Academic literature on the topic 'Bioengineering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioengineering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bioengineering"
David P Tokpah, Nusret Sinan Evcan, Doga Kavaz, Victor H Sumo, William Tokpah, Ismaila Ceesay, Ovia Osahon, and Preye David Tantua. "The impact of philosophy on contemporary bioengineering." World Journal of Advanced Research and Reviews 13, no. 3 (March 30, 2022): 379–87. http://dx.doi.org/10.30574/wjarr.2022.13.3.0245.
Full textCotter, Paul D. "Bioengineering." Bioengineered 3, no. 6 (November 24, 2012): 313–19. http://dx.doi.org/10.4161/bioe.21601.
Full textBalfour, A. R. "Bioengineering." Implant Dentistry 6, no. 1 (1997): 45–46. http://dx.doi.org/10.1097/00008505-199700610-00019.
Full textAndreassi, L. "Bioengineering." Journal of the European Academy of Dermatology and Venereology 5, no. 1 (October 1995): S1. http://dx.doi.org/10.1016/0926-9959(95)95738-m.
Full textSATO, Toshinori. "Glycolipid Bioengineering." Oleoscience 1, no. 6 (2001): 627–34. http://dx.doi.org/10.5650/oleoscience.1.627.
Full textCaralt, Mireia, Enrique Velasco, Angel Lanas, and Pedro M. Baptista. "Liver bioengineering." Organogenesis 10, no. 2 (April 2014): 250–59. http://dx.doi.org/10.4161/org.29892.
Full textUriarte, Juan J., Franziska E. Uhl, Sara E. Rolandsson Enes, Robert A. Pouliot, and Daniel J. Weiss. "Lung bioengineering." Current Opinion in Organ Transplantation 23, no. 6 (December 2018): 673–78. http://dx.doi.org/10.1097/mot.0000000000000584.
Full textMethacanon, Pawadee, and John F. Kennedy. "Carbohydrate bioengineering." Carbohydrate Polymers 31, no. 4 (December 1996): 291. http://dx.doi.org/10.1016/s0144-8617(97)89835-9.
Full textWarren, Tony. "Carbohydrate bioengineering." Trends in Biotechnology 13, no. 11 (November 1995): 447–50. http://dx.doi.org/10.1016/s0167-7799(00)89000-9.
Full textPapatheofanis, Frank, and Paul Fagette. "Bioengineering history." Annals of Biomedical Engineering 25, no. 1 (January 1997): S—7. http://dx.doi.org/10.1007/bf02647347.
Full textDissertations / Theses on the topic "Bioengineering"
Al-Hassan, Reingard. "Biomaterialien - Biomedizin - Bioengineering." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1169038192157-41852.
Full textPozuelo, Ruiz Marta. "Bioengineering single-protein wires." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/462906.
Full textLa transferencia de electrones (ET) es uno de los procesos más importantes de la vida. La comprensión fundamental de los procesos de ET en biología es importante no sólo para comprender tales procesos naturales claves, sino también para avanzar en el diseño de interfaces biomolécula / electrodo para aplicaciones bioelectrónicas. En particular, se ha explotado la microscopía de efecto túnel con control electroquímico (EC-STM) para monitorizar in situ la constante de ET en función del potencial aplicado de las metaloproteínas. La Azurina de Pseudomonas aeruginosa es un modelo de proteína redox ampliamente estudiado, tanto en ‘bulk’ como a nivel de una sola proteina. Su estructura globular contiene un ion de cobre coordinado, que hace que la proteína sea capaz de intercambiar electrones cambiando su estado redox (Cu I/II). Este ion es el responsable de su rol como portador de electrones en la cadena respiratoria de las bacterias. En esta tesis, mostraremos nuestros avances en el diseño y caracterización de dispositivos de una sola proteína utilizando un modelo de metaloproteína Cu-Azurin. Hemos demostrado un comportamiento similar a un transistor en un hilo electroquímico de una sola proteína que funciona a muy bajos voltajes gracias a las propiedades redox de Cu-Azurin. Se demostró que la conductancia varía dependiendo del estado redox del centro de Cu, teniendo su valor máximo en el punto medio redox. También hemos analizado la formación espontánea de los contactos eléctricos de Azurin única a través de la corriente monitorizada cuando los dos electrodos ECSTM se colocaron a una distancia fija. Se observaron eventos discretos de conmutación para la conductancia, cuya frecuencia depende de las condiciones electroquímicas aplicadas y, por lo tanto, se atribuyeron unívocamente cambios discretos en el estado redox de la proteína atrapada. Con el fin de adaptar el comportamiento de transporte de carga de la unión uniproteica, hemos sintetizado varios mutantes de la misma proteína mediante bioingeniería en diferentes posiciones de la proteína. Nuestros resultados muestran que podemos cambiar racionalmente el mecanismo de transporte del dispositivo de una sola proteína mediante el estudio del efecto de la modificación de residuos específicos en las vías ET particular en el esqueleto de la proteína.
Bartelle, Benjamin B. "Bioengineering Novel Reporter Proteins." Thesis, New York University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3556976.
Full textVisualization of gene expression has led to a revolution in biology over the past two decades. Primarily this visualization has occurred using fluorescent proteins, like GFP, that can be directly visualized with microscopy. Fluorescence imaging is limited by depth of penetration when applied to living mice or humans however. For this, MRI, ultrasound and other modalities are under continual development for in vivo applications. Ideally, every in vivo imaging modality would have their own reporter genes, allowing for unconstrained genetic studies of structure and function. The current wealth of bioinformatics data presents a rich pallet of starting materials for bioengineering this next generation of reporter proteins.
This work utilized multiple approaches to creating reporters: cell labeling with, "Biotag" derived from a bacterial biotinylation enzyme and substrate; genetically controlled absorption of the MRI contrast agent Mn via the metal transport protein DMT1; and sequestration of Mn using the metal sensing transcription factor MntR. The reporter proteins were implemented in tissue culture and living mice to give a new view of gene expression in processes such as neural and vascular development. Moreover, the development process yielded new insights into the proteins themselves and the context in which they function. Each method has particular strengths and limitations but are, at present, the vanguard of in vivo molecular imaging.
Ip, Ling-yee Lyn, and 葉令怡. "Bioengineering and its applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B30425402.
Full textTrenner, Brian Robert. "Bioengineering for Land Stabilization." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253549875.
Full textGANAU, MARIO. "Bioengineering-enhanced neurosurgical solutions." Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266684.
Full textCrowther, Damian C. "The bioengineering of targeted serpins." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260598.
Full textBusuttil, Naudi Kurt. "Bone bioengineering for mandibular reconstruction." Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2419/.
Full textANGELATS, LOBO DAVID. "DEVELOPMENT OF ALTERNATIVE BIOENGINEERING STRATEGIES." Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/560219.
Full textConceptually, additive manufacturing allows rapid and precise manufacturing of complex parts. Additive manufacturing requires a previous design of the piece to be fabricated by computer-aided design (CAD) software. Due to the limitations of CAD software, especially on curves, some of the printed pieces require additional or post-processing treatments to achieve the desired morphology and structure. Additive manufacturing and three-dimensional (3D) printed were both previously established only in the engineering field. In the 21st century, the idea of using 3D printing technologies to develop 3D structures to support cell culture and mimic native cellular microenvironment, push forward a new field in research called Bioprinting. In bioprinting, several technologies can be used, being extrusion printing the more versatile and well established. 3D printers like the 3D-Bioplotter™ use a new method, direct bioprinting, which permits the printing of a structure integrated with cells that resembles more to the in vivo conditions. Likewise, different research areas can benefit from 3D Bioprinting, like the study of disorders or diseases such as cancer. By definition, cancer is a heterogenic disorder that causes 10 million deaths worldwide, being breast cancer the second cause of death among women in the USA and Europe. Triple-negative breast cancer (TNBC) has been described as the most aggressive subtype, but the lack of knowledge on how the tumoral process begins makes its study more interesting. Combining electrospun fibers and a triple-negative breast cancer cell line (MDA-MB-231) demonstrates the formation of tumor-like cell aggregates. It might be used in personalized medicine of cancer by selecting the best treatment for each patient in the future.
ANGELATS, LOBO DAVID. "DEVELOPMENT OF ALTERNATIVE BIOENGINEERING STRATEGIES." Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/560196.
Full textConceptually, additive manufacturing allows rapid and precise manufacturing of complex parts. Additive manufacturing requires a previous design of the piece to be fabricated by computer-aided design (CAD) software. Due to the limitations of CAD software, especially on curves, some of the printed pieces require additional or post-processing treatments to achieve the desired morphology and structure. Additive manufacturing and three-dimensional (3D) printed were both previously established only in the engineering field. In the 21st century, the idea of using 3D printing technologies to develop 3D structures to support cell culture and mimic native cellular microenvironment, push forward a new field in research called Bioprinting. In bioprinting, several technologies can be used, being extrusion printing the more versatile and well established. 3D printers like the 3D-Bioplotter™ use a new method, direct bioprinting, which permits the printing of a structure integrated with cells that resembles more to the in vivo conditions. Likewise, different research areas can benefit from 3D Bioprinting, like the study of disorders or diseases such as cancer. By definition, cancer is a heterogenic disorder that causes 10 million deaths worldwide, being breast cancer the second cause of death among women in the USA and Europe. Triple-negative breast cancer (TNBC) has been described as the most aggressive subtype, but the lack of knowledge on how the tumoral process begins makes its study more interesting. Combining electrospun fibers and a triple-negative breast cancer cell line (MDA-MB-231) demonstrates the formation of tumor-like cell aggregates. It might be used in personalized medicine of cancer by selecting the best treatment for each patient in the future.
Books on the topic "Bioengineering"
Pavlovic, Mirjana. Bioengineering. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10798-1.
Full textTeeri, Tuula T., B. Svensson, H. J. Gilbert, and T. Feizi, eds. Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550323.
Full textWang, Lawrence K., Joo-Hwa Tay, Stephen Tiong Lee Tay, and Yung-Tse Hung, eds. Environmental Bioengineering. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-031-1.
Full textVilladsen, John, ed. Fundamental Bioengineering. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527697441.
Full textYoshida, Toshiomi, ed. Applied Bioengineering. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527800599.
Full textSaterbak, Ann. Bioengineering fundamentals. Upper Saddle River, NJ: Pearson Prentice Hall, 2007.
Find full textCosta, Jorge Alberto Vieira, Brian Gregory Mitchell, and John Benemann, eds. Microalgal Bioengineering. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-61253-4.
Full textGoldsmith, Wendi, Donald Gray, and John McCullah. Bioengineering Case Studies. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7996-3.
Full textVyas, Renu, ed. Advances in Bioengineering. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2063-1.
Full textAmerican Society of Mechanical Engineers. and ASME International Mechanical Engineering Congress and Exposition (1995 : San Francisco, California), eds. Advances in Bioengineering. New York: American Society of Mechanical Engineers, 1995.
Find full textBook chapters on the topic "Bioengineering"
Brey, Philip, and Saskia Nagel. "Bioengineering." In Encyclopedia of Global Bioethics, 280–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-09483-0_43.
Full textBrey, Philip, and Saskia Nagel. "Bioengineering." In Encyclopedia of Global Bioethics, 1–12. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05544-2_43-1.
Full textItkin, Maxim, and Asaph Aharoni. "Bioengineering." In Plant-derived Natural Products, 435–73. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85498-4_20.
Full textten Have, Henk, and Maria do Céu Patrão Neves. "Bioengineering." In Dictionary of Global Bioethics, 163. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54161-3_78.
Full textEnzo, Berardesca, and Cameli Norma. "Skin Bioengineering." In Kanerva’s Occupational Dermatology, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-40221-5_88-2.
Full textPiérard, Gérald E., Philippe Paquet, Lorine Preudhomme, Fanchon Noël, and Pascale Quatresooz. "Skin Bioengineering." In Kanerva's Occupational Dermatology, 991–1001. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02035-3_88.
Full textAnitua, Eduardo, and Gorka Orive. "Bioengineering Concepts." In Implant Site Development, 419–28. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119136194.ch23.
Full textChandrasoma, Shahin, and Roger De Filippo. "Tissue Bioengineering." In New Technologies in Urology, 147–54. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-178-1_17.
Full textLinsenmeier, Robert A., and John B. Troy. "Retinal Bioengineering." In Neural Engineering, 581–637. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43395-6_21.
Full textBerardesca, Enzo, and Cameli Norma. "Skin Bioengineering." In Kanerva’s Occupational Dermatology, 1387–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68617-2_88.
Full textConference papers on the topic "Bioengineering"
"Bioengineering and Biorobotics." In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2019. http://dx.doi.org/10.1109/ukrcon.2019.8880021.
Full textValentinuzzi, M. E. "Bioengineering education in Argentina." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95229.
Full text"The bioengineering week 2012." In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2012). IEEE, 2012. http://dx.doi.org/10.1109/biorob.2012.6290957.
Full textNovikov, M. A., A. F. Bystritskaya, K. N. Eskov, V. K. Vasilyiev, A. G. Vinokhodova, and Colin Davies. "HOMEOSTAT - A Bioengineering System." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932068.
Full textPyatibratov, M. G., A. S. Syutkin, S. N. Beznosov, A. V. Galeva, and S. Yu Shchyogolev. "Bioengineering of archaeal flagella." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.203.
Full textCernova, Irina. "Bioengineering complexes for ecologization of agricultural production." In Scientific International Symposium "Plant Protection – Achievements and Perspectives". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2023. http://dx.doi.org/10.53040/ppap2023.18.
Full textKvet, Michal, Monika Vajsova, Karol Matiasko, and Marek Kvet. "Data management in bioengineering systems." In 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP). IEEE, 2015. http://dx.doi.org/10.1109/wisp.2015.7139179.
Full textWood, Sally L., and Parvati Dev. "Visualization tools for bioengineering education." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761323.
Full textWood. "Visualization Tools For Bioengineering Education." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.594665.
Full textLee, Luke. "Micro- and Nanotechnology for Bioengineering." In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.ftuj3.
Full textReports on the topic "Bioengineering"
Eddington, David, L,Richard Magin, John Hetling, and Michael Cho. Integrative Bioengineering Institute. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/945219.
Full textGuy, Richard H. Skin Bioengineering: Noninvasive Transdermal Monitoring. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada421355.
Full textAllen, Hollis H., and James R. Leech. Bioengineering for Streambank Erosion Control. Report 1 - Guidelines. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada326294.
Full textFurquim, Camila Pinheiro, Rose Yakushijin Kumagai, Willy Bustillos-Torrez, Caio Tanaka, Jonathan Meza-Mauricio, Belen Retamal-Valdes, and Jamil Shibli. Dental regeneration through bioengineering: a systematic scoping review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2021. http://dx.doi.org/10.37766/inplasy2021.2.0042.
Full textHarding, Thomas H. Contributive Research in Aviation Medicine, Bioengineering, Human Performance Analytic and Modeling Systems. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada414143.
Full textEwing, R. D. Bioengineering Evaluation of Retrofitted Oxygen Supplementation in Surface Water Project ; Final Report 2000. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/777029.
Full textWendt, Cathy J., and Hollie H. Allen. Archaeological Site and Reservoir Shoreline Stabilization Using Wetland Plants and Bioengineering, Rice Reservoir, Wisconsin. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada395586.
Full textAnderson, Olin, and Gad Galili. Development of Assay Systems for Bioengineering Proteins that Affect Dough Quality and Wheat Utilization. United States Department of Agriculture, 1994. http://dx.doi.org/10.32747/1994.7568781.bard.
Full textKidambi, Srivatsan. Bioengineering Multifunctional Quantum Dot-Polypeptide Assemblies and Immunoconjugates for the Ablation of Advanced Prostate Cancer Disease. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada502509.
Full textTabita, F. Robert. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1088853.
Full text