Academic literature on the topic 'Bioenergetic metabolism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioenergetic metabolism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bioenergetic metabolism"
Sandage, Mary J., and Audrey G. Smith. "Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology." Journal of Speech, Language, and Hearing Research 60, no. 5 (May 24, 2017): 1254–63. http://dx.doi.org/10.1044/2016_jslhr-s-16-0192.
Full textTyrrell, Daniel J., Manish S. Bharadwaj, Matthew J. Jorgensen, Thomas C. Register, Carol Shively, Rachel N. Andrews, Bryan Neth, et al. "Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/7317251.
Full textGrimm, Amandine. "Impairments in Brain Bioenergetics in Aging and Tau Pathology: A Chicken and Egg Situation?" Cells 10, no. 10 (September 24, 2021): 2531. http://dx.doi.org/10.3390/cells10102531.
Full textCha, Yong-Mei, Petras P. Dzeja, Margaret M. Redfield, Win K. Shen, and Andre Terzic. "Bioenergetic protection of failing atrial and ventricular myocardium by vasopeptidase inhibitor omapatrilat." American Journal of Physiology-Heart and Circulatory Physiology 290, no. 4 (April 2006): H1686—H1692. http://dx.doi.org/10.1152/ajpheart.00384.2005.
Full textShen, Leyao, Guoli Hu, and Courtney M. Karner. "Bioenergetic Metabolism In Osteoblast Differentiation." Current Osteoporosis Reports 20, no. 1 (February 2022): 53–64. http://dx.doi.org/10.1007/s11914-022-00721-2.
Full textKeane, Kevin N., Emily K. Calton, Vinicius F. Cruzat, Mario J. Soares, and Philip Newsholme. "The impact of cryopreservation on human peripheral blood leucocyte bioenergetics." Clinical Science 128, no. 10 (March 10, 2015): 723–33. http://dx.doi.org/10.1042/cs20140725.
Full textFan, Yang-Yi, Laurie A. Davidson, Evelyn S. Callaway, Gus A. Wright, Stephen Safe, and Robert S. Chapkin. "A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells." American Journal of Physiology-Gastrointestinal and Liver Physiology 309, no. 1 (July 1, 2015): G1—G9. http://dx.doi.org/10.1152/ajpgi.00052.2015.
Full textBettinazzi, Stefano, Liliana Milani, Pierre U. Blier, and Sophie Breton. "Bioenergetic consequences of sex-specific mitochondrial DNA evolution." Proceedings of the Royal Society B: Biological Sciences 288, no. 1957 (August 18, 2021): 20211585. http://dx.doi.org/10.1098/rspb.2021.1585.
Full textSilvestre, Isabel Barao, Raul Y. Dagda, Ruben K. Dagda, and Victor Darley-Usmar. "Mitochondrial alterations in NK lymphocytes from ME/CFS patients." Journal of Immunology 202, no. 1_Supplement (May 1, 2019): 126.39. http://dx.doi.org/10.4049/jimmunol.202.supp.126.39.
Full textHafstad, Arild. "The Mysterious Life Energy." Clinical Journal of the International Institute for Bioenergetic Analysis 28, no. 1 (February 2018): 27–43. http://dx.doi.org/10.30820/0743-4804-2018-28-27.
Full textDissertations / Theses on the topic "Bioenergetic metabolism"
PALORINI, ROBERTA. "K-ras cancer cell fate under glucose deprivation is influenced by alteration of bioenergetic metabolism." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41975.
Full textSeveral cancer cells, in order to generate ATP and sustain different anabolic processes, rely mainly on glycolysis instead of Oxidative Phosphorylation (OXPHOS). Thus, glucose assumes a critical role for cancer cell survival and proliferation. Moreover, through the penthose phospate pathway glucose leads to production of NADPH contributing to maintenance of cellular oxidative equilibrium. Besides, glucose can also enter Hexosamine Biosynthesis Pathway (HBP), sustaining lipid and protein N- and O-glycosylation that cover an important role in cancer development. Taking in consideration the essential role of glucose in cancer, one important anticancer therapeutic approach is to target its metabolism namely glycolysis and the other processes in which it is involved. On this regard, glucose deprivation and consequent analysis of cancer cell fate both at phenotypical and molecular level can be a useful strategy to unmask all mechanisms that participate to glucose-mediated cancer cell growth and survival. Such a strategy could be subsequently exploited to provide new targets and to set new anticancer therapies. Although there is evidence that tumors originate from cells with persistent defects in the mitochondrial respiratory system, inhibition of OXPHOS activity seems to be an adaptation to cancer metabolism reprogramming rather than a cause. In this scenario, reversible post-translational modifications of mitochondrial components could assume an important regulatory role. Among the most important post-translational modifications there is Ser/Thr phosphorylation and, on this regard, the protein kinase PKA has numerous mitochondrial targets being involved in the regulation of the biogenesis, the import and the activity of mitochondrial Complex I or IV as well as of mitochondrial morphology. Since it has been observed that oncogenic K-ras may lead to a depression of genes encoding for components of the cAMP/PKA signaling pathway, in K-ras-transformed cells the deregulation of cAMP/PKA pathway could cause OXPHOS depression and “glucose addiction” of cancer cells. In agreement with such a hypothesis, K-ras-transformed cells show lower PKA activity as compared to normal cells. Moreover, exogenous stimulation of PKA activity, achieved by Forskolin (FSK) treatment, protects mouse and human K-ras-transformed cells from apoptosis induced by glucose deprivation, by enhancing Complex I activity, intracellular ATP levels and mitochondrial fusion and by decreasing intracellular ROS levels. Worth noting, several of these effects are almost completely prevented by inhibition of PKA activity. Moreover, short time treatment with Mdivi-1, a molecule that favors mitochondrial fusion, strongly decreases the cellular ROS levels especially in transformed cells, indicating a close relationship between mitochondrial morphology and activity. These findings support the notion that glucose shortage-induced apoptosis, specific of K-ras-transformed cells, is associated to a derangement of PKA signaling that leads to mitochondrial Complex I decrease, reduction of ATP formation and prevalence of mitochondrial fission over fusion. Such a discovery can thereby open new approaches for the development of anticancer drugs. Given that glucose shortage is often encountered in the tumor microenvironment, it can be exploited to potentiate the action of specific agents, such as the mitochondrial OXPHOS activity modulators, that in condition of glucose deprivation could be lethal for cancer cells. Accordingly, it is shown that glucose deprivation and Complex I inhibitors, i.e., rotenone, piericidin A and capsaicin, synergize in inducing cancer cell death. In particular, low doses of Complex I inhibitors, ineffective on normal cells and on cells grown in high glucose, become specifically cytotoxic on cancer cells cultured in low glucose. Importantly, the cytotoxic effect of Complex I inhibitors is strongly enhanced when mitochondrial OXPHOS activity is stimulated by FSK. These findings demonstrate that the reactivation of the mitochondrial function associated with glucose depletion and low doses of mitochondrial Complex I inhibitors strongly affect cancer cell survival. This therapeutic approach might be valuable to eradicate cancer cells. As above indicated, glucose is implicated in numerous processes in cancer cells. Transcriptomic and proteomic analyses applied to mouse K-ras-transformed cells as compared to normal cells show that glucose deprivation modulates the expression of several genes linked to endoplasmic reticulum stress and the Unfolded Protein Response (UPR). The activation of such a response, as confirmed by mRNA and protein expression, is observed in both cell lines, but only in transformed cells is strictly associated to their death. In fact, its attenuation by protein translation inhibitor cycloheximide or chemical chaperone 4-Phenyl-butyrate specifically rescues transformed cells from death. Moreover, glucose deprivation-induced transformed cell death is also prevented by inhibition of an UPR downstream pro-apoptotic kinase, JNK, whose activation is observed specifically in transformed cells as compared to normal cells. Interestingly, UPR activation and death of transformed cells is completely prevented by addition of a specific HBP substrate, namely N-Acetyl-D-glucosamine, suggesting a strict relation between the two processes. Notably, also oncogenic K-ras expressing human glycolytic cells show similar effects after UPR modulating treatments. Thus, we show that glucose deprivation can induce an UPR-dependent transformed cell death mechanism, which is activated by harmful accumulation of unfolded proteins, probably as consequence of N-glycosylation protein reduction. The full elucidation of this response could be relevant to design new therapeutic strategies. Today the new challenge of anticancer research and therapy is the total eradication of the cancer, targeting cancer stem cells (CSCs). Considering the important role of metabolism and metabolic reprogramming in cancer development, also the definition of CSCs metabolism can be considered an important tool for future strategies targeting these cells. Recently, a human osteosarcoma 3AB-OS CSC-like line has been developed. Therefore we have decided to characterize its metabolic features as compared to the parental osteosarcoma MG63 cells, from which 3AB-OS cells were previously selected. 3AB-OS cells depend on glycolytic metabolism more strongly than MG63 cells. Indeed, addition to the growth medium of galactose and pyruvate -mitochondrial specific substrates- instead of glucose markedly reduces 3AB-OS growth, as compared to MG63 cells. In line with these findings 3AB-OS cells, compared to MG63 cells, are strongly sensitive to glucose depletion, glycolysis inhibition and less sensitive to respiratory inhibitors. Additionally, in contrast to MG63 cells, 3AB-OS display mainly fragmented mitochondria, particularly in low glucose. Overall, these findings suggest that 3AB-OS energy metabolism is more similar either to normal stem cells or to cancer cells characterized by a glycolytic metabolism. Interestingly, the transcriptional profile of CSCs is similar to that of K-ras-transformed cells, confirming a possible similarity to glycolytic cancer cells. Therefore, some strategies developed for glucose addicted cancer cells could be used also to treat specific CSCs.
Hamraz, Minoo. "Bioenergetic consequences of the hyperosmotic shock." Thesis, Sorbonne Paris Cité, 2019. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2332&f=17549.
Full textMetabolic alterations associated with inflammation include increased recruitment of glycolysis (lactate release) and repression of mitochondrial oxidative phosphorylation. Inflammation causes hyperosmolar conditions in the extracellular medium. This thesis examines the consequences of hyperosmolarity on cellular bioenergetics. For this purpose we measured the cellular oxygen consumption rate (OCR) and proton production rate (PPR) for lactate release in the external medium. Two methodologies were used the high-resolution respirometer (O2k Oroboros Instruments) for OCR and the extracellular flux analyzer (Seahorse, Agilent) for OCR and PPR. The exposure cells to hypertonic conditions (600 milliOsmoles while normal value is 300) causes within few minutes a decrease in OCR (cellular respiration) that lasts for hours (indefinitely) and in the long term impact on cellular viability. This effect was observed with four different cell lines CHO (ovarian epithelial), HT29 (colonocytes), HEK293 (Embryonic kidney) and SH-SY5Y (Neuroblastoma). It was shown to be caused by three different osmolytes: Mannitol, polyethylene glycol, sodium chloride. A milder osmotic challenge (450 mOsm) caused a similar initial decrease but with restoration of initial OCR within few hours. The mechanisms underlying this effect have been investigated, hyperosmolarity impacts on mitochondrial respiration at different steps. A first effect is the inhibition of the mitochondrial ATP production step. In presence of glucose this is accompanied by a large increase in glycolysis (lactate release) that causes further mitochondrial inhibition by a second mechanism, which is likely to represent an enhancement of the Crabtree effect (inhibition of respiration by glycolysis) that impacts on respiratory complexes. In absence of glucose the cellular ATP turnover is seriously repressed surprisingly cellular survival is rather improved. These results raise therefore the question of the possible contribution of the hyperosmotic conditions caused by inflammation in the acquisition of the inflammatory metabolic profile
Bloch, Katarzyna. "Structural and bioenergetic changes in tumour spheroids during growth." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:1d7b8669-b62a-4554-bb66-157f54e3ded2.
Full textRomeu, Montenegro Karina. "The impact of Vitamin D on Muscle Metabolism, Bioenergetic Responses and Exercise Performance." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/82588.
Full textLindgård, Ann. "Improved bioenergetic recovery during experimental ischemia and reperfusion by irradiation /." Göteborg : Göteborg University, Bioenergetics Group, Department of Surgery, Wallenberg Laboratory & Lundberg Laboratory for Bioanalysis, Sahlgrenska Academy, Göteborg University, 2007. http://hdl.handle.net/2077/7505.
Full textDarvesh, Altaf Sultan. "Studies on the 3,4-methylenedioxymethamphetamine (MDMA)-induced dysregulation of energy metabolism and its neurochemical consequences." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1115150433.
Full textBizerra, Paulo Francisco Veiga. "Mecanismos de toxicidade do inseticida imidacloprido no fígado de rato." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/153014.
Full textApproved for entry into archive by Fabio Sampaio Rosas null (fabio@dracena.unesp.br) on 2018-03-14T11:58:06Z (GMT) No. of bitstreams: 1 bizerra_pfv_me_dra.pdf: 2018178 bytes, checksum: a64e6835d0947709c560109bd815c3e7 (MD5)
Made available in DSpace on 2018-03-14T11:58:06Z (GMT). No. of bitstreams: 1 bizerra_pfv_me_dra.pdf: 2018178 bytes, checksum: a64e6835d0947709c560109bd815c3e7 (MD5) Previous issue date: 2018-02-16
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O imidacloprido (IMD) é um inseticida neonicotinóide largamente utilizado em diversas culturas agrícolas e em animais para o controle de pragas. O IMD é rapidamente absorvido pelo trato gastrointestinal e por contato, sendo rápida e uniformemente distribuído nos órgãos e tecidos. Dados da literatura mostram que as concentrações mais elevadas foram observadas nos órgãos de eliminação: fígado e rins. O fígado é o principal órgão envolvido na biotransformação de substâncias exógenas (xenobióticos), convertendo compostos hidrofóbicos em hidrossolúveis, mais facilmente eliminados pelo organismo. Vários estudos vêm sendo conduzidos sobre os efeitos tóxicos do IMD em animais, causando danos ao fígado. Nesse sentido, o objetivo desse estudo foi avaliar os mecanismos envolvidos na toxicidade do IMD sobre a bioenergética de mitocôndrias e hepatócitos isolados de rato e ações do IMD sobre o metabolismo de carboidratos e proteínas em fígado de rato em perfusão. Em mitocôndrias isoladas, o IMD promoveu uma diminuição dose-dependente no estado 3 da respiração e na produção de ATP, sem afetar o potencial de membrana mitocondrial. Experimentos subsequentes medindo o consumo de oxigênio mostraram que o IMD não afeta a cadeia respiratória e que seu efeito é semelhante ao da oligomicina (inibidora da FoF1-ATP sintase) e/ou ao do atractilosídeo (inibidor do translocador de nucleotídeos de adenina, ANT). IMD inibiu a atividade da FoF1-ATP sintase em mitocôndrias rompidas e inibiu parcialmente a despolarização do potencial de membrana induzida pelo ADP. Esses resultados indicam que o IMD afeta a bioenergética mitocondrial por meio da inibição da FoF1-ATP sintase. Em Experimentos com hepatócitos isolados de rato os resultados da respiração foram semelhantes aos encontrados nas mitocôndrias isoladas, porém o IMD afetou a produção intracelular de ATP e induziu a morte celular somente nos hepatócitos isolados de ratos previamente tratados com dexametasona, um ativador do citocromo P450. No fígado de rato em perfusão o IMD também inibiu a produção de glicose por meio da gliconeogênese. Esses resultados sugerem que a toxicidade do IMD pode estar associada a alterações no metabolismo energético celular sendo a enzima FoF1-ATP sintase o principal alvo da ação tóxica deste inseticida, e que os metabólitos formados na biotransformação do IMD podem ser mais tóxicos do que o próprio IMD.
Imidacloprid (IMD) is a neonicotinoid insecticide widely used in various crops and animals for pest control. IMD is rapidly absorbed by the gastrointestinal tract, being rapidly and evenly distributed in the organs and tissues. The highest concentrations were observed in the elimination organs: liver and kidneys. The liver is the main organ involved in the biotransformation of exogenous substances (xenobiotics), with the capacity to convert hydrophobic compounds into water soluble metabolites, which are more easily eliminated by the organism. Studies have been conducted on the toxic effects of IMD on animals, causing damage to the liver. In this sense, the objective of this study was to evaluate the mechanisms involved in the toxicity of IMD on the bioenergetics of mitochondria and isolated hepatocytes of rats and its actions on the metabolism of carbohydrates and proteins in liver of rats in perfusion. In isolated mitochondria, IMD promoted a dose-dependent decrease in the state 3 of mitochondrial respiration and ATP levels, without affecting mitochondrial membrane potential. Subsequent experiments measuring oxygen consumption have shown that IMD does not affect the electron transport chain and that its effect is similar to that of oligomycin (FoF1-ATP synthase inhibitor) and/or atracytoside (ANT adenine nucleotide translocator inhibitor). In the perfusion rat liver IMD inhibited the activity of FoF1-ATP synthase in freeze/thaw-disrupted mitochondria and partially inhibited the depolarization of the membrane potential induced by ADP. These results indicate that IMD affects in mitochondrial bioenergetics by inhibiting FoF1-ATP synthase. In experiments with isolated hepatocytes respiration results were similar to those found in isolated mitochondria, but IMD affected the intracellular production of ATP and induced cell death only in hepatocytes isolated from rats previously treated with dexamethasone, a cytochrome P450 activator. IMD also inhibited the production of glucose by gluconeogenesis. These results suggest that IMD toxicity may be associated with changes in cellular energy metabolism with the enzyme FoF1-ATP synthase being the main target of the toxic action of this insecticide, and that the metabolites formed in the biotransformation of the IMD may be more toxic than the IMD itself.
FAPESP: 2015/19549-8
Li, Zhaoqi Ph D. Massachusetts Institute of Technology. "Bioenergetics and metabolism of eukaryotic cell proliferation." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130658.
Full textCataloged from the official PDF of thesis. "February 2021." Vita. Page 179 blank.
Includes bibliographical references.
Cellular growth and proliferation necessitates the transformation of cell-external nutrients into biomass. Strategies of biomass accumulation across the kingdoms of life are diverse and range from carbon fixation by autotrophic organisms to direct biomass incorporation of consumed nutrients by heterotrophic organisms. The goal of this dissertation is to better understand the divergent and convergent modes of metabolism that support biomass accumulation and proliferation in eukaryotic cells. We first determined that the underlying mechanism behind why rapidly proliferating cells preferentially ferment the terminal glycolytic product pyruvate is due to an intrinsic deficiency of respiration to regenerate electron acceptors. We tested this model across an assorted array of proliferating cells and organisms ranging from human cancer cells to the baker's yeast Saccharomyces cerevesiae. We next determined that a major metabolic pathway of avid electron acceptor consumption in the context of biomass accumulation is the synthesis of lipids. Insights from this work has led to the realization that net-reductive pathways such as lipid synthesis may be rate-limited by oxidative reactions. Lastly, we established the green algae Chlorella vulgaris as a model system to study the comparative metabolism of photoautotrophic and heterotrophic growth. We determined that heterotrophic growth of plant cells is associated with aerobic glycolysis in a mechanism that may be suppressed by light. Collectively, these studies contribute to a more holistic understanding of the bioenergetics and metabolic pathways employed by eukaryotic cells to accumulate biomass and lay the foundation for future studies to understand proliferative metabolism.
by Zhaoqi Li.
Ph. D. in Biochemistry
Ph.D.inBiochemistry Massachusetts Institute of Technology, Department of Biology
Cufí, González Sílvia. "Bioenergetics mechanism and autophagy in breast cancer stem cells." Doctoral thesis, Universitat de Girona, 2015. http://hdl.handle.net/10803/295461.
Full textThis is the first report demonstrating that autophagy is mechanistically linked to the maintenance of tumor cells expressing high levels of CD44 and low levels of CD24, which are typical of breast cancer stem cells. Our current findings provide new insight into how mitochondrial division is integrated into the reprogramming of the factors-driven transcriptional network that specifies the unique pluripotency of stem cells. Autophagy may control the de novo refractoriness of HER2 gene-amplified breast carcinomas to the monoclonal antibody trastuzumab (Herceptin). Accordingly, treatment with trastuzumab and chloroquine, as antimalarial drug and inhibitor of autophagy, radically suppresses tumor growth in a tumor xenograft completely refractory to trastuzumab in a mouse model. Adding chloroquine to trastuzumab-based regimens may therefore improve outcomes among women with autophagy-addicted HER2-positive breast cancer. This is a very exciting and highly promising area of cancer research, as pharmacologic modulation of autophagy appears to augment the efficacy of currently available anticancer regimens and opens the way to the development of new combinatorial therapeutic strategies that will hopefully contribute to cancer eradication.
Vidimce, Josif. "Impact of Hyperbilirubinaemia on Cholesterol Metabolism and Bioenergetics." Thesis, Griffith University, 2020. http://hdl.handle.net/10072/394687.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Books on the topic "Bioenergetic metabolism"
Berkin, Jeffrey W. Bioenergetics. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textSkulachev, V. P. Principles of bioenergetics. Heidelberg: Springer, 2013.
Find full textGarby, Lars. Bioenergetics: Its thermodynamic foundations. Cambridge: Cambridge University Press, 1995.
Find full text1943-, Gräber Peter, and Milazzo Giulio, eds. Bioenergetics. Basel: Birkhäuser, 1997.
Find full textMembrane bioenergetics. Berlin: Springer-Verlag, 1988.
Find full textHarris, D. A. Bioenergetics at a glance. Oxford, Eng: Blackwell Science, 1995.
Find full textKang, Jie. Bioenergetics primer for exercise science. Champaign, IL: Human Kinetics, 2008.
Find full textA, Saks V., ed. Bioenergetics of the cell: Quantitative aspects. Dordrecht: Kluwer Academic Publishers, 1998.
Find full textS, Papa, Guerrieri Ferruccio, and Tager J. M, eds. Frontiers of cellular bioenergetics: Molecular biology, biochemistry, and physiopathology. New York: Kluwer Academic/Plenum Press, 1999.
Find full textMitochondrial bioenergetics: Methods and protocols. New York: Humana Press, 2012.
Find full textBook chapters on the topic "Bioenergetic metabolism"
Obre, Emilie, and Rodrigue Rossignol. "Metabolic Remodeling in Bioenergetic Disorders and Cancer." In Tumor Cell Metabolism, 3–22. Vienna: Springer Vienna, 2015. http://dx.doi.org/10.1007/978-3-7091-1824-5_1.
Full textDas, Debashree. "Measuring Metabolism and Bioenergetic Profiles of Biofilm: Isothermal Calorimetry, Differential Scanning Calorimetry, and Future of Chip Calorimetry." In Springer Protocols Handbooks, 155–80. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1378-8_7.
Full textOrii, Yutaka. "Cytochrome Oxidase and Peroxide Metabolism." In Bioenergetics, 171–80. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5835-0_16.
Full textScott, Christopher B. "Introduction: Thermodynamics, Bioenergetics, Metabolism." In A Primer for the Exercise and Nutrition Sciences, 1–3. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-383-1_1.
Full textCorona, Juan Carlos, and Michael R. Duchen. "Mitochondrial Bioenergetics Assessed by Functional Fluorescence Dyes." In Brain Energy Metabolism, 161–76. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1059-5_7.
Full textPaul, Richard J., Ronald M. Lynch, and Joseph M. Krisanda. "Vascular Metabolism and Energetics." In Myocardial and Skeletal Muscle Bioenergetics, 375–87. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5107-8_28.
Full textBass, Joseph. "Circadian Mechanisms in Bioenergetics and Cell Metabolism." In Research and Perspectives in Endocrine Interactions, 25–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27069-2_3.
Full textTeodoro, João Soeiro, Carlos Marques Palmeira, and Anabela Pinto Rolo. "Mitochondrial Membrane Potential (ΔΨ) Fluctuations Associated with the Metabolic States of Mitochondria." In Mitochondrial Bioenergetics, 109–19. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7831-1_6.
Full textPalmeira, Carlos M., and Anabela P. Rolo. "Mitochondrial Membrane Potential (ΔΨ) Fluctuations Associated with the Metabolic States of Mitochondria." In Mitochondrial Bioenergetics, 89–101. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-382-0_6.
Full textWilson, David F., and Maria Erecińska. "The Oxygen Dependence of Cellular Energy Metabolism." In Myocardial and Skeletal Muscle Bioenergetics, 229–39. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5107-8_17.
Full textConference papers on the topic "Bioenergetic metabolism"
Mendonça, Bárbara Gazolla de, Lara Lopardi de Souza Leite, Carolina Falconi Amorim, Flávio Welinton Martins Cruz, and Gustavo Cosendey Portes. "The relation between the menopause transition with higher rates of Alzheimer in the female gender: a literature review." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.577.
Full textHenchey, Elizabeth M., Sallie S. Schneider, D. Joseph Jerry, and Nagendra Yadava. "Abstract A28: Bioenergetic analysis of primary human mammary epithelial cells (hMECs)." In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-a28.
Full textDaurio, Natalie A., Stephen Tuttle, and Constantinos Koumenis. "Abstract 5510: Tamoxifen induces estrogen receptor-independent bioenergetic stress: A synthetic lethality approach to target tumor metabolism." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-5510.
Full textBeloueche-Babari, Mounia, Teresa Casals Galobart, Slawomir Wantuch, Paul D. Smith, and Martin O. Leach. "Abstract 444: Monocarboxylate transporter 1 inhibition with AZD3965 increases cancer cell dependence on bioenergetic metabolism predicating combination therapy with mitochondrial inhibitors." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-444.
Full textCook, Melissa, Penny L. Morrill, Shino Suzuki, and Jennifer G. Blank. "Geochemical Bioenergetics and Microbial Metabolisms at Three Contrasting Sites of Serpentinization." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.473.
Full textRitterbush, Kathleen A. "BIOENERGETICS OF EARLIEST JURASSIC MARINE ECOSYSTEMS: SLOW METABOLISMS, SLOW CARBON CYCLING." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-324153.
Full textRitterbush, Kathleen A. "BIOENERGETICS OF EARLY TRIASSIC PELAGIC ECOSYSTEMS: FAST METABOLISMS, FAST CARBON CYCLING." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-324119.
Full textFan, Yongjun, Kathleen G. Dickman, and Wei‐Xing Zong. "Abstract B96: Akt and c‐Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-b96.
Full textSoares, Carolina, Débora G. Souza, Andreia Silva da Rocha, Luiza Machado, Bruna Bellaver, and Eduardo R. Zimmer. "BRAIN ENERGETICS EVALUATION IN EARLY STAGES OF AMYLOID PATHOLOGY IN A RAT MODEL OF ALZHEIMER’S DISEASE." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda086.
Full textYau, Christina, Rachel Puckett, Akos A. Gerencser, Martin D. Brand, and Christopher C. Benz. "Abstract 3797: Wildtype p53 upregulation induces contrasting bioenergetic and metabolic responses in malignant and non-malignant mammary epithelial cells." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3797.
Full text