Academic literature on the topic 'Biogas as a fuel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biogas as a fuel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biogas as a fuel"
Kabeyi, Moses Jeremiah Barasa, and Oludolapo Akanni Olanrewaju. "Biogas Production and Applications in the Sustainable Energy Transition." Journal of Energy 2022 (July 9, 2022): 1–43. http://dx.doi.org/10.1155/2022/8750221.
Full textItodo, Isaac N., Dorcas K. Yakubu, and Theresa K. Kaankuka. "The Effects of Biogas Fuel in an Electric Generator on Greenhouse Gas Emissions, Power Output, and Fuel Consumption." Transactions of the ASABE 62, no. 4 (2019): 951–58. http://dx.doi.org/10.13031/trans.13394.
Full textLie, David, I. Wayan Bandem Adnyana, and Tjokorda Gde Tirta Nindhia. "Studi Emisi Dan Konsumsi Bahan Bakar Genset Bermesin 2 Langkah Dual Fuels (Biogas – Metanol)." Jurnal METTEK 8, no. 2 (November 30, 2022): 103. http://dx.doi.org/10.24843/mettek.2022.v08.i02.p05.
Full textShah, M. S., P. K. Halder, A. S. M. Shamsuzzaman, M. S. Hossain, S. K. Pal, and E. Sarker. "Perspectives of Biogas Conversion into Bio-CNG for Automobile Fuel in Bangladesh." Journal of Renewable Energy 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/4385295.
Full textDimitrov, Radostin, Zdravko Ivanov, Penka Zlateva, and Veselin Mihaylov. "Optimization of biogas composition in experimental studies." E3S Web of Conferences 112 (2019): 02007. http://dx.doi.org/10.1051/e3sconf/201911202007.
Full textLyng, Kari-Anne, and Andreas Brekke. "Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels." Energies 12, no. 3 (February 7, 2019): 532. http://dx.doi.org/10.3390/en12030532.
Full textHariyanto, Kris. "Performa Pembakaran Kompor Biogas Menuju Desa Mandiri Energi di Yogyakarta." Conference SENATIK STT Adisutjipto Yogyakarta 2 (November 15, 2016): 151. http://dx.doi.org/10.28989/senatik.v2i0.58.
Full textKISHORRE, V. Annanth, A. KAREN, K. Abhishek VEDA, H. NIRANJAN, K. Anusha KRISHNA, N. GOBINATH, and M. FEROSKHAN. "Evaluating the effect of DEE blending ratio in biogas-biodiesel fuelled dual-fuel engine." INCAS BULLETIN 13, no. 3 (September 4, 2021): 67–77. http://dx.doi.org/10.13111/2066-8201.2021.13.3.6.
Full textAbdurrakhman, Arief, Dhirga Kurniawan, Mohammad Berel Toriki, and Bambang Lelono Widjiantoro. "KARAKTERISASI KECEPATAN PUTARAN BERDASARKAN RASIO INPUT BAHAN BAKAR PADA GENERATOR SET DUAL FUEL (GASOLINE – BIOGAS) MENGGUNAKAN JARINGAN SYARAF TIRUAN." JTT (Jurnal Teknologi Terapan) 6, no. 1 (April 15, 2020): 55. http://dx.doi.org/10.31884/jtt.v6i1.238.
Full textAhmed, Salman Abdu, Song Zhou, Yuanqing Zhu, Asfaw Solomon Tsegay, Yoming Feng, Naseem Ahmad, and Adil Malik. "Effects of Pig Manure and Corn Straw Generated Biogas and Methane Enriched Biogas on Performance and Emission Characteristics of Dual Fuel Diesel Engines." Energies 13, no. 4 (February 17, 2020): 889. http://dx.doi.org/10.3390/en13040889.
Full textDissertations / Theses on the topic "Biogas as a fuel"
Shah, Bilal. "Distributed biogas production for biogas fuel." Thesis, KTH, Kraft- och värmeteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218021.
Full textHedström, Lars. "Fuel Cells and Biogas." Doctoral thesis, KTH, Energiprocesser, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-13219.
Full textQC20100708
Larsson, Anneli. "Profile and perceptions of biogas as automobile fuel : A study of Svensk Biogas." Thesis, Linköping University, The Tema Institute, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-12507.
Full textFrom an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based fuels. This thesis is designed to explore the profile of biogas in relation to its perceptions. It is a study concerning the communication between the biogas producing company Svensk Biogas and their biogas users and non biogas users. To obtain a thorough understanding of the profile and perceptions of biogas a qualitative approach was considered appropriate. Biogas users and non-users were interviewed at gasoline stations, while Svensk Biogas was interviewed as a group.
The three interview segments were analyzed and compared in order to identify patterns, similarities and differences. Based on research data the thesis concludes that the profiling arguments of biogas correlates to that biogas is the most environmentally friendly fuel, the least expensive fuel, and locally produced. Furthermore, the company profile of Svensk Biogas is equal to sustainable alternative, locally produced, trustworthy, environmentally friendly and climate smart [klimatsmart]. Given the arguments of the company profile, environmental values seem to be the core communicating value. Profiling Svensk Biogas happens through events and by using communication material such as company logotype.
Motorists have an overall positive perception of biogas. Biogas users states environmental benefits as the key argument behind their commitment. Non-users are positive toward biogas although expressing a lack of knowledge confusing biogas with ethanol and bio-fuels in general. According to motorists the negative perceptions, in addition to the prerequisites of biogas, are connected to insufficient infrastructure of biogas filling stations, a short range of the biogas tank, a high investment cost of a biogas car, a biogas price increase, scarcity of cars, and information (lack of information and misleading information).
The overall perception of Svensk Biogas among biogas users is positive. Biogas users express a negative perception concerning the Svensk Biogas filling stations and also wish for a lower biogas price. Non-users express modest perceptions of the company. This research also concludes that perceptions of the biogas producer are correlated to the perceptions of biogas. Furthermore, biogas producer, users and non-users wish to be directed by political decisions, guiding them toward environmentally friendly fuel alternatives.
Arespacochaga, Santiago Nicolás de. "Sewage biogas energy valorization via solid oxide fuel cells." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/345237.
Full textEl subministrament d'energia sostenible i segur és un dels reptes més rellevants per a les properes generacions, on la dependència actual en les fonts d'energia basades en combustibles fòssils haurà de ser substituïda per l'autosuficiència i l'ús dels recursos energètics renovables. El tractament convencional d'aigües residuals urbanes és un procés que consumeix grans quantitats d'energia, o més específicament, grans quantitats d'electricitat. En aquest sentit, l'energia a les Estacions Depuradores d'Aigües Residuals s'ha de tractar no només en termes de reducció del consum, sinó també en termes de producció d'energia renovable a partir del biogàs. Avui en dia, no és possible assolir l'autosuficiència energètica a causa de les baixes eficiències elèctriques dels sistemes de cogeneració convencionals alimentats per biogàs. Tot i això, en els darrers anys, la tecnologia de les piles de combustible està apareixent en escena, oferint una millor eficiència elèctrica i una reducció en l'impacte ambiental. La valorització energètica de biogàs en piles de combustible combina una tecnologia d'elevada eficiència per a la generació d'energia (la pila de combustible), amb l'ús d'un combustible renovable (el biogàs). S'ha de tenir en compte que el biogàs brut conté una àmplia gamma de contaminants, especialment compostos de sofre i de silici orgànic (siloxans), que comporten un risc operatiu per al correcte funcionament de les piles de combustible d'òxid sòlid. Per tant, s'ha d'instal·lar una etapa d'acondicionament i neteja exhaustiu del biogàs abans que es pugui introduïr a la pila de combustible. D'altra banda, la monitorització de les concentracions de siloxans presenta discrepàncies en relació al procediment òptim per al seu mostreig i en la tècnica analítica de quantificació; dificultant d'aquesta manera el disseny i la operació de les tecnologies d'eliminació d'aquests compostos. Aquest treball es centra en l'estudi i validació de tota la línia de valorització energètica, incloent el sistema de tractament de biogàs i la operació de la pila de combustible. S'ha estudiat la integració de tecnologies de dessulfuració biològica de baix cost i de processos d'adsorció fisicoquímica amb una pila de combustible d'òxid sòlid en una planta pilot industrial de 2.8 kWe instal·lada en una Estació Depuradora d'Aigües Residuals a Catalunya (Mataró). Els resultats experimentals han demostrat que les tecnologies de tractament de biogàs són capaces d'assolir els exigents nivells de qualitat de 0.5 ppmv S i 1 mg Si/Nm3 tant en el curt com en el llarg plaç. Per altra part, s'ha realitzat una estudi tècnic-econòmic comparatiu entre les piles de combustible (d'òxid sòlid i de carbonat fos) amb els motors de combustió interna i les microturbines per a diferents tamanys de planta i composicions del biogàs. D'aquesta manera, s'ha confirmat el paper important que poden jugar les piles de combustible en l'assoliment d'un tractament d'aigües residuals autosuficient; particularment en plantes de tamany petit i mitjà. Avui en dia, els projectes de valorització energètica de biogàs a través de piles de combustible encara s'han de justificar per raons ambientals ja que es requereixen millores tant en el rendiment tècnic com en els costos d'inversió. No obstant, aquesta tesi demostra que aquesta tecnologia de pròxima generació serà econòmicament viable en el curt termini i podrà competir amb les tecnologies convencionals. La investigació col·laborativa entre productors de biogàs, proveïdors de tecnologies de tractament i fabricants de piles de combustible serà imprescindible durant els propers anys per tal que la tecnologia pugui convertir-se en una realitat en el sector del tractament d'aigües residuals urbanes.
Makkar, Mahesh Kumar. "The effect of quality of gaseous fuels on the performance and combustion of dual-fuel diesel engines." Thesis, University of Surrey, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388983.
Full textKull, Sara. "Attityder till val av fordonsbränsle." Thesis, Linnaeus University, School of Natural Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-8269.
Full textFör att minska dagens klimatpåverkan krävs fullgoda energialternativ till de fossila bränslena. Utsläpp från fossila bränslen är idag en av de största orsakerna till de negativa klimatförändringar som sker på jorden. Genom en ökad användning av alternativa fossilfria drivmedel kan en tydlig minskning av koldioxidutsläpp till atmosfären ske. Biogas är ett sådant fossilfritt drivmedel som idag klassas som ett av de renaste. Biogasen framställs från olika typer av restprodukter från samhället. Då fossila drivmedel ersätts med biogas sker en total reduktion av växthusgaser.
Kalmar Län har som mål att till år 2030 vara en helt fossilbränslefri region. Genom en ökad användning av gasen inom transportsektorn kan sådana typer av nationella mål uppfyllas. Västervik kommun i Kalmar Län har sedan 2008 producerat biogas lokalt, vilket bidrog till att en tankstation kunde öppnas under år 2009. Genom dessa åtgärder har kommunen genomfört ett stort steg för biogasens utveckling och framfart i samhället. Då tillgängligheten är säkrad är det upp till individer och företag att avgöra om de sedan väljer att nyttja gasen som fordonsbränsle. Detta val kräver en förändring av ett tidigare beteende. En attitydförändring är därför viktig om en förändring ska kunna ske. Det finns många olika faktorer och argument som påverkar övergången från en miljövänlig attityd till ett miljövänligt beteende.
Syftet med detta arbete var utifrån denna bakgrund att undersöka vilka faktorer som påverkar valet av fordonsbränsle hos privatpersoner och företag. Detta möjliggjordes genom en enkätundersökning för privatpersoner och ett frågeformulär för företag. Genom att privatpersoner och företag som både använder biogas och fossila bränslen ingick i undersökningen kunde dessa senare jämföras för att den aktuella frågeställningen skulle kunna besvaras. Undersökningen var av intresse för Västervik kommun, varav privatpersoner deltog både från kommunen och runt om i landet. 612 personer svarade på enkäten, 336 gasanvändare och 276 fossilanvändare. Sammanlagt ingick fem lokala företag i undersökningen samt tre lokala bilfirmor.
Genom undersökningen kunde intressanta typer av mönster urskiljas gällande de attityder och faktorer som låg till grund för de val som privatpersonerna har gjort. Fossilanvändare ansåg att ekonomi är den viktigaste faktorn vid valet av bränsle. En ökad ekonomi eller ett minskat pris på gasfordon skulle kunna medföra en övergång till biogas. Gasanvändare har utvecklat ett miljövänligt beteende genom användandet av gasen, där det starkaste argumentet var just ett rent miljösamvete som biogasanvändningen bidrar till. Det framkom även att biogassystemet måste fungera som helhet för att en ökad användning ska kunna möjliggöras, då en del gasanvändare påpekade brister i det nuvarande systemet. För företag var även ekonomi och miljösamvete viktiga faktorer vid val av fordonsbränsle. Att biogasfordon har ett reducerat förmånsvärde var en viktig faktor för företags investering. Detta var även något som bilfirmor påpekade och att det hos privatpersoner trots allt är den egna plånboken som styr valet. Biogas är i dagsläget ett miljömässigt bra drivmedel och tidigare forskning har dessutom visat att det finns god potential till betydande förbättringar i framtiden.
Fossil fuels are amongst the largest contributors to the climate changes currently happening. Through an increased use of alternative fossil-free fuel it is possible to achieve a significant reduction of carbon dioxide emissions to the atmosphere. One such fuel is biogas, which is considered as one of the cleanest fuels available today. Biogas is produced from various types of waste materials, and replacing fossil fuel with biogas results in an overall reduction of green-house gas emissions.
The Kalmar County has set a target to become a completely fossil fuel-free region by the year 2030. Through an increased use of biogas in the transport sector, such types of national targets can be achieved. The Municipality of Västervik, a part of the Kalmar County, has since 2008 been producing biogas locally, which meant that a fuelling station could be built in 2009 and through this, the Municipality has taken a major step towards an increased use of biogas. With supply secured, it is up to individuals and companies to use it for vehicle fuel. This choice requires a change in human habits. The motivations for making changes vary among individuals and theirs attitudes.
The aim of this study was to examine which factors affect the choice of vehicular fuel among individuals and companies. This was achieved through a survey for individuals and a questionnaire for companies. Individuals and companies could then be compared to. The study was made for the Municipality of Västervik, and the study subjects were both local and non-local residents. 612 people replied to the survey, 336 users of gas and 276 users of fossil fuels. Totally five local companies were included in the survey and three local Car Dealers.
In this study, a number of interesting patterns regarding attitudes and affecting factors have been observed. Users of fossil considered the economic aspect as the most important factor for their choice. Users of gas have adopted environmentally friendly habits through the use of gas, where the strongest argument was the environmentally friendly approach. It was also found that biogas must be part of a coherent system in order to increase use; some biogas users pointed on shortcomings in the current system. The economic aspects and the environmental conscience were also important for companies for theirs choice of vehicles. The reduced benefit value was an important factor for investment of biogas vehicles. This was also something that Car Dealers pointed out; it is after all the own wallet that govern elections. Biogas is an environmentally friendly fuel in the current situation and previous research has also shown that there is good potential for significant improvements in the future.
Svensson, Kine. "Biogas production from multi-fuel substrate : Experimental results and process evaluation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for vann- og miljøteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19426.
Full textKarpenko, Valeriy I., O. V. Horlinskyy, O. G. Shcherbakova, and L. P. Golodok. "INTENSIFYING THE FORMATION OF BIOGAS AS FUEL AND IMPROVING BIOENERGY TECHNOLOGIES." Thesis, Мегапринт, 2013. http://er.nau.edu.ua/handle/NAU/10098.
Full textPaulose, Paulose. "Anaerobic digestion of sugarcane trash and bagasse for biomethane production." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/405200.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Mkruqulwa, Unathi Liziwe. "Co-digestion of Cassava Biomass with Winery Waste for Biogas Production in South Africa." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2853.
Full textRenewable energy security for the future and better use of natural resources are key challenges that can be concurrently managed by a practical anaerobic co-digestion approach in the production of methane. For this study, co-digestion of cassava and winery waste was investigated for the production of biogas. Cassava biomass is a good substrate for biogas production due to its high carbohydrate yield per hectare (4.742 kg/carb) than most plants. Winery wastes constitute a lot of challenge in South Africa due to high amounts currently being dumped at landfills. Due to the chemical properties of the two substrates, it is envisaged that their co-digestion will produce more biogas than use of a single substrate. Biomethane potential (BMP) tests were carried out in a batch, mesophilic (37 °C±0.5) reactor using cassava and winery waste singly and in combination at a ratio of 1:1 and ran for 30 days. Biogas optimization was also evaluated. The optimal conditions for methane production from anaerobic co-digestion of cassava biomass and winery solid waste using response surface methodology (RSM). The effects of temperature, pH and co-substrate ratios on the methane yield were explored. A central composite design technique was used to set-up the anaerobic co-digestion experiment was determined. Once the optimized values were established, biogas production from co-digestion of cassava biomass with winery waste was investigated using a single-stage 5 L mesophilic batch digester and the microbial dynamics inside the digester during co-digestion of cassava and winery waste in the single-stage 5 L mesophilic batch digester. The samples were collected on days 1, 15 and 30 of the anaerobic digestion period and DNA extracted from them while 16sRNA bacterial sequencing was performed. The results for the BMP tests showed that cumulative methane yield for cassava, winery waste and in combination were 42, 21 and 38 mLCH4 respectively. It was concluded that biogas production from anaerobic digestion was dependent on many factors such as pH, substrate properties and the ratio of different feedstocks used during co-digestion. The results from the optimization study were pH 7, temperature of 35 °C±0.5 and co-digestion ratio of 70:30 cassava to winery waste. The maximum methane yield of 346.28 mLCH4/gVSadded was predicted by the quadratic model at the optimal temperature of 35 oC±0.5, pH of 7 and 70:30 ratio of cassava biomass to winery solid waste. Experimental results showed a close fit but higher methane yield (396 mLCH4/gVSadded) than predicted values as indicated by the coefficient of determination (R2) value of 0.9521. The response surface model proved successful in the optimization process of methane yield. The single-stage 5L mesophilic batch digester with a co-substrate ratio of 70:30 cassava to winery waste produced a total of 819.54 mL/gVS biogas with a 62 % methane content. The study of microbial community dynamics showed the presence of the bacteria that is responsible for each stage of anaerobic digestion. The study concluded that both winery waste and cassava substrates were favourable for biogas production and most underprivileged people in the rural areas with no access to electricity can produce & utilise it.
Books on the topic "Biogas as a fuel"
Keen, Alex R. Biogas cleanup technology and reuse as fuel. [New York, N.Y.]: Knovel, 2010.
Find full textDeublein, Dieter. Biogas from waste and renewable resources: An introduction. 2nd ed. Weinheim: Wiley-VCH, 2011.
Find full textTurco, Maria, Angelo Ausiello, and Luca Micoli. Treatment of Biogas for Feeding High Temperature Fuel Cells. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-03215-3.
Full textButler, Ciarán. Energy from biomass and waste in the south-east region of Ireland. Dublin: University College Dublin, 1996.
Find full textHalvadakis, Constantinos P. Hog-farm waste management: Investment opportunities in Greece. Athens: Centre of Planning and Economic Research, 1988.
Find full textInternational Symposium on Biogas Production, Wastewater Treatment, and Management Strategies of Organic Resources (2005 Suwŏn-si, Korea). International Symposium on Biogas Production, Wastewater Treatment, and Management Strategies of Organic Resources: Suwon, Korea, Sep. 5, 2005. Suwon, Korea: National Institute of Agricultural Science and Technology, 2005.
Find full textZakharinov, Botʹo. Biomasa, biogaz, bioshlam v energetikata na antropogenni ekosistemi: Ekologichni biotekhnologii za proizvodstvo na biogaz i opolzotvori︠a︡vane na bioshlam. Sofii︠a︡: Nov bŭlgarski universitet, 2013.
Find full textBioenergy technology and engineering. Beijing, China: Science Press, 2013.
Find full textFuel free!: Living well without fossil fuels. [North Charleston, S.C.]: CreateSpace, 2010.
Find full textYanagisawa, Yūji. Teionka ni okeru kensetsu sekō no kankyō fuka teigen ni kansuru kentō. [Ibaraki-ken Tsukuba-shi]: Doboku Kenkyūjo, 2012.
Find full textBook chapters on the topic "Biogas as a fuel"
Rajak, Anup Kumar, Harsh Sharma, Abhinay Rangari, Aman Pandey, Rohit Sen, and Abhishek Mishra. "Biogas as an Alternate Vehicle Fuel." In Lecture Notes in Electrical Engineering, 153–61. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4975-3_13.
Full textStan, Cornel. "Heat, electricity and fuel from biogas." In Energy versus Carbon Dioxide, 204–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-64162-0_17.
Full textKalita, Pankaj, Munu Borah, Rupam Kataki, Dipti Yadav, Dipam Patowary, and Rupam Patowary. "Biogas and Fuel Cell as Vehicular Fuel in India." In Sustainable Biofuels Development in India, 87–133. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50219-9_5.
Full textKant, Rajni, and Keshav Kant. "Methane and Biogas." In Renewable Fuels, 218–89. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003200123-6.
Full textTurco, Maria, Angelo Ausiello, and Luca Micoli. "Fuel Cells Challenges." In Treatment of Biogas for Feeding High Temperature Fuel Cells, 77–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-03215-3_3.
Full textMerkisz, Jerzy, and Wojciech Gis. "Biogas as a Fuel for City Buses." In Lecture Notes in Electrical Engineering, 179–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33777-2_14.
Full textKatiyo, Munashe, Loice Gudukeya, Mufaro Kanganga, and Nita Sukdeo. "Techno-Economic Assessment of Biogas to Liquid Fuel Conversion via Fischer-Tropsch Synthesis: A Case Study of Biogas Generated from Municipal Sewage." In Lecture Notes in Mechanical Engineering, 729–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_82.
Full textBusch, Günter. "Biogas Technology." In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 279–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118642047.ch15.
Full textTurco, Maria, Angelo Ausiello, and Luca Micoli. "The Effect of Biogas Impurities on SOFC." In Treatment of Biogas for Feeding High Temperature Fuel Cells, 137–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-03215-3_6.
Full textLindermeir, Andreas, Ralph-Uwe Dietrich, and Jana Oelze. "SOFC-System for Highly Efficient Power Generation from Biogas." In Advances in Solid Oxide Fuel Cells IX, 11–21. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807750.ch2.
Full textConference papers on the topic "Biogas as a fuel"
Kumar, R. Senthil, S. Joyal, and M. Kuzhali. "Implementation of biogas powered fuel cell." In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). IEEE, 2017. http://dx.doi.org/10.1109/icpcsi.2017.8392283.
Full textBora, Bhaskor J., and Ujjwal K. Saha. "On the Attainment of Optimum Injection Timing of Pilot Fuel in a Dual Fuel Diesel Engine Run on Biogas." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20162.
Full textXu, Chunchuan, John W. Zondlo, Mingyang Gong, Xingbo Liu, and I. B. Celik. "Tolerance Tests of Co-Feeding Cl2 and H2S Impurities in Biogas on a Ni-YSZ Anode-Supported Solid Oxide Fuel Cell." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33100.
Full textCarl S Hansen, Conly L Hansen, and Greg Sullivan. "Using Biogas as a Fuel for Trucks." In International Symposium on Air Quality and Waste Management for Agriculture, 16-19 September 2007, Broomfield, Colorado. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23897.
Full textStafford, William, Max Mapako, Steve Szewczuk, Ryan Blanchard, and Wim Hugo. "Biogas for mobility: Feasibility of generating biogas to fuel City of Johannesburg buses." In 2017 International Conference on the Industrial and Commercial Use of Energy (ICUE). IEEE, 2017. http://dx.doi.org/10.23919/icue.2017.8068018.
Full textYadav, S. D., B. Kumar, and S. S. Thipse. "Biogas purification: Producing natural gas quality fuel from biomass for automotive applications." In 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS). IEEE, 2013. http://dx.doi.org/10.1109/iceets.2013.6533425.
Full textKukoyi, T. O., E. Muzenda, E. T. Akinlabi, A. Mashamba, C. Mbohwa, and T. Mahlatsi. "Biogas use as fuel in spark ignition engines." In 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2016. http://dx.doi.org/10.1109/ieem.2016.7798041.
Full textMissaghian, Roya, Shouvik Dev, David Stevenson, and Hongsheng Guo. "Effects of Biogas Flow Rate and Composition on Combustion and Emissions of a Small Biogas-Diesel Dual-Fuel Generator." In ASME 2022 ICE Forward Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icef2022-90487.
Full textPramuanjaroenkij, Anchasa, Amarin Tongkratoke, Siriluk Phankhoksoong, and Sadık Kakaç. "The Development of a Simple Alternative Hybrid Engine for Gasoline, LPG and Biogas." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86552.
Full textCastell, Albert, Pere Margalef, Marc Medrano, Luisa F. Cabeza, and Scott G. Samuelsen. "Economic Viability of a Molten Carbonate Fuel Cell Working With Biogas." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65259.
Full textReports on the topic "Biogas as a fuel"
Palmborg, Cecilia. Fertilization with digestate and digestate products – availability and demonstration experiments within the project Botnia nutrient recycling. Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 2022. http://dx.doi.org/10.54612/a.25rctaeopn.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2141.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2141.
Full textVijay K. Sethi. EVALUATION OF BIOMSS AND COAL SLURRIES AS FUEL-LEAN REBURN FUELS. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/895538.
Full textLouvat, Amelie. PR306-20604-R01 Emerging Fuels - RNG SOTA Gap Analysis and Future Project Roadmap. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2020. http://dx.doi.org/10.55274/r0011994.
Full textGrimes, P. Decentralized conversion of biomass to energy, fuels and electricity with fuel cells. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460268.
Full textMoser, M. A. Biogas utilization. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/530636.
Full textJeffrey J. Sweterlitsch and Robert C. Brown. FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/810443.
Full textBarnthouse, L. W., G. F. Cada, M. D. Cheng, C. E. Easterly, R. L. Kroodsma, R. Lee, D. S. Shriner, V. R. Tolbert, and R. S. Turner. Estimating externalities of biomass fuel cycles, Report 7. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/757385.
Full textBlair, William Brian. Trenton Biogas LLC. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1362262.
Full text