Academic literature on the topic 'Biogas. biomethane. landfill gas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biogas. biomethane. landfill gas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biogas. biomethane. landfill gas"

1

Chagas Bezerra, Francisco Edmar, and Auzuir Ripardo De Alexandria. "Biomethane Generation Produced in Municipal Landfill." International Journal for Innovation Education and Research 8, no. 12 (December 11, 2020): 01–21. http://dx.doi.org/10.31686/ijier.vol8.iss12.2644.

Full text
Abstract:
Biogas emerged as a renewable technology that converts waste organic matter into energy. Among its components, in terms of energy, methane is the most important chemical composition, particularly for the combustion process in vehicle engines. The use of methane derived from organic matter residues in landfills to replace fossil fuel minimizes the environmental impact, providing a significant reduction in the emission of greenhouse effect gases,as does the use of the amount of urban waste generated by the population in a planned way, with a specific technological focus at the forefront of generating solutions for ecological, social, economic and management challenges, which are themes that characterize smart cities. Thus, this study is based on the investigation and analysis of the potential of biogas generated by the theMunicipal Landfill West of Caucaia (MLWC - AterroSanitário Municipal Oeste de Caucaia/CE (ASMOC))with the objective of estimating the amount of methane gas produced in the referred landfill, based on data already published related to the amount of solid waste disposed at the landfill and applying it in the Biogas - Energy Generation and Use Aterro(version 1.0) software, developed by the Environmental Company of the State of São Paulo (ECSSP - Companhia Ambiental do Estado de São Paulo (CETESB)).As main outcomes, it was found that the landfill can generate, between the years 2018 to 2034, more than 3 million m³of CH4, capable of supplying more than 201,362 vehicles fuel.
APA, Harvard, Vancouver, ISO, and other styles
2

Pavičić, Josipa, Karolina Novak Mavar, Vladislav Brkić, and Katarina Simon. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe." Energies 15, no. 8 (April 17, 2022): 2940. http://dx.doi.org/10.3390/en15082940.

Full text
Abstract:
In line with the low-carbon strategy, the EU is expected to be climate-neutral by 2050, which would require a significant increase in renewable energy production. Produced biogas is directly used to produce electricity and heat, or it can be upgraded to reach the “renewable natural gas”, i.e., biomethane. This paper reviews the applied production technology and current state of biogas and biomethane production in Europe. Germany, UK, Italy and France are the leaders in biogas production in Europe. Biogas from AD processes is most represented in total biogas production (84%). Germany is deserving for the majority (52%) of AD biogas in the EU, while landfill gas production is well represented in the UK (43%). Biogas from sewage sludge is poorly presented by less than 5% in total biogas quantities produced in the EU. Biomethane facilities will reach a production of 32 TWh in 2020 in Europe. There are currently 18 countries producing biomethane (Germany and France with highest share). Most of the European plants use agricultural substrate (28%), while the second position refers to energy crop feedstock (25%). Sewage sludge facilities participate with 14% in the EU, mostly applied in Sweden. Membrane separation is the most used upgrading technology, applied at around 35% of biomethane plants. High energy prices today, and even higher in the future, give space for the wider acceptance of biomethane use.
APA, Harvard, Vancouver, ISO, and other styles
3

Cignini, Fabio, Antonino Genovese, Fernando Ortenzi, Stefano Valentini, and Alberto Caprioli. "Performance and Emissions Comparison between Biomethane and Natural Gas Fuel in Passenger Vehicles." E3S Web of Conferences 197 (2020): 08019. http://dx.doi.org/10.1051/e3sconf/202019708019.

Full text
Abstract:
Bio-methane as fuel in a natural gas engine is a viable solution to reduce greenhouse gas emissions. The present paper illustrates the results of the first set of measurements carried out in the BiomethER project (EULIFE). BiomethER aimed to design and build two innovative bio-methane production plants, located in Emilia Romagna region (Italy), fed by different feedstock: the first one with sewage sludge and the other with landfill waste. Biogas extracted by the anaerobic digester was cleaned and upgraded to biomethane for road vehicles application. To verify the compatibility of biomethane in conventional compressed natural gas engine (CNG) vehicles, three passenger cars have been tested with two gases: conventional natural gas and bio-methane coming by BiomethER sewage sludge plant. Test concerned dynamic performances and exhaust emissions and was operated on the chassis dynamometer facility, in ENEA Casaccia Research Centre. Preliminary results showed no appreciable deviation was noticeable for fuel consumption and CO2 emissions between the two fuels, acceleration and maximum power were almost the same for the three vehicles tested. The WTW evaluation of GHG emissions for the biomethane resulted in up to 79% lower in comparison with natural gas provided by the Italian pipeline.
APA, Harvard, Vancouver, ISO, and other styles
4

Ersahin, M. Evren, Cigdem Yangin Gomec, R. Kaan Dereli, Osman Arikan, and Izzet Ozturk. "Biomethane Production as an Alternative Bioenergy Source from Codigesters Treating Municipal Sludge and Organic Fraction of Municipal Solid Wastes." Journal of Biomedicine and Biotechnology 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/953065.

Full text
Abstract:
Energy recovery potential of a mesophilic co-digester treating OFMSW and primary sludge at an integrated biomethanization plant was investigated based on feasibility study results. Since landfilling is still the main solid waste disposal method in Turkey, land scarcity will become one of the most important obstacles. Restrictions for biodegradable waste disposal to sanitary landfills in EU Landfill Directive and uncontrolled long-term contamination with gas emissions and leachate necessitate alternative management strategies due to rapid increase in MSW production. Moreover, since energy contribution from renewable resources will be required more in the future with increasing oil prices and dwindling supplies of conventional energy sources, the significance of biogas as a renewable fuel has been increased in the last decade. Results indicated that almost 93% of annual total cost can be recovered if 100% renewable energy subsidy is implemented. Besides, considering the potential revenue when replacing transport fuels, about 26 heavy good vehicles or 549 cars may be powered per year by the biogas produced from the proposed biomethanization plant (PE = 100,000; XPS= 61 g TS/PE⋅day;XSS-OFMSW=50 g TS/PE⋅day).
APA, Harvard, Vancouver, ISO, and other styles
5

Sánchez Nocete, Eduardo, and Javier Pérez Rodríguez. "A Simple Methodology for Estimating the Potential Biomethane Production in a Region: Application in a Case Study." Sustainability 14, no. 23 (November 30, 2022): 15978. http://dx.doi.org/10.3390/su142315978.

Full text
Abstract:
Biomethane is an example of a biofuel that is currently gaining interest due to its possible use as a substitute for natural gas and due to its generation in a “power to gas” production scheme. It can be injected into the gas network under certain purity requirements. It can also act as a source for the production of “green hydrogen”. This paper proposes a simple methodology to estimate the potential to obtain biomethane through the anaerobic digestion of biowaste in a delimited region. The mentioned methodology consists of the following main steps: (i) estimation of the potential biowaste from different sources in the region; (ii) characterization of each type of biowaste production; (iii) estimation of biogas production for each type of biowaste according to the selected anaerobic digestion process; and (iv) estimation of potential biomethane production through the purification of the biogas produced. The different types of biowaste that this methodology considers are the organic fraction of municipal solid waste, agroindustrial solid biowaste (biowaste from the food industry and livestock), and sewage sludge (urban and industrial). Energy crops are not considered because they are not treated as biowaste. After defining the proposed methodology, it is applied to a Spanish case study, in which the potential to obtain biomethane in Spain in 2019 is estimated. The results show that in Spain, around 4499 ktoe could be obtained if all biowaste was destined to produce biomethane, which would allow 31.6% of the final demand for natural gas to be satisfied in a sustainable way. In that sense, a double effect on climate change mitigation can be obtained, reducing use of fossil fuels and minimizing the final biowaste disposal into landfills.
APA, Harvard, Vancouver, ISO, and other styles
6

Calise, Francesco, Francesco Liberato Cappiello, Luca Cimmino, Marialuisa Napolitano, and Maria Vicidomini. "Dynamic Simulation and Thermoeconomic Analysis of a Novel Hybrid Solar System for Biomethane Production by the Organic Fraction of Municipal Wastes." Energies 16, no. 6 (March 14, 2023): 2716. http://dx.doi.org/10.3390/en16062716.

Full text
Abstract:
The anaerobic digestion of the organic fraction of municipal solid waste and the biogas production obtained from its stabilization are becoming an increasingly attractive solution, due to their beneficial effects on the environment. In this way, the waste is considered a resource allowing a reduction in the quantity of it going to landfills and the derived greenhouse gas emissions. Simultaneously, the upgrading process of biogas into biomethane can address the issues dealing with decarbonization of the transport. In this work, the production of biogas obtained from the organic fraction of municipal solid wastes in a plug flow reactor is analyzed. In order to steer the chemical reactions, the temperature of the process must be kept under control. A new simulation model, implemented in the MatLab® environment, is developed to predict the temperature field within the reactor, in order to assess how the temperature affects the growth and the decay of the main microbial species. A thermal model, based on two equilibrium equations, is implemented to describe the heat transfer between the digester and the environment and between the digester and the internal heat exchanger. A biological model, based on suitable differential equations, is also included for the calculation of the biological processes occurring in the reactor. The proposed anaerobic digestion model is derived by the combination of these two models, and it is able to simultaneously simulate both thermal and biological processes occurring within the reactor. In addition to the thermal energy demand, the plant requires huge amounts of electricity due to the presence of a biogas upgrading process, converting biogas into biomethane. Therefore, the in-house developed model is integrated into a TRNSYS environment, to perform a yearly dynamic simulation of the reactor in combination with other renewable technologies. In the developed system layout, the thermal energy required to control the temperature of the reactor is matched by a solar thermal source. The electrical demand is met by the means of a photovoltaic field. In this work, a detailed thermoeconomic analysis is also proposed to compare the environmental impact and economic feasibility of a biomethane production plant based on a plug flow reactor and fed by renewables. Several economic incentives are considered and compared to determine the optimal solution, both in terms of energy and economic savings. The plant is designed for the treatment of a waste flow rate equal to 626.4 kg/h, and the biomethane produced, approximately 850 tons/years, is injected into the national gas grid or supplied to gas stations. In the proposed plant, a solar field of an evacuated tube collector having a surface of approximately 200 m2 is able to satisfy 35% of the thermal energy demand while over 50% of the electric demand is met with a photovoltaic field of 400 m2. A promising payback time of approximately 5 years was estimated.
APA, Harvard, Vancouver, ISO, and other styles
7

Piechota, Grzegorz, and Bartłomiej Igliński. "Biomethane in Poland—Current Status, Potential, Perspective and Development." Energies 14, no. 6 (March 10, 2021): 1517. http://dx.doi.org/10.3390/en14061517.

Full text
Abstract:
Every year the interest in biofuels, including biomethane, grows in Poland. Biomethane, obtained from biogas, is widely used in the Polish economy; the most important two applications are as gas injected into the gas grid and as automotive fuel. The aim of this work is to determine the potential for the development of the biomethane sector in Poland. The following article presents the technological stages of biomethane extraction and purification. The investment process for biogas/biomethane installation is presented in the form of a Gannt chart; this process is extremely long in Poland, with a duration of three years. In the coming months, the Polish Oil Mining and Gas Extraction will begin to invest in biomethane, which will be connected to the gas grid, while the Polish oil refiner and petrol retailer, Orlen, will invest in biomethane to be used as automotive fuel. This article includes a SWOT (Strengths, Weaknesses, Opportunities, Threats) and PEST (Political, Economic, Social, Technological) analysis of the biogas/biomethane sector in Poland. The main barriers to the development of the biogas/biomethane sector in Poland are high investment costs, long lead times and a strong conventional energy lobby. The most important advantages of biogas/biomethane technology in Poland include environmental aspects, high biomethane potential and well-developed agriculture. The development of biogas/biomethane technology in Poland will slowly reduce environmental pollution, reduce carbon dioxide emissions and allow for partial independence from the importing of natural gas.
APA, Harvard, Vancouver, ISO, and other styles
8

Dada, Opeoluwa, and Charles Mbohwa. "Biogas Upgrade to Biomethane from Landfill Wastes: A Review." Procedia Manufacturing 7 (2017): 333–38. http://dx.doi.org/10.1016/j.promfg.2016.12.082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Veiga, Ana Paula Beber, Ramatys Stramieri Silva, and Gilberto Martins. "Geographic Information Systems based approach for assessing the locational feasibility for biomethane production from landfill gas and injection in pipelines in Brazil." Engenharia Sanitaria e Ambiental 27, no. 1 (February 2022): 41–46. http://dx.doi.org/10.1590/s1413-415220210075.

Full text
Abstract:
ABSTRACT Biomethane can readily replace fossil fuels including natural gas, which has similar physical and chemical properties. In Brazil, municipal solid waste is predominantly disposed of in landfills. Landfill gas is mostly employed for electricity generation, but still at low levels when compared to the existing potential. Production of biomethane from landfill gas may be an alternative to exploit the existing potential, but Brazil’s pipeline network is rather limited and concentrated along the country’s coast. In this context, the research sought to identify the locational viability of using landfill gas to produce biomethane and injecting it into pipelines, considering the available potential and its proximity to Brazil’s existing pipeline network. The QGis software was used to integrate the information. Territorial arrangements with a biomethane production capacity of more than 15,000 Nm3 day−1 and located up to 50 km from the pipeline network were considered feasible. The research estimated a potential production equivalent to 3,407,027 Nm3 day−1 of biomethane from landfills in Brazil. This potential corresponds to 6% of country’s natural gas consumption in 2019 and is almost 32 times greater than current production of biomethane from all substrates used with this purpose in that year. The results indicate the suitability of using geographic information systems to identify regions that can benefit from the production of biomethane from landfill gas using the existing natural gas pipelines as an alternative to the electricity generation and provides relevant subsidies to the formulation of more efficient public policies in both the sanitation and energy sectors.
APA, Harvard, Vancouver, ISO, and other styles
10

Trypolska, Galyna. "PROSPECTS FOR STATE SUPPORT OF THE DEVELOPMENT OF THE BIOMETHANE INDUSTRY IN UKRAINE UNTIL 2040." Ekonomìka ì prognozuvannâ 2021, no. 2 (June 29, 2021): 128–42. http://dx.doi.org/10.15407/eip2021.02.128.

Full text
Abstract:
The paper considers the prospects for the state support for the development of biomethane industry in Ukraine from 2025 to 2040. The main financial incentives for the use of biomass-derived energy are a special tariff for heat from sources other than natural gas, and a feed-in tariff (the auction price in the future). In the EU, biomethane production is gaining ground due to available financial incentives (premiums to the cost of natural gas, and premiums to feed-in tariff). The main obstacle to the large-scale spread of biogas (and, accordingly, biomethane) is the high cost of equipment. The amounts of state support for biogas production with its purification to biomethane and supply of the latter to the gas transmission and gas distribution networks under the conditions of biomethane production in the amounts provided by the draft Roadmap for Bioenergy Development in Ukraine until 2050 were assessed. While maintaining the price of natural gas at the level of prices of 2021 (EUR 0.24/m3), the need to subsidize biomethane production from 2025 to 2040 can reach EUR 0.263-3.5 billion, on average EUR 16.5-217 million per year. Infrastructure expenditures were not taken into account in the assessment. The possibility of electricity output from biomethane was not considered, as biogas refining to the quality of biomethane requires additional funds. The statutory auction price may be sufficient only for certain types of feedstock and for large biogas plants. The use of biomethane may be appropriate in the transport sector, as biomethane is an "advanced biofuel", and Ukraine already has a relatively extensive network of methane filling stations. Biomethane production in Ukraine will require state support, particularly in the form of direct subsidies to biomethane producers (in the form of premium to the price of natural gas), and in the form of a premium to the auction price. The use of biomethane will partially reduce dependence on imported fossil fuels, being also an important element in the decarbonization of sectors using natural gas, replacing up to 0.76 billion m3 of the latter in 2040, which is in line with the global leading decarbonization trends.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biogas. biomethane. landfill gas"

1

Dixit, Onkar. "Upgrading Biogas to Biomethane Using Absorption." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-189059.

Full text
Abstract:
Questions that were answered in the dissertation: Which process is suitable to desulphurize biogas knowing that chemical absorption will be used to separate CO2? Which absorption solvent is suitable to separate CO2 from concentrated gases such as biogas at atmospheric pressure? What properties of the selected solvent, namely aqueous diglycolamine (DGA), are already known? How to determine solvent properties such as equilibrium CO2 solubility under absorption and desorption conditions using simple, but robust apparatuses? What values do solvent properties such as density, viscosity and surface tension take at various DGA contents and CO2 loadings? How do primary alkanolamine content and CO2 loading influence solvent properties? What is the optimal DGA content in the solvent? What is the optimal desorption temperature at atmospheric pressure? How can equilibrium CO2 solubility in aqueous DGA solvents be simulated? What is the uncertainty in the results? How to debottleneck an absorber and increase its gas-treating capacity? How to determine the optimal lean loading of the absorption solvent? What are the characteristics of the absorption process that uses aqueous DGA as the solvent to separate CO2 from biogas and is more energy efficient and safer than the state-of-the-art processes? How to quantitatively compare the hazards of absorption solvents? What is the disposition of the German population towards hazards from biogas plants? What are the favourable and adverse environmental impacts of biomethane?
Fragen, die in der Dissertation beantwortet wurden: Welches Verfahren ist zur Entschwefelung von Biogas geeignet, wenn die chemische Absorption zur CO2-Abtrennung genutzt wird? Welches Absorptionsmittel ist geeignet, um CO2 aus konzentrierten Gasen, wie Biogas, bei atmosphärischem Druck abzutrennen? Welche Eigenschaften des ausgewählten Absorptionsmittels, wässriges Diglykolamin (DGA), sind bereits bekannt? Wie wird die CO2-Gleichgewichtsbeladung unter Absorptions- und Desorptionsbedingungen mit einfachen und robusten Laborapparaten bestimmt? Welche Werte nehmen die Absorptionsmitteleigenschaften wie Dichte, Viskosität und Oberflächenspannung bei verschiedenen DGA-Gehalten und CO2-Beladungen? Wie werden die Absorptionsmitteleigenschaften durch den Primäramin-Gehalt und die CO2-Beladung beeinflusst? Was ist der optimale DGA-Gehalt im Absorptionsmittel? Was ist die optimale Desorptionstemperatur bei atmosphärischem Druck? Wie wird die CO2-Gleichgewichtsbeladung im wässrigen DGA simuliert? Welche Ungenauigkeit ist zu erwarten? Wie wird eine Absorptionskolonne umgerüstet, um die Kapazität zu erweitern? Wie wird die optimale CO2-Beladung des Absorptionsmittels am Absorbereintritt (im unbeladenen Absorptionsmittel) bestimmt? Was sind die Prozesseigenschaften eines Absorptionsverfahrens, das wässriges DGA als Absorptionsmittel nutzt sowie energieeffizienter und sicherer als Verfahren auf dem Stand der Technik ist? Wie kann das Gefahrenpotenzial von Absorptionsmittel quantitativ verglichen werden? Wie werden Gefahren aus einer Biogasanlage durch die deutsche Bevölkerung wahrgenommen? Welche positive und negative Umweltauswirkung hat Biomethan?
APA, Harvard, Vancouver, ISO, and other styles
2

Koliopoulos, Telemachus C. "Numerical modelling of landfill gas and associated risk assessment." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lecharlier, Aurore. "Caractérisation des composés trace dans le biogaz et biométhane : développement d'une méthode d'échantillonnage, de préconcentration in situ et d'analyse." Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3008.

Full text
Abstract:
Afin d’accroître les connaissances sur les composés traces présents dans les biogaz et biométhane et de garantir l’intégration durable de ces gaz dans le mix énergétique européen, une chaîne analytique complète a été développée dont un élément central est un dispositif d’échantillonnage de terrain permettant la préconcentration directe in situ des composés traces en prélevant ces gaz à leur pression actuelle (≤ 200 bara). Les composés traces ciblés dans ce travail incluent : alcanes (linéaires, cycliques, polycycliques), aromatiques, terpènes, alcènes, espèces organiques halogénées, espèces organiques oxygénées (alcools, aldéhydes, esters, éthers, cétones), siloxanes, composés soufrés organiques et inorganiques.L’état de l’art des techniques de prélèvement de gaz et de préconcentration pour la détermination de composés traces dans des matrices gazeuses a premièrement été réalisé. Sur base de cette étude, il fut choisi d’effectuer la préconcentration sur des tubes d’adsorbants multi-lits (TAM) assemblés manuellement. Le système de préconcentration fut élaboré et optimisé au laboratoire en sélectionnant des adsorbants commerciaux; les procédures d’assemblage et de conditionnement des nouveaux TAM furent établies; l’efficacité de quatre configurations de TAM à adsorber et libérer des composés traces ciblés fut testée en utilisant des mélanges de gaz synthétiques certifiés contenant des composés à l’état de traces (1 ppmmol) dans une matrice N2 ou CH4. Les analytes préconcentrés sur les TAM sont récupérés par désorption thermique (DT) des tubes au moyen d’un nouveau prototype de DT pour être analysés par chromatographie en phase gazeuse (CG) couplée à la spectrométrie de masse (SM).Deuxièmement, la méthode analytique et le prototype de DT ont été validés. Il fut démontré que le pouvoir résolutif du prototype de DT était plus élevé que celui obtenu par d’autres techniques de préconcentration ou d’autres méthodes d’injection en CG, telles que la microextraction en phase solide ou l’injection directe de gaz. Par ailleurs, les paramètres de CG-SM furent optimisés pour détecter le large spectre de composés traces potentiellement présents dans le biogaz et biométhane.Troisièmement, un prototype haute-pression innovant fut évalué, permettant le prélèvement de gaz pressurisés (≤ 200 bara) à travers les TAM pour la préconcentration directe et sous haute-pression des composés traces présents dans ces gaz. Ce prototype fut validé au laboratoire au moyen de mélanges de gaz synthétiques pressurisés avant d’être utilisé sur le terrain pour prélever du biométhane à 40 bara au niveau d’un poste d’injection dans le réseau de gaz naturel.Ensuite, la chaîne d’échantillonnage fut assemblée pour mener 6 campagnes de prélèvement durant lesquelles 6 flux différents de biogaz et biométhane furent prélevés sur une installation de stockage de déchets non dangereux et deux sites de méthanisation valorisant divers intrants. Les composés traces de ces gaz furent qualitativement déterminés via la méthode de DT-CG-SM élaborée. En un unique prélèvement et utilisant des volumes de gaz réduits (0.5 – 2 LN), un large spectre de composés traces issus de diverses familles chimiques (alcools, aldéhydes, alcènes, aromatiques, alcanes, esters, éthers, halogénés, cétones, soufrés, siloxanes et terpènes) furent identifiés. Des variations de composition en composés traces furent observées dans les différents gaz et les corrélations potentielles entre intrants, procédés de traitement des gaz et composés traces identifiés, furent discutées. La génération du mono-terpène p-cymène et d’autres terpènes dans les méthaniseurs digérant surtout des résidus alimentaires, a notamment été mise en évidence. La procédure de préconcentration haute-pression in situ développée dans ce travail peut certainement contribuer à faciliter les opérations de prélèvements de gaz sur le terrain pour déterminer les composés traces dans des matrices gazeuses telles que le biogaz et le biométhane
In pursuance of enhancing knowledge on biogas and biomethane’s trace compounds to help guarantee their sustainable integration in today’s European energy mix, a field sampling set-up enabling direct in situ preconcentration of non-metallic trace compounds in such gas samples at their pipe working pressure (up to 200 bara) was developed. Non-metallic trace compounds targeted in this work included alkanes (linear, cyclic, polycyclic), aromatics, terpenes, alkenes, halogenated organic species, oxygenated organic species (alcohols, aldehydes, esters, furans and ethers, ketones), siloxanes, organic and inorganic Sulphur-compounds. Firstly, state-of-the-art gas sampling and preconcentration techniques for the determination of trace compounds in gaseous matrices were reviewed. Based on this review, preconcentration was chosen to be performed on self-assembled multibed adsorbent tubes (MAT). The preconcentration system was elaborated and optimized in the laboratory: convenient commercial adsorbents were selected; procedures for the assembly and conditioning of new MAT were established; four MAT configurations were tested on their efficiency in adsorbing and releasing targeted trace compounds using certified synthetic gas mixtures containing targeted species at trace concentrations (1 ppmmol) in CH4 or N2 matrices. Analytes preconcentrated on MAT were recovered for analysis by thermal desorption (TD) of the tubes using a new TD prototype followed by gas chromatography (GC) hyphenated with mass spectrometry (MS) (TD-GC-MS). Secondly, the analytical method, and in particular the new TD prototype, was validated. The chromatographic resolution power of the new TD prototype was proved to be higher than that obtained from other well established preconcentration or GC-injection methods such as solid phase microextraction or direct headspace gas injection. Besides, GC-MS parameters were optimized to detect the broad range of trace compounds potentially found in biogas and biomethane.Thirdly, the use of a novel high-pressure tube sampling (HPTS) prototype was evaluated for the circulation of pressurized gases (up to 200 bara) through MAT for the direct high-pressure preconcentration of trace compounds from such gases. The HPTS was first validated in the laboratory using pressurized certified synthetic gas mixtures, and then used on field to sample compressed biomethane at a natural gas grid injection station at 40 bara.Subsequently, the field sampling chain was set-up and 6 field sampling campaigns were conducted where 6 different streams of landfill gas, biogas and biomethane were collected at a landfill plant and two anaerobic digestion plants treating diverse feedstocks. Trace compounds were qualitatively determined in all gas samples via the developed TD-GC-MS method. In a single sampling run and using limited gas volumes ranging 0.5 – 2 LN, a wide range of trace compounds in a variety of chemical families (alcohols, aldehydes, alkenes, aromatics, alkanes (linear, cyclic and polycyclic), esters, furans and ethers, halogenated species, ketones, Sulphur-compounds, siloxanes and terpenes) were identified. Variations in trace compounds composition were observed in the different gases sampled and potential correlations between feedstocks nature, implemented gas treatment processes and trace compounds determined were discussed. In particular, the substantial generation of the mono-terpene p-cymene and of other terpenes was evidenced for anaerobic digestion plants treating principally food-wastes. It is believed the shortened and high-pressure-proof field preconcentration procedure developed in this work can contribute facilitating field sampling operations for the determination of trace compounds in complex gas matrices such as biogas and biomethane
APA, Harvard, Vancouver, ISO, and other styles
4

Petreikis, Algirdas. "Biodujų prijungimo prie gamtinių dujų dujotiekio galimybių analizė." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140611_171202-93890.

Full text
Abstract:
Baigiamajame magistro darbe nagrinėjama „Lapių“ buitinių atliekų sąvartyno biodujų jėgainė. Analizės metu ištirti jėgainės technologiniai pajėgumai, išgaunamų biodujų kiekiai, kokybė, nustatytas jėgainės efektyvumas. Remiantis Lietuvoje galiojančiais teisės aktais ir gautais analitiniais rezultatais darbe nagrinėjami trys galimi biodujų panaudojimo scenarijai. Tradiciniai biodujų panaudojimo būdai (šilumos ir elektros energijos gamyba) lyginami su galimybe biodujas tiekti į gamtinių dujų tinklus. Pristatomi nagrinėtų scenarijų analitiniai rezultatai. Atliekamas visų scenarijų ekonominis pagrindimas. Pagal pasirinktus kriterijus vertinamas ekonominių rodiklių jautrumas. Teikiami pasiūlymai projekto finansiniam gyvybingumui didinti. Išnagrinėjus tris minėtus scenarijus, atlikus ekonominį vertinimą bei jautrumo analizę yra apibendrinami baigiamojo darbo rezultatai, formuluojamos ir pateikiamos baigiamojo darbo išvados. Darbą sudaro 18 skyrių. Darbo apimtis 82 psl. be teksto priedų, 19 lentelių, 34 paveikslai, 44 bibliografiniai šaltiniai. Atskirai pateikiami darbo priedai.
In the final major theses „Lapių“ landfill biogas plant was analysed. Analysis results showed biogas plant‘s technical capabilities, the amount and quality of produced biogas, plant‘s efficiency was identified. According to Lithuania‘s legal acts and research results three possible biogas usage scenarios were chosen to be analysed. Traditional biogas usage ways (production of heat and electricity) are compared with possibility to supply biogas to natural gas networks. The results of analysis of possible scenarios are introduced. All scenarios are based on economic. Economic indicators are valued by chosen criteria. Suggestions made to improve projects financial vitality. After examining all three scenarios, after economical and sensitivity evaluation, results of final thesis are summarized and final conclusions are made. In the final major theses are 18 chapters. Scope of work 82. text, 19 tables, 34 pics, 44 bibliographic entries.
APA, Harvard, Vancouver, ISO, and other styles
5

Mata, Omar João da. "Estimativa da produção de biogás em aterros sanitários para a geração de metano." Universidade Jose do Rosario Vellano, 2012. http://tede2.unifenas.br:8080/jspui/handle/jspui/54.

Full text
Abstract:
Made available in DSpace on 2016-05-02T13:54:16Z (GMT). No. of bitstreams: 1 OmarJoaodaMataDissertacao.pdf: 976126 bytes, checksum: 616780a10a223756893e1ab9f6ac26d1 (MD5) Previous issue date: 2012-06-05
The purpose of this study was to measure biogas emission from a monitored landfill in the city of Betim, State of Minas Gerais, in southeast Brazil, and determine parameters for the application of mathematical models to evaluate methane production and the possible generation of energy for the specific Betim region. The study was conducted at the city sanitary landfill. With 500,000 inhabitants, and producing 300 tons of residues a day, Betim started to operate its sanitary landfill in 2002 and is expected to close it in 2012. The system of disposition and treatment of garbage includes the landfill, manure treatment ponds and a composting yard. It receives domestic and commercial waste from the city and the remains of pruning and weeding. The residues from pruning and weeding, restaurants and garbage trucks are transformed into organic matter on the composting yard. The gas consists of 50%-60% of methane generated by decomposition of the organic matter by bacteria, and also of carbon dioxide, hydrogen, oxygen, hydrogen sulphide, ammonia, carbon monoxide, water and small percentages of other elements. Several collections and analyses were carried out and compared with different measurement estimates of the biogas capturing system of sanitary landfills by different methods: World Bank WB; Intergovernmental Panel on Climate Change IPCC; and United States Environment Protection Agency USEPA, with the aim of finding parameters to evaluate the data obtained. The comparison of our data with the curves foreseen with the methods above, and the results provided by the laboratory, made it possible to validate the theoretical models.
O objetivo deste estudo foi medir a emissão de biogás a partir de um aterro monitorado na cidade de Betim, Estado de Minas Gerais, no sudeste do Brasil, e determinar parâmetros para a aplicação de modelos matemáticos para avaliar a produção de metano ea geração de energia possível para o Betim região específica. O estudo foi realizado no aterro sanitário da cidade. Com 500.000 habitantes, e produzindo 300 toneladas de resíduos por dia, Betim começou a operar seu aterro sanitário em 2002 e deverá ser concluída em 2012. O sistema de disposição e tratamento de lixo inclui o aterro sanitário, lagoas de tratamento de chorume e um pátio de compostagem. Ele recebe lixo doméstico e comercial da cidade e os restos de poda e capina. Os resíduos de poda e capina, restaurantes e caminhões de lixo são transformados em matéria orgânica no pátio de compostagem. O gás é constituído por 50% -60% de metano gerado pela decomposição da matéria orgânica por bactérias, e também de dióxido de carbono, oxigênio, hidrogênio, sulfureto de hidrogênio, amoníaco, monóxido de carbono, água e pequenas percentagens de outros elementos. Várias coleções e análises foram realizados e comparados com estimativas de medição diferentes das biogás captura sistema de aterros sanitários por meio de métodos diferentes: Banco Mundial - BM; Painel Intergovernamental sobre Mudança do Clima - IPCC, e Estados Unidos Agência de Proteção Ambiental - EPA, com o objetivo de encontrar parâmetros para avaliar os dados obtidos. A comparação dos nossos dados com as curvas previstas com os métodos acima, e os resultados fornecidos pelo laboratório, tornou possível para validar os modelos teóricos.
APA, Harvard, Vancouver, ISO, and other styles
6

Surita, Sharon C. "Emergence and Fate of Siloxanes in Waste Streams: Release Mechanisms, Partitioning and Persistence in Three Environmental Compartments." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1899.

Full text
Abstract:
Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
7

Cachia, Maxime. "Caractérisation des transferts d’éléments trace métalliques dans une matrice gaz/eau/roche représentative d'un stockage subsurface de gaz naturel." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3006/document.

Full text
Abstract:
Le gaz naturel représente environ 20% de la consommation énergétique mondiale et cette part est attendue à la hausse dans les prochaines années en raison de la transition énergétique. Pour des raisons économiques et stratégiques, et afin de réguler les demandes d’énergie entre l’été et l’hiver, le gaz naturel est stocké temporairement dans des réservoirs souterrains, notamment des réservoirs aquifères. Les opérations d’injection et de soutirage du gaz mettent donc en contact des espèces gazeuses, liquides et solides, et rendent potentiellement possibles de nombreux phénomènes de transferts d’espèces chimiques d’un milieu vers un autre. Ainsi, bien que composé majoritairement de méthane (70-90%vol), le gaz naturel peut présenter des concentrations variées d’éléments trace métalliques (arsenic, mercure, plomb…). Compte tenu du caractère néfaste de ces composés, à la fois pour les installations industrielles et pour l’environnement, il est de la première importance de connaître l’impact de la composition chimique du gaz sur l’aquifère.Les travaux réalisés dans le cadre de cette thèse s’inscrivent dans ce contexte et ont eu pour objectif de caractériser les matrices gaz/eau/roche ainsi que les interactions qui existent entre elles, avec pour centre d’intérêt principal les éléments trace métalliques.Pour cela nous avons fait porter nos efforts sur l’optimisation (i) des conditions d’utilisation d’un banc de prélèvement ATEX, basé sur le principe de barbotage, et (ii) des méthodes de piégeages des métaux lourds puis d’analyses employées. Ce dispositif unique permet d’échantillonner les métaux présents dans un gaz naturel sous pression (100 bar maximum). Utilisé sur des sites industriels, ce banc a permis de mesurer et suivre sur plusieurs années la composition chimique en éléments trace métalliques du gaz naturel, mais aussi ponctuellement d’un biogaz et d’un biomethane. En effet, Ces deux derniers gaz ont vocation à réduire l’utilisation des énergies fossiles, celle du gaz naturel en particulier. Les biométhanes sont donc amenés à parcourir les mêmes réseaux de transport et à séjourner dans les mêmes sites de stockage que ceux utilisés pour le gaz naturel.En complément de la caractérisation de la phase gazeuse, nous nous sommes intéressés aux évolutions des compositions chimiques des phases aqueuse et minérale du stockage souterrain, sans pouvoir identifier de mécanisme de transfert spécifiquement lié aux activités de stockage de gaz
Natural gas represents 20% of energy consumption in the world. This percentage is expected to increase in the next years due to the energy transition. For economic and strategic concerns, and in to regulate energy demand between summer and winter, natural gas might be stored in underground storages like aquifers. Consequently, injection and drawing operations favour contact between gaseous, liquid and solid species and make possible transfer phenomena of chemical species from one matrix to another. In addition, even though natural gases are composed essentially of methane (70-90%vol), they can also show various metallic trace element concentrations (mercury, arsenic, tin…). According harmful effects of these compounds on industrial infrastructures and on environment, knowing impacts of natural gas composition on aquifer storage is crucial.The different tasks of this thesis are incorporated within such a context with the objective to characterize gases-waters-rocks matrices and their potential interactions, focusing on metallic trace elements.Therefore, we have focused a part of this PhD thesis on the optimisation of conditions of use (i) of a in EX zone 0 sampler device, working according to the principle of bubbling and (ii) of trapping methodology as well as analytic methods. This unique device allows metal sampling from natural gases up to 100 bar pressure. Its use on industrial sites has permitted to measure and monitor during several years the metallic trace element chemical compositions of a natural gas and also more limited biogas and a biomethane analysis. Indeed, these two last gases are designed to reduce fossil fuel consumption particularly natural gas one. Biomethanes are led to use the same transportation network and to be temporarily stored in the same way as natural gaz. In addition of the gaseous phase, we have taken interest in the water and the mineral phases to characterize their chemical composition evolutions in time, without identify specific transfer mechanisms in touch with gas storage activity
APA, Harvard, Vancouver, ISO, and other styles
8

Frühbauer, Zdeněk. "Využití bioplynu v plynárenské síti." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230009.

Full text
Abstract:
The thesis deals with the technologies upgrading the biogas to the quality of the natural gas for the following use in the gas distribution system. The main concern of the thesis is the pressure swing adsorption (PSA), which is nowadays one of the most exploited technologies. For a certain flow and composition of the biogas, completely new PSA technology was designed. Technological schema was created and the main technological devices (adsorbers) were drawn up together with the design documentation for this new technology. The important part of the thesis is also the model of the whole PSA technology in the ChemCAD programme and the evaluation of the operating and investment costs.
APA, Harvard, Vancouver, ISO, and other styles
9

RAVINA, MARCO. "Development and application of a comprehensive methodology for the analysis of global and local emissions of energy systems." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2674649.

Full text
Abstract:
The energy sector is a source of economic and social progress, but it is also the main responsible of air pollution resulting from human activity, mainly from the combustion of fossil fuels and bioenergy. The impacts on atmosphere may be divided into global effects, due to change in concentration of greenhouse gases, and regional/local effects, due to the dispersion of SO2, NOx, particulates and other gases. The aim of this thesis is the development and application of a methodology for calculating the emissions in atmosphere associated with energy management interventions. The methodology aims to characterize and quantify the environmental impacts affecting both the local and global scale. The pollutants involving local effects considered in this study are nitrogen oxides and particulate matter. Globally, the emission of greenhouse gases is considered, by quantifying the equivalent CO2 (CO2eq) emitted. The environmental impact of an energy option is quantified in terms of its emission balance, i.e. by comparing the present situation with one (or more) future scenarios. The study at the local scale also considers the dispersion of pollutants using modelling tools. The methodology is applied to two case studies located in the Italian Metropolitan City of Turin, characterized by different application contexts and different scales of operation. The first case study is represented by a system for the production and conversion of biogas and biomethane. The analysis of global emissions considers four different operating scenarios. The results show a CO2 reduction of 1426 t/y for biogas combustion in full cogeneration mode (generation of both heat and electricity). Biomethane for transports scenario provides a similar result (1379 t/y). If biogas combustion with partial cogeneration is considered (generation of electricity only), the CO2 balance approaches to zero. The evaluation of local impacts is made with two different dispersion models. The application of an Octave-based Gaussian model provides an average increase of concentration both for NOx and TSP, in the order of units of g/m3. The results of CALPUFF model simulations show a slight decrease of concentration in the order of 10-2 g/m3. The second case study consists of a potential extension of the district heating network in the urban area of Turin. The production of local emissions is calculated considering the operation of the main power plants in response to the estimated heat demand. Avoided emissions are calculated simulating the heat production of centralized residential heaters. The results of CALPUFF model simulations show a potential reduction of NOx average concentration between 1 and 6 g/m3. The results of global emissions show an unfavorable balance in the order of 104 t/y of CO2, that varies depending on the assumptions on the emission factors of the power units. A comprehensive final discussion is reported after the analysis of the two case studies. The calculation of two indicators (the “thermal benefit vs. local emission indicator” and the “local to global emission ratio”) is also included to discuss a possible standardization of the proposed methodology. This study provides important information on the effects on air quality resulting from the modification of the energetic management of an area or settlement. The employed methodology is consistent and comprehensive in identifying the potential optimal solutions for energy production and management, as well as identifying the consequences to a given scenario under an environmental point of view.
APA, Harvard, Vancouver, ISO, and other styles
10

Gunnarsson, Andreas. "Analysis of Alternative Fuels in Automotive Powertrains." Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17053.

Full text
Abstract:

The awareness of the effect emissions have on the environment and climate has risen in the last decades. This has caused strict regulations of greenhouse gas emissions. Greenhouse gases cause global warming which may have devastating environmental effects. Most of the fuels commercially available today are fossil fuels. There are two major effects of using fuels with fossil origin; the source will eventually drain and the usage results in an increase of greenhouse gases in the atmosphere. Fuels that are created from a renewable feedstock are often referred to as alternative fuels and under ideal conditions they are greenhouse gas neutral, meaning that the same amount of greenhouse gases is released during combustion as the source of the fuel have absorbed during its growth period. This evaluation method is known as a well-to-wheel analysis which besides emissions also evaluates energy efficiencies during both the production and the combustion phases.

By evaluating results of well-to-wheel analyses along with fuel properties and engine concept characteristics, this report presents which driving scenario that is suitable for different powertrain configurations. For example, vehicles operating in high populated areas, as cities, have a driving scenario that includes low velocities and multiple stops while vehicles in low populated areas often travel long distances in higher speeds. This implies that different powertrains are suitable in different regions. By matching favorable properties of a certain powertrain to the properties important to the actual driving scenario this report evolves a fuel infrastructure that is suitable in Sweden.

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biogas. biomethane. landfill gas"

1

Richards, K. M. Landfill gas: Working with Gaia. Wallingford, Oxon: CAB International, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Power Generation from Landfill Gas Workshop (1991 Solihull, England). Power generation from landfill gas. Harwell Laboratories, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roggenkamp, Martha, Jacob Sandholt, and Daisy G. Tempelman. Innovation in the EU Gas Sector. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822080.003.0015.

Full text
Abstract:
The EU natural gas system has been developed since the 1960s, following discovery of the Groningen gas field. Climate change and security of supply challenges are affecting the natural gas market, provoking greener innovation including the introduction of renewable gases, such as biogas, which needs to be converted to biomethane (natural gas quality) before injection into the natural gas system and transported cross-border. This chapter examines the legal framework on EU and national level. Special attention is paid to: the extent to which biogas/biomethane is considered a renewable energy source; safety and quality standards; access and connection rules. National gas quality standards may, however, prove to be an obstacle for transportation cross-border. In addition, there is a trend towards cross-border contractual trade in biomethane and slowly emerging organizational developments facilitating cross-border trade in biomethane.
APA, Harvard, Vancouver, ISO, and other styles
4

Government, U. S., Environmental Protection Agency (EPA), and Department of Agriculture (USDA). 21st Century Complete Guide to Biogas and Methane: Agricultural Recovery, Manure Digesters, AgSTAR, Landfill Methane, Greenhouse Gas Emission Reduction and Global Methane Initiative. Independently Published, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

News, World Spaceflight. 21st Century Essential Guide to Methane and Biogas: Landfill Methane and Manure for Energy, AgStar Program, Recovery and Mitigation, Greenhouse Gas Emissions ... Biofuels, Bioenergy, and Biobased Products. Progressive Management, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biogas. biomethane. landfill gas"

1

Urban, Wolfgang. "Biomethane injection into natural gas networks." In The Biogas Handbook, 378–403. Elsevier, 2013. http://dx.doi.org/10.1533/9780857097415.3.378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khiratkar, Bela, Shankar Mukundrao Khade, and Abhishek Dutt Tripathi. "Biogas." In Biomass and Bioenergy Solutions for Climate Change Mitigation and Sustainability, 119–28. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5269-1.ch007.

Full text
Abstract:
Biogas is a renewable natural gas used in production of energy which is generated by breakdown of organic matter by anaerobic digestion. It is a composition of methane, carbon dioxide, and some other gases in small quantities. The most common natural resources for production of biogas are aquatic sediments, animal waste, crop residues, wastewater sludge, and many others. Some other sources are landfills, water lagoons, etc., which are a result of human activity. There are several technologies used for biogas production, mainly biodigesters, wastewater treatment plants, and landfill gas recovery systems. Production of biogas is highly dependent on the feedstock availability and the policy support by the government.
APA, Harvard, Vancouver, ISO, and other styles
3

Duca, Gheorghe, Victor Covaliov, and Olga Covaliova. "Intensive Biochemical Processes of Wastewater Treatment With High Caloricity Biogas Production." In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry, 291–306. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1241-8.ch013.

Full text
Abstract:
Anaerobic digestion of organic substrates in wastewaters from agro-industrial sector can be efficient method to reduce the pollutant contents, and also a source of biogas. The research is focused on developing of intensified biogas technology and integrated equipment, based on a series of original approaches. New types of new phyto-catalysts of methanogenic digestion were proposed: aescinum, squalene, and betulinol, introduced in the digested biomass in micro-concentrations of 10-3-10-5%. The proposed substances promote about 1.5-2 times acceleration of methanogenic process and increase biomethane contents in biogas close to the natural gas level – up to 93-97%. As a feedstock for biochemical digestion, post-distillery vinasse in mixture with farmyard manure was used. By combining of biochemical treatment with microfiltration an advanced treatment degree was reached, reducing COD from 28530 mg O2/L to 187 mg O2/L. In bioreactor proposed, biomass using coefficient reaches 85-93%, as compared to 60% in the conventional biogas processes.
APA, Harvard, Vancouver, ISO, and other styles
4

Berni, Mauro Donizeti, Paulo Cesar Manduca, Ivo Leandro Dorileo, and Leonardo G. de Vasconcelos. "BIOMETHANE FROM LANDFILL GAS IN URBAN BUS FLEETS: STUDY CASE IN SIX CITIES IN ARC, STATE OF SÃO PAULO, BRAZIL." In Desenvolvimento e Transferência de Tecnologia na Engenharia Química 2, 171–79. Atena Editora, 2021. http://dx.doi.org/10.22533/at.ed.22621190414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Charis, Gratitude, Tafadzwa Nkhoma, and Gwiranai Danha. "The Scope and Potential for Mini-Grid Power Systems Based on Biomass Waste for Remote Areas in Sub-Saharan Africa." In Practice, Progress, and Proficiency in Sustainability, 277–96. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8809-3.ch013.

Full text
Abstract:
Sub-Saharan Africa (SSA) has been experiencing an energy crisis. Socio-economic balances depend on access to clean, convenient, and dependable energy. This is critical for remote areas which are off the national grid, necessitating the installation of renewable energy sources such as bioenergy plants. These plants could valorize waste using combustion and gasification or biogas plants. The challenge is to produce a competitive levelized cost of electricity (LCOE). Nations like Germany and Sweden have successfully launched these. SSA can benchmark from these and valorize its biomass wastes. Key issues to consider would be cost-effective supply chains, sustainable harvest rates, after sales support, and good regulatory frameworks. This study was mostly a desktop review with a few field study observations. It was concluded that the stoker fired boiler and landfill gas ‘biomass only' technologies would have the least capital costs, although gasification and anaerobic digestion are also competitive in terms of LCOE.
APA, Harvard, Vancouver, ISO, and other styles
6

Gomes, João, Jaime Puna, António Marques, Jorge Gominho, Ana Lourenço, Rui Galhano, and Sila Ozkan. "Clean Forest – Project concept and preliminary results." In Advances in Forest Fire Research 2022, 1597–600. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_243.

Full text
Abstract:
The aim of this project is to valorize forest biomass wastes into bioenergy, more precisely, production of 2nd generation synthetic biofuels, such as, biogas, biomethanol, bio-DME, etc., depending on process operating conditions, such as, pressure, temperature and type of solid catalyst used. The valorization of potential forest wastes biomass enhances the reduction of probability of occurrence of forest fires and, presents a major value for local communities, especially, in rural populations. Biogas produced can be burned as biofuel to produce heat and/or electricity, for instance, in cogeneration engines applied for domestic/industrial purposes. After the removal of forest wastes from the forest territory, this biomass is dried, grounded to reduce its granulometry and liquified at temperatures between 100-200 ºC. Then, using the electrocracking technology, this liquified biomass is mixed with an alkaline aqueous electrolyte located in an electrolyser (electrochemical reactor which performs an electrolysis process), using a potential catalyst, in order to produce syngas (fuel gas, mainly composed by CO, H2 and CO2). In a second reaction step, this syngas produced can be valorized in the production of synthetic biofuels, in a tubular catalytic reactor. The whole process is easy to implement and energetically, shows significative less costs than the conventional process of syngas gasification, as the energy input in conventional pyrolysis/gasification process is higher than 500 ºC, with higher pressures, while, in the electrochemical process, applied in this project, the temperatures are not higher than 70 ºC, with 4 bars of pressure, at maximum. Besides that, the input of energy necessary to promote the electrolysis process can be achieved with solar energy, using a photovoltaic panel. In the production of biogas in the catalytic reactor, there is another major value from this process, which is the co-production of water, as Sabatier reaction converts CO2 and H2 into biomethane (CH4) and steam water, at atmospheric pressure, with 300 ºC of temperature, maximum, with a high selective solid catalyst. Finally, it is expected to produce a new bio-oil from this kind of biomass, with properties more closer to a fossil fuel than wood bio-oils, which can be used as a fuel or as a diolefins/olefins source and, also, to produce, from forest biomass wastes, pyrolytic bio-oils with complementary properties and valorised characteristics. This can be used in wood treatment or as a phenol source, for several industrial applications. A new and valorised application can be found for forest biomass wastes, which can be incorporated in the biorefinery concept.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biogas. biomethane. landfill gas"

1

Calero, Monica, Maria Angeles Martin-Lara, Gabriel Blazquez, Sunil Arjandas, and Antonio Perez. "CHARACTERIZATION OF LANDFILL GAS COMPOSITION FOR THE PRODUCTION OF BIOMETHANE." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/4.2/s18.07.

Full text
Abstract:
Biomethane and other renewable gases will enable to thrive on a fully renewable energy system. Biomethane has similar qualities to natural gas, so it can be injected into existing natural gas infrastructure or used as a biofuel for transport. Also, its use means a reduction in greenhouse gas emissions and dependence on fossil fuels. This work is part of the LIFE LANDFILL BIOFUEL project that aims to implement a cost-effective system based on new techniques to improve the recovery of landfill biogas and the production of biomethane with quality for vehicular use. In a first stage a complete characterization of the biogas produced has been carried out. Biogas is produced at the municipal solid waste treatment plant Ecocentral, located in Alhendin, Granada (Spain). The composition of the biogas as well as its main physical and chemical parameters has been determined. Differences in the composition of the biogas with the sampling point were found. Biogas consists mainly of methane with a content varying between 50% and 63% and carbon dioxide with a content of approximately 40%. The rest of the components are mainly O2 with content below 2% and N2 content between values below 15% and values arround 7%. The total siloxane content has been less than 3.0 mg/Nm3. The knowledge of the composition of this biogas has been decisive for the development of the upgrading procedure for its conversion to biomethane.
APA, Harvard, Vancouver, ISO, and other styles
2

Choudhury, Shiny, Vincent G. McDonell, and Scott Samuelsen. "Performance of Low-NOx and Conventional Storage Water Heaters Operated on Biogas and Natural Gas." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69702.

Full text
Abstract:
Abstract The U.S. has high renewable methane potential. Biogas can be obtained from many organic sources like landfills, wastewater, animal manure, industrial, institutional, and commercial organic waste. Biogas can also be produced from lignocellulosic biomass; also, there is attention in biofuel and biogas production from various kinds of algae. In the U.S., 5% of the natural gas utilized in the electric power sector and 56% of the natural gas in transportation can be directly replaced with biogas. In a typical Californian household, around 50% of the 354 therms Natural Gas energy supplied goes to water heating. Hence, a large amount of emission from residential spaces is due to water heating units. Introducing renewable natural gas (RNG) or biomethane to natural gas pipelines has shown great potential for greenhouse gas mitigation. However, the upgrade process is energy and cost intensive. Assuming primary biogas composition as methane (CH4) and carbon dioxide (CO2), an understanding of the tolerance for residential appliances (significant pipeline delivery point use) to biogas addition could save cleaning/upgrading costs. Focusing on the combustion performance of two representative models of storage water heaters (low-NOx and conventional) in California, this research addresses how much CO2 in natural gas can be tolerated without losing critical performance parameters for reliable operation. Characteristics like blow-off, ignition time, flame structure, efficiency, and emissions (NOx, NO, N2O, CO, CO2, UHC, CH4, and NH3) at different concentrations of CO2 in natural gas are investigated. The pilot operation becomes unstable for the low-NOx water heater beyond 10% CO2, and the probability of blow-off increases. At both 5% and 10% CO2 addition, a stable though the increasingly flat flame is observed, and pilot operation is stable both during idling and while the main burner relights. For the conventional gas storage water heater, a stable flame is established up to 25% CO2 addition, with the flame becoming increasingly shorter beyond 30% CO2 addition. On the other hand, the stable pilot operation could not be established even at 5% CO2 addition, which proved to be the limiting factor for the operation of this device. A similar trend of NOx/NO decrease and CO/UHC increase with increasing CO2 percentage was observed for both water heaters. Further, methane emissions from water heaters during active and idle operations and pilot light’s role were quantified. The present study show 10% CO2 can be added to natural gas without any significant loss of efficiency for the low-NOx storage water heater. We found that both the water heaters emit CH4 during active and idle operation, of which more CH4 is emitted during the idle process. This study can inform policymakers on allowing higher composition variability for the pipeline gas and research into modifying water heater burners for increased tolerance to biogas with reliable performance and a simultaneous decrease in pollutant emissions.
APA, Harvard, Vancouver, ISO, and other styles
3

Garci´a, Jaime R., Iva´n D. Romero, Jose D. Posada, Antonio J. Bula, and Marco E. Sanjua´n. "Simulation and System Identification of a Biomethanol Production Plant." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12989.

Full text
Abstract:
Biomethanol is simply methanol produced from non-fossil feedstock. The process requires gasification of biomass, black liquor, or the gas can be obtained from landfill or animal waste. Typically, Biodiesel production requires methanol as a main feedstock, and the latter can be obtained from biomass waste, turning the biodiesel production process even more sustainable, as the necessary materials involved come from renewable sources. This investigation addresses the need to develop a simulation model of a biomethanol production process, to determine the feasibility of the plant by analyzing different operating conditions at the process units. Also, a subspace system identification technique is used to capture the dynamics of the process at one operating condition for further optimization of operational costs. The results showed that H2/CO ratio significantly affects the final amount of biomethanol (CH3OH) obtained.
APA, Harvard, Vancouver, ISO, and other styles
4

Zelepouga, Serguei, Vitaly Gnatenko, John M. Pratapas, Vilas V. Jangale, and Alexei Saveliev. "Gas Quality Sensor to Improve Biogas-Fueled CHP/DG." In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35124.

Full text
Abstract:
Today, renewable fuels such as biogas are being used to fuel combined heat and power (CHP) and distributed generation (DG) systems. The composition of biogas delivered to power generation equipment varies depending upon the origin of the anaerobic digestion process and site-specific factors. For improved process control and optimum utilization of CHP/DG systems, the biogas composition needs to be monitored. A new apparatus has been developed for characterization of hydrocarbon fuel mixtures. The method utilizes near infrared absorption spectroscopy to monitor composition and heating value of landfill gas, natural gas, and other hydrocarbon fuel gases. The measurement is virtually instantaneous. A commercialized version of this sensor is expected to cost less than half the price of gas chromatographs, which are widely used in the gas industry today.
APA, Harvard, Vancouver, ISO, and other styles
5

Palazzotto, John D., Joseph Timar, and Alan T. Beckman. "Design and Development of a New Landfill/Biogas Engine Oil for Modern, High BMEP Natural Gas Engines." In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60079.

Full text
Abstract:
The use of higher brake mean effective pressure (BMEP) engines in landfill or alternative gas applications has increased dramatically in the past few years. Operators are using these engines due to their ability to provide lower emissions coupled with improved economics for the end user due to the higher density or power output capability compared to an engine of similar size and displacement. Landfill gas (LFG) quality can vary greatly as well as the contaminant level due to the composition of the landfill. This environment poses unique challenges to both the engine and the engine oil, including shorter oil drain intervals, corrosive attack of engine components, with increased piston and combustion chamber deposits, to name but a few. Maintaining longer oil drain intervals minimizes unscheduled oil drains which can decrease the overall cost of the landfill operation. High BMEP engines provide higher power output but at the cost of increased maintenance in severe fuel applications. Excessive piston crown and combustion chamber deposits from landfill gas impurities can have a deleterious effect on engine emissions, which may lead to the inability to meet local emissions regulations. Engine lubricants must provide adequate oil life as well as minimizing deposit related issues that may negatively impact regular scheduled maintenance cycles, thus reducing engine downtime and increasing revenues. Traditionally, the approach has been that oils formulated for landfill applications used excess base reserve to sufficiently neutralize the acids being formed during the combustion process. Unfortunately, this approach increases the sulfated ash content of the lubricant which lends itself to increased ash deposits and negatively impacts the combustion dynamics of these high BMEP engines, which are sensitive to ash deposition. Based on requests for a longer life lubricant without compromising deposit control characteristics in serve landfill applications, a new product development project was specifically targeted for late model, high BMEP engines, which are prone to detonation and sensitive to ash related deposits. This paper presents the development bench testing, and proof of performance field evaluations of a new generation, low ash landfill gas engine oil.
APA, Harvard, Vancouver, ISO, and other styles
6

Mazurkiewicz, Jakub. "ECOLOGICAL AND ECONOMIC ASPECTS OF MANURE MANAGEMENT - CONCLUSIONS FROM THE MILKEY AND MELS PROJECTS." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/4.2/s19.29.

Full text
Abstract:
The main purpose of the publication was to show the differences in revenues, costs and profits when using manure directly as a fertilizer (after storage) or as a substrate for a biogas plant equipped with a cogeneration unit, and then using the digestate for fertilization purposes. The comparison includes cost, revenue and profit streams throughout the year. It also takes into account the introduction of additional co-substrates in order to increase the yield of biogas (biomethane), and thus the profits from the future investment. Forecasts of the profitability of biogas investments were presented, taking into account the reduction of greenhouse gas emissions, i.e. methane and nitrous oxide, which are several dozen or even almost 300 times more harmful to the atmosphere than carbon dioxide. The economic, energy and ecological accounts of manure management can serve as guidelines for pre-investment analysis when considering investments in biogas plants. In addition, the published data indicate that the energy management of cow manure is of great importance when estimating the carbon footprint of the entire dairy production. It should be expected that in the near future such solutions will become more and more popular almost all over the world. Input parameters of substrates, gaseous emissions and biogas (and biomethane) yields were obtained from own research (cow manure samples were taken from a working farm) and from literature sources, e.g. these were international and national IPCC (Intergovermetal Panel on Climate Change) protocols.
APA, Harvard, Vancouver, ISO, and other styles
7

Narayanan, G., and S. O. Bade Shrestha. "Landfill Gas: A Fuel for IC Engine Applications." In ASME 2007 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/icef2007-1623.

Full text
Abstract:
Landfill gases and biogases are low Btu gases which were, until recently, underutilized. However interest on the utilization of these gases for energy production has been increasing due to environment concerns and global warming caused by burning fossil fuels, energy security concerns and renewable nature of these gases. The main portion of landfill gas or biogas is comprised of methane and carbon dioxide with some other gases in small proportions. Release of methane directly to the atmosphere causes about 21 times global warming effects than carbon dioxide. Thus landfill gas is flared often, where the energy recovery is not economically viable in practice. Using landfill gas to generate energy encourages more efficient collection reducing emissions into the atmosphere and generates revenues for the operators. However the use of landfill gases for electricity generation is not perceived as an attractive option because of some disadvantages. Thus it becomes necessary to address disadvantages involved by studying the landfill gases in a technological perspective and motivate the utilization of the landfill gas for the future energy needs. This paper discussed landfill gas as a fuel for a spark ignition engine to produce power in an effective way and effects of additions of a small quantity of hydrogen in the fuel mixtures. The effect of the composition changes in landfill gases on the performance of the engine is also presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Vargas-Salgado, Carlos, Jesús Aguila-León, Cristian Chiñas-Palacios, and Lina Montuori. "Potential of landfill biogas production for power generation in the Valencian Region (Spain)." In CARPE Conference 2019: Horizon Europe and beyond. Valencia: Universitat Politècnica València, 2019. http://dx.doi.org/10.4995/carpe2019.2019.10201.

Full text
Abstract:
Landfills are one of the most common ways to dispose the solid urban waste in many countries due to their relatively simple technical requirements, operational costs and low investment. Moreover, biogas produced in landfills can be used as a renewable energy source for power generation. The Valencian Region is one of the largest solid urban waste producers in Spain, and therefore, it has an unexplored potential of landfill biogas production. This paper aims to estimate the potential of biogas landfill production for power generation in the Valencian Region. Statistical data from solid urban waste in landfills in the provinces of Alicante, Castellón, and Valencia was gathered. Then the potential of landfill biogas production was estimated by means of waste classification for each province. To provide information related to the use of landfill gas as an alternative source of energy, results presented in this work show that the Valencian Region has an important potential to use landfill biogas from solid urban waste as a renewable source for power generation, and also provide information to the regional government, academic researches, policy makers and investors.
APA, Harvard, Vancouver, ISO, and other styles
9

Baccioli, Andrea, Gianluca Pasini, Gregorio Barbieri, and Lorenzo Ferrari. "Off-Design of a Small-Scale Liquefaction Plant Operating With Biomethane." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-83222.

Full text
Abstract:
Abstract Liquefied natural gas is recently playing an important role in the heavy-duty vehicle and marine fuel market due to the low ambient impact, easy onboard storage, and low commercial prices. Biomethane from biogas upgrading can integrate the LNG market by providing the added value of an almost zero carbon footprint fuel. The production rate of biomethane is distributed in various anaerobic digestion plants, and daily amounts are limited to a few tons per day, with a substantial variability depending on digester feed. For this reason, small-scale liquefaction systems are requested to convert biomethane into bio-LNG. The Joule-Brayton reverse cycle is a promising solution for small-scale plants due to its simplicity and ease of regulation. The control strategy of this plant is important since small-scale installations are characterized by relatively high specific consumption that might increase when the system is operated in part-load or off-design conditions. For this reason, the comparison between two control strategies is proposed in this study: variable rotating speed control strategy and inventory control are compared and assessed. A steady-state off-design model of the plant was implemented in Aspen Hysys by considering the behavior of all the main system components, including compressors, turbine, intercoolers and aftercoolers, turbine, and cold-box. Typical analytical relations for heat exchanger off-design were considered as well as typical characteristic maps for the fluidmachinery. The two control systems were introduced in the model by implementing the control equations at the steady-state. Results showed that inventory control allows the system to achieve better performance and results to be more flexible. Variable rotating speed control strategy led to surge issues at low small biomethane production and low ambient temperature. By considering a plausible biomethane production profile, inventory control allows the specific consumption to be reduced by 4.3 %, and liquefied biomethane production increases by about 131 t with respect to variable speed control.
APA, Harvard, Vancouver, ISO, and other styles
10

Murphy, John Colin, Steven Vassiloudis, Norris Aden September, Masoud Eghtedari, and Dimitrios Pandelis Koulouris. "Advanced Gas Separation Membrane for Optimised Methane Recovery and Reduction of Green House Gas Emission." In SPE Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210626-ms.

Full text
Abstract:
Abstract Carbon Dioxide is a greenhouse gas naturally found as a component in natural gas, biogas and landfill gas and is also generated whilst flaring or burning the waste methane/gases. For CO2 capture and CO2-CH4 separation, we have investigated the membrane-based technology which offers high energy efficiency, simple modules and process design, reduced footprint, and enhanced energy content of the product gas whilst reducing pipeline corrosion problems and minimising greenhouse gas (GHG) emission. Gas separation membranes require not only materials with excellent separation performance such as selectivity and permeability but also resistant to high temperatures and pressures. In this work, we have examined the performance of advanced polymeric membranes made from the high-performance intrinsic polyimide material for the recovery of methane and subsequent reduction of GHG emission in natural gas and biogas upgrading applications. Pressure-driven gas separation simulations were performed using the intrinsic parameters of hollow-fibre membranes. It was found that employing the advanced polyimide membrane allows a wider range of operating temperatures (up to 80 °C) and pressures (500 kPag to 100,000 kPag) whilst achieving performance and GHG emission reduction goals. Thus, we employed an innovative concept by combining the advanced membrane materials with a novel multi-stage separation process to recover the CH4 up to 95%-99% in the product (retentate) and CO2 concentration of up to 95%-98% in off-gas (permeate). Subsequent field-tests for the membranes durability, stability and relative capacity and separation performance compared to cellulose acetate (CA) based membrane systems. These tests have found that the polyimide hollow-fibre membranes are resistant to degradation from hydrogen sulphide (H2S), heavy hydrocarbons (HHCs), and are less susceptible to time effected degradation of permeance and selectivity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography