabling direct in situ preconcentration of non-metallic trace compounds in such gas samples at their pipe working pressure (up to 200 bara) was developed. Non-metallic trace compounds targeted in this work included alkanes (linear, cyclic, polycyclic), aromatics, terpenes, alkenes, halogenated organic species, oxygenated organic species (alcohols, aldehydes, esters, furans and ethers, ketones), siloxanes, organic and inorganic Sulphur-compounds. Firstly, state-of-the-art gas sampling and preconcentration techniques for the determination of trace compounds in gaseous matrices were reviewed. Based on this review, preconcentration was chosen to be performed on self-assembled multibed adsorbent tubes (MAT). The preconcentration system was elaborated and optimized in the laboratory: convenient commercial adsorbents were selected; procedures for the assembly and conditioning of new MAT were established; four MAT configurations were tested on their efficiency in adsorbing and releasing targeted trace compounds using certified synthetic gas mixtures containing targeted species at trace concentrations (1 ppmmol) in CH4 or N2 matrices. Analytes preconcentrated on MAT were recovered for analysis by thermal desorption (TD) of the tubes using a new TD prototype followed by gas chromatography (GC) hyphenated with mass spectrometry (MS) (TD-GC-MS). Secondly, the analytical method, and in particular the new TD prototype, was validated. The chromatographic resolution power of the new TD prototype was proved to be higher than that obtained from other well established preconcentration or GC-injection methods such as solid phase microextraction or direct headspace gas injection. Besides, GC-MS parameters were optimized to detect the broad range of trace compounds potentially found in biogas and biomethane.Thirdly, the use of a novel high-pressure tube sampling (HPTS) prototype was evaluated for the circulation of pressurized gases (up to 200 bara) through MAT for the direct high-pressure preconcentration of trace compounds from such gases. The HPTS was first validated in the laboratory using pressurized certified synthetic gas mixtures, and then used on field to sample compressed biomethane at a natural gas grid injection station at 40 bara.Subsequently, the field sampling chain was set-up and 6 field sampling campaigns were conducted where 6 different streams of landfill gas, biogas and biomethane were collected at a landfill plant and two anaerobic digestion plants treating diverse feedstocks. Trace compounds were qualitatively determined in all gas samples via the developed TD-GC-MS method. In a single sampling run and using limited gas volumes ranging 0.5 – 2 LN, a wide range of trace compounds in a variety of chemical families (alcohols, aldehydes, alkenes, aromatics, alkanes (linear, cyclic and polycyclic), esters, furans and ethers, halogenated species, ketones, Sulphur-compounds, siloxanes and terpenes) were identified. Variations in trace compounds composition were observed in the different gases sampled and potential correlations between feedstocks nature, implemented gas treatment processes and trace compounds determined were discussed. In particular, the substantial generation of the mono-terpene p-cymene and of other terpenes was evidenced for anaerobic digestion plants treating principally food-wastes. It is believed the shortened and high-pressure-proof field preconcentration procedure developed in this work can contribute facilitating field sampling operations for the determination of trace compounds in complex gas matrices such as biogas and biomethane
APA, Harvard, Vancouver, ISO, and other styles
4

Petreikis, Algirdas. "Biodujų prijungimo prie gamtinių dujų dujotiekio galimybių analizė." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140611_171202-93890.

Full text
Abstract:
Baigiamajame magistro darbe nagrinėjama „Lapių“ buitinių atliekų sąvartyno biodujų jėgainė. Analizės metu ištirti jėgainės technologiniai pajėgumai, išgaunamų biodujų kiekiai, kokybė, nustatytas jėgainės efektyvumas. Remiantis Lietuvoje galiojančiais teisės aktais ir gautais analitiniais rezultatais darbe nagrinėjami trys galimi biodujų panaudojimo scenarijai. Tradiciniai biodujų panaudojimo būdai (šilumos ir elektros energijos gamyba) lyginami su galimybe biodujas tiekti į gamtinių dujų tinklus. Pristatomi nagrinėtų scenarijų analitiniai rezultatai. Atliekamas visų scenarijų ekonominis pagrindimas. Pagal pasirinktus kriterijus vertinamas ekonominių rodiklių jautrumas. Teikiami pasiūlymai projekto finansiniam gyvybingumui didinti. Išnagrinėjus tris minėtus scenarijus, atlikus ekonominį vertinimą bei jautrumo analizę yra apibendrinami baigiamojo darbo rezultatai, formuluojamos ir pateikiamos baigiamojo darbo išvados. Darbą sudaro 18 skyrių. Darbo apimtis 82 psl. be teksto priedų, 19 lentelių, 34 paveikslai, 44 bibliografiniai šaltiniai. Atskirai pateikiami darbo priedai.
In the final major theses „Lapių“ landfill biogas plant was analysed. Analysis results showed biogas plant‘s technical capabilities, the amount and quality of produced biogas, plant‘s efficiency was identified. According to Lithuania‘s legal acts and research results three possible biogas usage scenarios were chosen to be analysed. Traditional biogas usage ways (production of heat and electricity) are compared with possibility to supply biogas to natural gas networks. The results of analysis of possible scenarios are introduced. All scenarios are based on economic. Economic indicators are valued by chosen criteria. Suggestions made to improve projects financial vitality. After examining all three scenarios, after economical and sensitivity evaluation, results of final thesis are summarized and final conclusions are made. In the final major theses are 18 chapters. Scope of work 82. text, 19 tables, 34 pics, 44 bibliographic entries.
APA, Harvard, Vancouver, ISO, and other styles
5

Mata, Omar João da. "Estimativa da produção de biogás em aterros sanitários para a geração de metano." Universidade Jose do Rosario Vellano, 2012. http://tede2.unifenas.br:8080/jspui/handle/jspui/54.

Full text
Abstract:
Made available in DSpace on 2016-05-02T13:54:16Z (GMT). No. of bitstreams: 1 OmarJoaodaMataDissertacao.pdf: 976126 bytes, checksum: 616780a10a223756893e1ab9f6ac26d1 (MD5) Previous issue date: 2012-06-05
The purpose of this study was to measure biogas emission from a monitored landfill in the city of Betim, State of Minas Gerais, in southeast Brazil, and determine parameters for the application of mathematical models to evaluate methane production and the possible generation of energy for the specific Betim region. The study was conducted at the city sanitary landfill. With 500,000 inhabitants, and producing 300 tons of residues a day, Betim started to operate its sanitary landfill in 2002 and is expected to close it in 2012. The system of disposition and treatment of garbage includes the landfill, manure treatment ponds and a composting yard. It receives domestic and commercial waste from the city and the remains of pruning and weeding. The residues from pruning and weeding, restaurants and garbage trucks are transformed into organic matter on the composting yard. The gas consists of 50%-60% of methane generated by decomposition of the organic matter by bacteria, and also of carbon dioxide, hydrogen, oxygen, hydrogen sulphide, ammonia, carbon monoxide, water and small percentages of other elements. Several collections and analyses were carried out and compared with different measurement estimates of the biogas capturing system of sanitary landfills by different methods: World Bank WB; Intergovernmental Panel on Climate Change IPCC; and United States Environment Protection Agency USEPA, with the aim of finding parameters to evaluate the data obtained. The comparison of our data with the curves foreseen with the methods above, and the results provided by the laboratory, made it possible to validate the theoretical models.
O objetivo deste estudo foi medir a emissão de biogás a partir de um aterro monitorado na cidade de Betim, Estado de Minas Gerais, no sudeste do Brasil, e determinar parâmetros para a aplicação de modelos matemáticos para avaliar a produção de metano ea geração de energia possível para o Betim região específica. O estudo foi realizado no aterro sanitário da cidade. Com 500.000 habitantes, e produzindo 300 toneladas de resíduos por dia, Betim começou a operar seu aterro sanitário em 2002 e deverá ser concluída em 2012. O sistema de disposição e tratamento de lixo inclui o aterro sanitário, lagoas de tratamento de chorume e um pátio de compostagem. Ele recebe lixo doméstico e comercial da cidade e os restos de poda e capina. Os resíduos de poda e capina, restaurantes e caminhões de lixo são transformados em matéria orgânica no pátio de compostagem. O gás é constituído por 50% -60% de metano gerado pela decomposição da matéria orgânica por bactérias, e também de dióxido de carbono, oxigênio, hidrogênio, sulfureto de hidrogênio, amoníaco, monóxido de carbono, água e pequenas percentagens de outros elementos. Várias coleções e análises foram realizados e comparados com estimativas de medição diferentes das biogás captura sistema de aterros sanitários por meio de métodos diferentes: Banco Mundial - BM; Painel Intergovernamental sobre Mudança do Clima - IPCC, e Estados Unidos Agência de Proteção Ambiental - EPA, com o objetivo de encontrar parâmetros para avaliar os dados obtidos. A comparação dos nossos dados com as curvas previstas com os métodos acima, e os resultados fornecidos pelo laboratório, tornou possível para validar os modelos teóricos.
APA, Harvard, Vancouver, ISO, and other styles
6

Surita, Sharon C. "Emergence and Fate of Siloxanes in Waste Streams: Release Mechanisms, Partitioning and Persistence in Three Environmental Compartments." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1899.

Full text
Abstract:
Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
7

Cachia, Maxime. "Caractérisation des transferts d’éléments trace métalliques dans une matrice gaz/eau/roche représentative d'un stockage subsurface de gaz naturel." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3006/document.

Full text
Abstract:
Le gaz naturel représente environ 20% de la consommation énergétique mondiale et cette part est attendue à la hausse dans les prochaines années en raison de la transition énergétique. Pour des raisons économiques et stratégiques, et afin de réguler les demandes d’énergie entre l’été et l’hiver, le gaz naturel est stocké temporairement dans des réservoirs souterrains, notamment des réservoirs aquifères. Les opérations d’injection et de soutirage du gaz mettent donc en contact des espèces gazeuses, liquides et solides, et rendent potentiellement possibles de nombreux phénomènes de transferts d’espèces chimiques d’un milieu vers un autre. Ainsi, bien que composé majoritairement de méthane (70-90%vol), le gaz naturel peut présenter des concentrations variées d’éléments trace métalliques (arsenic, mercure, plomb…). Compte tenu du caractère néfaste de ces composés, à la fois pour les installations industrielles et pour l’environnement, il est de la première importance de connaître l’impact de la composition chimique du gaz sur l’aquifère.Les travaux réalisés dans le cadre de cette thèse s’inscrivent dans ce contexte et ont eu pour objectif de caractériser les matrices gaz/eau/roche ainsi que les interactions qui existent entre elles, avec pour centre d’intérêt principal les éléments trace métalliques.Pour cela nous avons fait porter nos efforts sur l’optimisation (i) des conditions d’utilisation d’un banc de prélèvement ATEX, basé sur le principe de barbotage, et (ii) des méthodes de piégeages des métaux lourds puis d’analyses employées. Ce dispositif unique permet d’échantillonner les métaux présents dans un gaz naturel sous pression (100 bar maximum). Utilisé sur des sites industriels, ce banc a permis de mesurer et suivre sur plusieurs années la composition chimique en éléments trace métalliques du gaz naturel, mais aussi ponctuellement d’un biogaz et d’un biomethane. En effet, Ces deux derniers gaz ont vocation à réduire l’utilisation des énergies fossiles, celle du gaz naturel en particulier. Les biométhanes sont donc amenés à parcourir les mêmes réseaux de transport et à séjourner dans les mêmes sites de stockage que ceux utilisés pour le gaz naturel.En complément de la caractérisation de la phase gazeuse, nous nous sommes intéressés aux évolutions des compositions chimiques des phases aqueuse et minérale du stockage souterrain, sans pouvoir identifier de mécanisme de transfert spécifiquement lié aux activités de stockage de gaz
Natural gas represents 20% of energy consumption in the world. This percentage is expected to increase in the next years due to the energy transition. For economic and strategic concerns, and in to regulate energy demand between summer and winter, natural gas might be stored in underground storages like aquifers. Consequently, injection and drawing operations favour contact between gaseous, liquid and solid species and make possible transfer phenomena of chemical species from one matrix to another. In addition, even though natural gases are composed essentially of methane (70-90%vol), they can also show various metallic trace element concentrations (mercury, arsenic, tin…). According harmful effects of these compounds on industrial infrastructures and on environment, knowing impacts of natural gas composition on aquifer storage is crucial.The different tasks of this thesis are incorporated within such a context with the objective to characterize gases-waters-rocks matrices and their potential interactions, focusing on metallic trace elements.Therefore, we have focused a part of this PhD thesis on the optimisation of conditions of use (i) of a in EX zone 0 sampler device, working according to the principle of bubbling and (ii) of trapping methodology as well as analytic methods. This unique device allows metal sampling from natural gases up to 100 bar pressure. Its use on industrial sites has permitted to measure and monitor during several years the metallic trace element chemical compositions of a natural gas and also more limited biogas and a biomethane analysis. Indeed, these two last gases are designed to reduce fossil fuel consumption particularly natural gas one. Biomethanes are led to use the same transportation network and to be temporarily stored in the same way as natural gaz. In addition of the gaseous phase, we have taken interest in the water and the mineral phases to characterize their chemical composition evolutions in time, without identify specific transfer mechanisms in touch with gas storage activity
APA, Harvard, Vancouver, ISO, and other styles
8

Frühbauer, Zdeněk. "Využití bioplynu v plynárenské síti." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230009.

Full text
Abstract:
The thesis deals with the technologies upgrading the biogas to the quality of the natural gas for the following use in the gas distribution system. The main concern of the thesis is the pressure swing adsorption (PSA), which is nowadays one of the most exploited technologies. For a certain flow and composition of the biogas, completely new PSA technology was designed. Technological schema was created and the main technological devices (adsorbers) were drawn up together with the design documentation for this new technology. The important part of the thesis is also the model of the whole PSA technology in the ChemCAD programme and the evaluation of the operating and investment costs.
APA, Harvard, Vancouver, ISO, and other styles
9

RAVINA, MARCO. "Development and application of a comprehensive methodology for the analysis of global and local emissions of energy systems." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2674649.

Full text
Abstract:
The energy sector is a source of economic and social progress, but it is also the main responsible of air pollution resulting from human activity, mainly from the combustion of fossil fuels and bioenergy. The impacts on atmosphere may be divided into global effects, due to change in concentration of greenhouse gases, and regional/local effects, due to the dispersion of SO2, NOx, particulates and other gases. The aim of this thesis is the development and application of a methodology for calculating the emissions in atmosphere associated with energy management interventions. The methodology aims to characterize and quantify the environmental impacts affecting both the local and global scale. The pollutants involving local effects considered in this study are nitrogen oxides and particulate matter. Globally, the emission of greenhouse gases is considered, by quantifying the equivalent CO2 (CO2eq) emitted. The environmental impact of an energy option is quantified in terms of its emission balance, i.e. by comparing the present situation with one (or more) future scenarios. The study at the local scale also considers the dispersion of pollutants using modelling tools. The methodology is applied to two case studies located in the Italian Metropolitan City of Turin, characterized by different application contexts and different scales of operation. The first case study is represented by a system for the production and conversion of biogas and biomethane. The analysis of global emissions considers four different operating scenarios. The results show a CO2 reduction of 1426 t/y for biogas combustion in full cogeneration mode (generation of both heat and electricity). Biomethane for transports scenario provides a similar result (1379 t/y). If biogas combustion with partial cogeneration is considered (generation of electricity only), the CO2 balance approaches to zero. The evaluation of local impacts is made with two different dispersion models. The application of an Octave-based Gaussian model provides an average increase of concentration both for NOx and TSP, in the order of units of g/m3. The results of CALPUFF model simulations show a slight decrease of concentration in the order of 10-2 g/m3. The second case study consists of a potential extension of the district heating network in the urban area of Turin. The production of local emissions is calculated considering the operation of the main power plants in response to the estimated heat demand. Avoided emissions are calculated simulating the heat production of centralized residential heaters. The results of CALPUFF model simulations show a potential reduction of NOx average concentration between 1 and 6 g/m3. The results of global emissions show an unfavorable balance in the order of 104 t/y of CO2, that varies depending on the assumptions on the emission factors of the power units. A comprehensive final discussion is reported after the analysis of the two case studies. The calculation of two indicators (the “thermal benefit vs. local emission indicator” and the “local to global emission ratio”) is also included to discuss a possible standardization of the proposed methodology. This study provides important information on the effects on air quality resulting from the modification of the energetic management of an area or settlement. The employed methodology is consistent and comprehensive in identifying the potential optimal solutions for energy production and management, as well as identifying the consequences to a given scenario under an environmental point of view.
APA, Harvard, Vancouver, ISO, and other styles
10

Gunnarsson, Andreas. "Analysis of Alternative Fuels in Automotive Powertrains." Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17053.

Full text
Abstract:

The awareness of the effect emissions have on the environment and climate has risen in the last decades. This has caused strict regulations of greenhouse gas emissions. Greenhouse gases cause global warming which may have devastating environmental effects. Most of the fuels commercially available today are fossil fuels. There are two major effects of using fuels with fossil origin; the source will eventually drain and the usage results in an increase of greenhouse gases in the atmosphere. Fuels that are created from a renewable feedstock are often referred to as alternative fuels and under ideal conditions they are greenhouse gas neutral, meaning that the same amount of greenhouse gases is released during combustion as the source of the fuel have absorbed during its growth period. This evaluation method is known as a well-to-wheel analysis which besides emissions also evaluates energy efficiencies during both the production and the combustion phases.

By evaluating results of well-to-wheel analyses along with fuel properties and engine concept characteristics, this report presents which driving scenario that is suitable for different powertrain configurations. For example, vehicles operating in high populated areas, as cities, have a driving scenario that includes low velocities and multiple stops while vehicles in low populated areas often travel long distances in higher speeds. This implies that different powertrains are suitable in different regions. By matching favorable properties of a certain powertrain to the properties important to the actual driving scenario this report evolves a fuel infrastructure that is suitable in Sweden.

APA, Harvard, Vancouver, ISO, and other styles
11

PANTINI, SARA. "Analysis and modelling of leachate and gas generation at landfill sites focused on mechanically-biologically treated waste." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2013. http://hdl.handle.net/2108/203393.

Full text
Abstract:
Despite significant efforts have been directed toward reducing waste generation and encouraging alternative waste management strategies, landfills still remain the main option for Municipal Solid Waste (MSW) disposal in many countries. Hence, landfills and related impacts on the surroundings are still current issues throughout the world. Actually, the major concerns are related to the potential emissions of leachate and landfill gas into the environment, that pose a threat to public health, surface and groundwater pollution, soil contamination and global warming effects. To ensure environmental protection and enhance landfill sustainability, modern sanitary landfills are equipped with several engineered systems with different functions. For instance, the installation of containment systems, such as bottom liner and multi-layers capping systems, is aimed at reducing leachate seepage and water infiltration into the landfill body as well as gas migration, while eventually mitigating methane emissions through the placement of active oxidation layers (biocovers). Leachate collection and removal systems are designed to minimize water head forming on the bottom section of the landfill and consequent seepages through the liner system. Finally, gas extraction and utilization systems, allow to recover energy from landfill gas while reducing explosion and fire risks associated with methane accumulation, even though much depends on gas collection efficiency achieved in the field (range: 60-90% Spokas et al., 2006; Huitric and Kong, 2006). Hence, impacts on the surrounding environment caused by the polluting substances released from the deposited waste through liquid and gas emissions can be potentially mitigated by a proper design of technical barriers and collection/extraction systems at the landfill site. Nevertheless, the long-term performance of containment systems to limit the landfill emissions is highly uncertain and is strongly dependent on site-specific conditions such as climate, vegetative covers, containment systems, leachate quality and applied stress. Furthermore, the design and operation of leachate collection and treatment systems, of landfill gas extraction and utilization projects, as well as the assessment of appropriate methane reduction strategies (biocovers), require reliable emission forecasts for the assessment of system feasibility and to ensure environmental compliance. To this end, landfill simulation models can represent an useful supporting tool for a better design of leachate/gas collection and treatment systems and can provide valuable information for the evaluation of best options for containment systems depending on their performances under the site-specific conditions. The capability in predicting future emissions levels at a landfill site can also be improved by combining simulation models with field observations at full-scale landfills and/or with experimental studies resembling landfill conditions. Indeed, this kind of data may allow to identify the main parameters and processes governing leachate and gas generation and can provide useful information for model refinement. In view of such need, the present research study was initially addressed to develop a new landfill screening model that, based on simplified mathematical and empirical equations, provides quantitative estimation of leachate and gas production over time, taking into account for site-specific conditions, waste properties and main landfill characteristics and processes. In order to evaluate the applicability of the developed model and the accuracy of emissions forecast, several simulations on four full-scale landfills, currently in operative management stage, were carried out. The results of these case studies showed a good correspondence of leachate estimations with monthly trend observed in the field and revealed that the reliability of model predictions is strongly influenced by the quality of input data. In particular, the initial waste moisture content and the waste compression index, which are usually data not available from a standard characterisation, were identified as the key unknown parameters affecting leachate production. Furthermore, the applicability of the model to closed landfills was evaluated by simulating different alternative capping systems and by comparing the results with those returned by the Hydrological Evaluation of Landfill Performance (HELP), which is the most worldwide used model for comparative analysis of composite liner systems. Despite the simplified approach of the developed model, simulated values of infiltration and leakage rates through the analysed cover systems were in line with those of HELP. However, it should be highlighted that the developed model provides an assessment of leachate and biogas production only from a quantitative point of view. The leachate and biogas composition was indeed not included in the forecast model, as strongly linked to the type of waste that makes the prediction in a screening phase poorly representative of what could be expected in the field. Hence, for a qualitative analysis of leachate and gas emissions over time, a laboratory methodology including different type of lab-scale tests was applied to a particular waste material. Specifically, the research was focused on mechanically biologically treated (MBT) wastes which, after the introduction of the European Landfill Directive 1999/31/EC (European Commission, 1999) that imposes member states to dispose of in landfills only wastes that have been preliminary subjected to treatment, are becoming the main flow waste landfilled in new Italian facilities. However, due to the relatively recent introduction of the MBT plants within the waste management system, very few data on leachate and gas emissions from MBT waste in landfills are available and, hence, the current knowledge mainly results from laboratory studies. Nevertheless, the assessment of the leaching characteristics of MBT materials and the evaluation of how the environmental conditions may affect the heavy metals mobility are still poorly investigated in literature. To gain deeper insight on the fundamental mechanisms governing the constituents release from MBT wastes, several leaching experiments were performed on MBT samples collected from an Italian MBT plant and the experimental results were modelled to obtain information on the long-term leachate emissions. Namely, a combination of experimental leaching tests were performed on fully-characterized MBT waste samples and the effect of different parameters, mainly pH and liquid to solid ratio (L/S,) on the compounds release was investigated by combining pH static-batch test, pH dependent tests and dynamic up-flow column percolation experiments. The obtained results showed that, even though MBT wastes were characterized by relatively high heavy metals content, only a limited amount was actually soluble and thus bioavailable. Furthermore, the information provided by the different tests highlighted the existence of a strong linear correlation between the release pattern of dissolved organic carbon (DOC) and several metals (Co, Cr, Cu, Ni, V, Zn), suggesting that complexation to DOC is the leaching controlling mechanism of these elements. Thus, combining the results of batch and up-flow column percolation tests, partition coefficients between DOC and metals concentration were derived. These data, coupled with a simplified screening model for DOC release, allowed to get a very good prediction of metal release during the experiments and may provide useful indications for the evaluation of long-term emissions from this type of waste in a landfill disposal scenario. In order to complete the study on the MBT waste environmental behaviour, gas emissions from MBT waste were examined by performing different anaerobic tests. The main purpose of this study was to evaluate the potential gas generation capacity of wastes and to assess possible implications on gas generation resulting from the different environmental conditions expected in the field. To this end, anaerobic batch tests were performed at a wide range of water contents (26-43 %w/w up to 75 %w/w on wet weight) and temperatures (from 20-25 °C up to 55 °C) in order to simulate different landfill management options (dry tomb or bioreactor landfills). In nearly all test conditions, a quite long lag-phase was observed (several months) due to the inhibition effects resulting from high concentrations of volatile fatty acids (VFAs) and ammonia that highlighted a poor stability degree of the analysed material. Furthermore, experimental results showed that the initial waste water content is the key factor limiting the anaerobic biological process. Indeed, when the waste moisture was lower than 32 %w/w the methanogenic microbial activity was completely inhibited. Overall, the obtained results indicated that the operative conditions drastically affect the gas generation from MBT waste, in terms of both gas yield and generation rate. This suggests that particular caution should be paid when using the results of lab-scale tests for the evaluation of long-term behaviour expected in the field, where the boundary conditions change continuously and vary significantly depending on the climate, the landfill operative management strategies in place (e.g. leachate recirculation, waste disposal methods), the hydraulic characteristics of buried waste, the presence and type of temporary and final cover systems.
APA, Harvard, Vancouver, ISO, and other styles
12

Hughes, Kevin Lewis William. "Optimisation of methane production from anaerobically digested cow slurry using mixing regime and hydraulic retention time." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18869.

Full text
Abstract:
AD is regarded as a sustainable technology that could assist the UK Government meet internationally agreed GHG emission targets by 2050. However, the mature status of the technology is based on expensive systems that rely on high energy feedstock to be profitable. Meanwhile, the natural biodegradation of cow slurry is a recognised contributor to climate change despite having a relatively low CH4 potential because of the large volumes produced. Economic mixing is essential to the cost-effectiveness of farm AD but techniques applied are not always appropriate as slurry is a shear thinning thixotropic Herschel-Bulkley fluid and therefore challenging to mix. The apparent viscosity of slurry and the shear stress induced was most influenced by solids content (exponential change) followed by temperature (linear). Most shear thinning occurred before a rising shear rate of 20s-1 was achieved with the fluid acting near-Newtonian above. Thixotropic recovery occurred within 1 hour of resting. Rheological values were also much higher than previously reported. Highest CH4 production occurred in the first 10 days of the batch process using a range of mixing regimes with different shear rates and rest periods. During fed-batch operations, changing shear rate had a minimal effect on CH4 production using a 30-day HRT whereas shorter rest periods increased production. Specific CH4 production rate was highest when feeding and mixing coincided. However, when HRT was reduced (OLR increased) the CH4 produced by all mixed regimes significantly increased with highest values being achieved using high intensity mixing rested for short periods. Lower HRTs also requires smaller digesters. Parasitic mixing energy invariably had the most influence on net energy production. Signs of instability were evident after 20 days using the low HRT. Significant microbial adaptation was also observed as the experiments progressed. The research outcomes demonstrate that mixing regime and HRT can be managed to maximise net energy production whilst reducing capital expenditure.
APA, Harvard, Vancouver, ISO, and other styles
13

Gerrard, Alastair Douglas. "A proposed maintenance strategy for generator sets utilised in biogas applications." Thesis, 2012. http://hdl.handle.net/10210/4767.

Full text
Abstract:
M. Ing.
The overall purpose of this research project was to develop a proposed maintenance strategy for generator sets utilised in biogas applications. One specific biogas application, involving the use of landfill gas (LFG) to generate electrical energy, was the focal point of the research project. This is due to the fact that the author’s organisation is extensively involved with landfills and power generation through the use of LFG.
APA, Harvard, Vancouver, ISO, and other styles
14

LACHOUT, Jiří. "Čištění a úprava bioplynu od znečišťujících složek s cílem jeho dodávky do distribuční sítě plynovodů." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-115859.

Full text
Abstract:
This thesis describes the production of biogas and subsequent enrichment methods thus obtained biogas to natural gas quality. The reason is the efficient use of natural resources to address the energy needs of mankind. Should be answered the main question. The method of biogas to biomethane enrichment economically viable ? The answer should be obtained from each successive calculations and economic calculations.
APA, Harvard, Vancouver, ISO, and other styles
15

Cancela, Ana Raquel Cerqueiro. "Biogas Pretreatment - Developing a technological concept for the removal of trace compounds from landfill gas." Master's thesis, 2021. https://hdl.handle.net/10216/133689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cancela, Ana Raquel Cerqueiro. "Biogas Pretreatment - Developing a technological concept for the removal of trace compounds from landfill gas." Dissertação, 2021. https://hdl.handle.net/10216/133689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography