Journal articles on the topic 'Biodegradable'

To see the other types of publications on this topic, follow the link: Biodegradable.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Biodegradable.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Contreras Ramírez, Jesús Miguel, Dimas Alejandro Medina, and Meribary Monsalve. "Poliésteres como Biomateriales. Una Revisión." Revista Bases de la Ciencia. e-ISSN 2588-0764 6, no. 2 (August 30, 2021): 113. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.3156.

Full text
Abstract:
Los materiales biodegradables se utilizan en envases, agricultura, medicina y otras áreas. Para proporcionar resultados eficientes, cada una de estas aplicaciones demanda materiales con propiedades físicas, químicas, biológicas, biomecánicas y de degradación específicas. Dado que, durante el proceso de síntesis de los poliésteres todas estas propiedades pueden ser ajustadas, estos polímeros representan excelentes candidatos como materiales sintéticos biodegradables y bioabsorbibles para todas estas aplicaciones. La siguiente revisión presenta una visión general de los diferentes poliésteres biodegradables que se están utilizando actualmente y sus propiedades, así como nuevos desarrollos en su síntesis y aplicaciones. Palabra clave: biomateriales, polímeros biodegradables, poliésteres, policarbonatos, biopolímeros. Abstract Biodegradable materials are used in packaging, agriculture, medicine, and many other areas. These applications demand materials with specific physical, chemical, biological, biomechanical, and degradation properties to provide efficient results. Since all these properties can be adjusted during the polyesters synthesis process, these polymers represent excellent candidates as biodegradable and bio-absorbable synthetic materials for all these applications. Here, in this review is presented an overview of the different biodegradable polyesters currently used, their properties, and new developments in their synthesis and applications. Keywords: biomaterials, biodegradable polymers, polyesters, polycarbonates, biopolymers.
APA, Harvard, Vancouver, ISO, and other styles
2

García-Estrada, Paulina, Miguel A. García-Bon, Edgar J. López-Naranjo, Dulce N. Basaldúa-Pérez, Arturo Santos, and Jose Navarro-Partida. "Polymeric Implants for the Treatment of Intraocular Eye Diseases: Trends in Biodegradable and Non-Biodegradable Materials." Pharmaceutics 13, no. 5 (May 12, 2021): 701. http://dx.doi.org/10.3390/pharmaceutics13050701.

Full text
Abstract:
Intraocular/Intravitreal implants constitute a relatively new method to treat eye diseases successfully due to the possibility of releasing drugs in a controlled and prolonged way. This particularity has made this kind of method preferred over other methods such as intravitreal injections or eye drops. However, there are some risks and complications associated with the use of eye implants, the body response being the most important. Therefore, material selection is a crucial factor to be considered for patient care since implant acceptance is closely related to the physical and chemical properties of the material from which the device is made. In this regard, there are two major categories of materials used in the development of eye implants: non-biodegradables and biodegradables. Although non-biodegradable implants are able to work as drug reservoirs, their surgical requirements make them uncomfortable and invasive for the patient and may put the eyeball at risk. Therefore, it would be expected that the human body responds better when treated with biodegradable implants due to their inherent nature and fewer surgical concerns. Thus, this review provides a summary and discussion of the most common non-biodegradable and biodegradable materials employed for the development of experimental and commercially available ocular delivery implants.
APA, Harvard, Vancouver, ISO, and other styles
3

Irawan, Andre Anantama, and Rizqi Puteri Mahyudin. "PENGOLAHAN DAN OPTIMALISASI BIOPLASTIK BERBAHAN DASAR PATI SINGKONG." Dampak 18, no. 1 (January 31, 2021): 7. http://dx.doi.org/10.25077/dampak.18.1.7-10.2021.

Full text
Abstract:
Biodegradable plastic is a type of plastic that can be broken down by microorganisms into water and carbon dioxide gas as its final products after it has been used and disposed of in the environment, without leaving behind any toxic residue. Due to its ability to return to nature, biodegradable plastic is considered an environmentally friendly material. Cassava peel, obtained from cassava plant products (Manihot Esculenta Cranz), is a major food waste in developing countries. As the cassava cultivation area expands, it is expected that the production of cassava tubers will increase, resulting in a higher amount of cassava peel waste. Typically, every kilogram of cassava can produce approximately 20% cassava peel waste. The relatively high starch content in cassava peel makes it suitable for the production of biodegradable plastic films.Keywords: Bioplastic, Biodegradable, Cassava Starch, Biotechnology. ABSTRAK Plastik biodegradabel adalah plastik yang dapat terurai oleh aktivitas mikroorganisme menjadi hasil akhir berupa air dan gas karbondioksida, setelah habis terpakai dan dibuang ke lingkungan tanpa meninggalkan sisa yang beracun. Karena sifatnya yang dapat kembali ke alam, plastik biodegradabel merupakanbahan plastik yang ramah terhadap lingkungan. Kulit umbi singkong yang diperoleh dari produk tanaman singkong (Manihot Esculenta Cranz) merupakan limbah utama pangan di negara-negaraberkembang. Semakin luas areal tanaman singkong diharapkan produksi umbi yang dihasilkan semakin tinggi yang pada gilirannya semakin tinggi pula limbah kulit yang dihasilkan. Setiap kilogram singkong biasanya dapat menghasilkan 20% kulit umbi. Kandungan pati kulit singkong yang cukup tinggi, memungkinkan digunakan sebagai pembuatan film plastik biodegradasi. Kata kunci: Bioplastik, Biodegradabel, Pati Singkong, Bioteknologi
APA, Harvard, Vancouver, ISO, and other styles
4

López Bermúdez, Andrés Felipe, Osbaldo Arnulfo Fino Medina, and Laura Andrea Blanco Gómez. "Obtención y extracción de almidón de Manihot Esculenta Crantz para sintetizar polímeros biodegradables, ayudando a disminuir la contaminación de plásticos en Bucaramanga, Santander." FitoVida 2, no. 2 (December 20, 2023): 57–63. http://dx.doi.org/10.56275/fitovida.v2i2.29.

Full text
Abstract:
La contaminación es uno de los mayores problemas de hoy en día, tiene un riesgo ambiental y social para todos los países del mundo, es mayormente constituida por los residuos no biodegradables, como lo es el plástico. Por lo tanto, se buscó una forma de remplazar este residuo por uno que fuera biodegradable y que no hiciera daño al ambiente. El objetivo de nuestro proyecto fue la obtención y extracción de almidón de yuca para sintetizar polímeros biodegradables, para ayudar a disminuir la contaminación de plásticos en Bucaramanga Santander. Y Los pasos que se realizaron para lograr este objetivo fueron los siguientes: extracción de almidón de yuca por método casero, realizar procesos de síntesis sobre el almidón para poder transformarlo en un polímero, por último, la ejecución de pruebas sobre el polímero. Se obtuvo de este proyecto una masa de apariencia lisa y marrón la cual era la muestra del polímero de almidón de yuca con un porcentaje 80/20 de almidón y glicerol. Este proyecto ha podido aportar diferentes maneras de sintetizar el polímero biodegradable a base de almidón de yuca para la creación del plástico biodegradable.
APA, Harvard, Vancouver, ISO, and other styles
5

Simarmata, Robinson Tua B., Vonny Setiaries Johan, Yossie Kharisma Dewi, Imelda Yunita, and Mhd Andry Kurniawan. "Pembuatan Plastik Biodegradable Berbahan Dasar Pati Bonggol Pisang dengan Selulosa Jerami Padi." JURNAL AGROINDUSTRI HALAL 10, no. 1 (April 30, 2024): 23–32. http://dx.doi.org/10.30997/jah.v10i1.8267.

Full text
Abstract:
Penelitian dilaksanakan untuk mengetahui karakteristik dari plastik biodegradable berbahan dasar pati bonggol pisang dengan selulosa jerami. Penelitian dilakukan dengan metode Rancangan Acak Lengkap (RAL) dengan 4 perlakuan dan 4 ulangan. Pada penelitian ini melakukan penambahan selulosa jerami dengan perbandingan pati dan selulosa 1:0; 1:0,5 ; 1:1 dan 1:1,5. Pengujian dilakukan terhadap kuat tarik, perpanjangan putus, biodegradasi, pengembangan dan laju transmisi uap air. Data dianalisis secara statistik dengan menggunakan analysis of variance (ANOVA). Penambahan selulosa jerami berpengaruh terhadap pembuatan plastik biodegradable. Hasilnya adalah plastik biodegradable meningkatkan kekuatan tarik, mengurangi perpanjangan putus, meningkatkan biodegradasi dan hambatan udara, mengurangi laju transmisi uap air. Plastik biodegradabel dengan perlakuan terbaik adalah rasio perbandingan pati pati 1 : 1,5 selulosa. Plastik biodegrabable hasil terbaik memiliki nilai kekuatan tarik 9,56 MPa, perpanjangan 6,8%, biodegradasi lengkap pada hari ke 6, pembengkakan 41,51% dan WVTR 0,0156%.
APA, Harvard, Vancouver, ISO, and other styles
6

Arrieta, Marina Patricia, Santiago Ferrándiz, Juan López Martínez, and Emilio Rayón Encinas. "Correlación entre las propiedades macro, micro y nanomecánicas en polímeros termoplásticos biodegradables." Modelling in Science Education and Learning 9, no. 2 (July 24, 2016): 25. http://dx.doi.org/10.4995/msel.2016.4581.

Full text
Abstract:
<p>En el presente trabajo se presenta el estudio de las propiedades mecánicas de un polímero biodegradable, poli(ácido láctico) (PLA), y sus variaciones debido a la adición de un 25 wt% de otro polímero biodegradable, poli(hidroxibutirato) (PHB). La muestra de PLA y la mezcla de PLA-PHB (75:25) fueron caracterizadas mecánicamente mediante ensayos de tracción, microdureza y nanoindentación con la finalidad de proporcionar un enfoque global de las propiedades mecánicas de estos materiales para facilitar a los estudiantes la comprensión de las propiedades mecánicas de los polímeros biodegradables.<strong></strong></p>
APA, Harvard, Vancouver, ISO, and other styles
7

Maqsood, Muhammad, and Gunnar Seide. "Biodegradable Flame Retardants for Biodegradable Polymer." Biomolecules 10, no. 7 (July 11, 2020): 1038. http://dx.doi.org/10.3390/biom10071038.

Full text
Abstract:
To improve sustainability of polymers and to reduce carbon footprint, polymers from renewable resources are given significant attention due to the developing concern over environmental protection. The renewable materials are progressively used in many technical applications instead of short-term-use products. However, among other applications, the flame retardancy of such polymers needs to be improved for technical applications due to potential fire risk and their involvement in our daily life. To overcome this potential risk, various flame retardants (FRs) compounds based on conventional and non-conventional approaches such as inorganic FRs, nitrogen-based FRs, halogenated FRs and nanofillers were synthesized. However, most of the conventional FRs are non-biodegradable and if disposed in the landfill, microorganisms in the soil or water cannot degrade them. Hence, they remain in the environment for long time and may find their way not only in the food chain but can also easily attach to any airborne particle and can travel distances and may end up in freshwater, food products, ecosystems, or even can be inhaled if they are present in the air. Furthermore, it is not a good choice to use non-biodegradable FRs in biodegradable polymers such as polylactic acid (PLA). Therefore, the goal of this review paper is to promote the use of biodegradable and bio-based compounds for flame retardants used in polymeric materials.
APA, Harvard, Vancouver, ISO, and other styles
8

Diaz-Diaz, Elmer, Celestino Cabrera-Guevara, Yorly Diaz-Idrogo, Julio Santiago Chumacero-Acosta, and Pedro Wilfredo Gamboa-Alarcon. "Bandejas biodegradables de almidón de papa con fibra de tocón de espárrago (Asparagus officinalis L.)." Revista Agrotecnológica Amazónica 3, no. 1 (January 20, 2023): e429. http://dx.doi.org/10.51252/raa.v3i1.429.

Full text
Abstract:
Los envases biodegradables a base de almidón son una alternativa para disminuir la fracción de residuos sólidos urbanos originados por el uso de bandejas de poliestireno expandido, generalmente difíciles de biodegradarse. En el presente trabajo se ha investigado la obtención de una bandeja biodegradable de almidón de papa (A), fibra de tocones de espárrago (F) y glicerina (G), en un proceso de termoformado con presión de 24 bar a 150 °C por un tiempo de 20 minutos. Se empleó el Diseño de Mezclas Simplex Centroide para determinar las cantidades de los componentes en cada tratamiento. Las bandejas fueron caracterizadas mediante pruebas físicas (espesor y densidad) y pruebas mecánicas (fracturabilidad, dureza, resistencia a la tracción y porcentaje de elongación). Finalmente, mediante el uso de la función deseabilidad, se determinó que la mezcla óptima para la obtención de bandejas biodegradables fue la relación F/A de 85/6,89 y % G de 13,11%, que maximizó los valores de dureza (19,19 kg), fracturabilidad (9,09 mm), resistencia a la tracción (0,133 MPa) y porcentaje de elongación (2,998 mm).
APA, Harvard, Vancouver, ISO, and other styles
9

Battersby, N. S. "Biodegradable Lubricants: What Does ‘Biodegradable’ Really Mean?" Journal of Synthetic Lubrication 22, no. 1 (April 2005): 3–18. http://dx.doi.org/10.1002/jsl.2005.22.1.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Samper, María, David Bertomeu, Marina Arrieta, José Ferri, and Juan López-Martínez. "Interference of Biodegradable Plastics in the Polypropylene Recycling Process." Materials 11, no. 10 (October 2, 2018): 1886. http://dx.doi.org/10.3390/ma11101886.

Full text
Abstract:
Recycling polymers is common due to the need to reduce the environmental impact of these materials. Polypropylene (PP) is one of the polymers called ‘commodities polymers’ and it is commonly used in a wide variety of short-term applications such as food packaging and agricultural products. That is why a large amount of PP residues that can be recycled are generated every year. However, the current increasing introduction of biodegradable polymers in the food packaging industry can negatively affect the properties of recycled PP if those kinds of plastics are disposed with traditional plastics. For this reason, the influence that generates small amounts of biodegradable polymers such as polylactic acid (PLA), polyhydroxybutyrate (PHB) and thermoplastic starch (TPS) in the recycled PP were analyzed in this work. Thus, recycled PP was blended with biodegradables polymers by melt extrusion followed by injection moulding process to simulate the industrial conditions. Then, the obtained materials were evaluated by studding the changes on the thermal and mechanical performance. The results revealed that the vicat softening temperature is negatively affected by the presence of biodegradable polymers in recycled PP. Meanwhile, the melt flow index was negatively affected for PLA and PHB added blends. The mechanical properties were affected when more than 5 wt.% of biodegradable polymers were present. Moreover, structural changes were detected when biodegradable polymers were added to the recycled PP by means of FTIR, because of the characteristic bands of the carbonyl group (between the band 1700–1800 cm−1) appeared due to the presence of PLA, PHB or TPS. Thus, low amounts (lower than 5 wt.%) of biodegradable polymers can be introduced in the recycled PP process without affecting the overall performance of the final material intended for several applications, such as food packaging, agricultural films for farming and crop protection.
APA, Harvard, Vancouver, ISO, and other styles
11

I.R, Jack. "Biodegradable Plastic from Renewable Source." International journal of Emerging Trends in Science and Technology 04, no. 06 (June 26, 2017): 5293–300. http://dx.doi.org/10.18535/ijetst/v4i6.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

NISHIYAMA, Masashi. "Biodegradable plastics." Journal of the Japan Society for Precision Engineering 56, no. 4 (1990): 639–42. http://dx.doi.org/10.2493/jjspe.56.639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kwon, Doo Yeon, Jae Il Kim, Da Yeon Kim, Hwi Ju Kang, Bong Lee, Kang Woo Lee, and Moon Suk Kim. "Biodegradable stent." Journal of Biomedical Science and Engineering 05, no. 04 (2012): 208–16. http://dx.doi.org/10.4236/jbise.2012.54028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Aghion, Eli. "Biodegradable Metals." Metals 8, no. 10 (October 8, 2018): 804. http://dx.doi.org/10.3390/met8100804.

Full text
Abstract:
Over the last two decades, significant scientific efforts have been devoted to developingbiodegradable metal implants for orthopedic and cardiovascular applications, mainly due to theirimproved mechanical properties compared to those of biodegradable polymers [...]
APA, Harvard, Vancouver, ISO, and other styles
15

Soni, Sandeep, Himanshu Gupta, Neeraj Kumar, Dhruv Nishad, Gaurav Mittal, and Aseem Bhatnagar. "Biodegradable Biomaterials." Recent Patents on Biomedical Engineeringe 3, no. 1 (January 1, 2010): 30–40. http://dx.doi.org/10.2174/1874764711003010030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Feng, Yakai, and Jintang Guo. "Biodegradable Polydepsipeptides." International Journal of Molecular Sciences 10, no. 2 (February 13, 2009): 589–615. http://dx.doi.org/10.3390/ijms10020589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Vroman, Isabelle, and Lan Tighzert. "Biodegradable Polymers." Materials 2, no. 2 (April 1, 2009): 307–44. http://dx.doi.org/10.3390/ma2020307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Conti, C. Richard. "Biodegradable Stents." Cardiovascular Innovations and Applications 1, no. 3 (May 1, 2016): 365–66. http://dx.doi.org/10.15212/cvia.2016.0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Colombo, Antonio, and Evangelia Karvouni. "Biodegradable Stents." Circulation 102, no. 4 (July 25, 2000): 371–73. http://dx.doi.org/10.1161/01.cir.102.4.371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Miyata, Yoshiaki. "Biodegradable Plastics." Journal of the agricultural chemical society of Japan 68, no. 9 (1994): 1318–20. http://dx.doi.org/10.1271/nogeikagaku1924.68.1318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Meng, Fenghua, Christine Hiemstra, Gerard H. M. Engbers, and Jan Feijen. "Biodegradable Polymersomes." Macromolecules 36, no. 9 (May 2003): 3004–6. http://dx.doi.org/10.1021/ma034040+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dicken, T. W. "Biodegradable greases." Industrial Lubrication and Tribology 46, no. 3 (June 1994): 3–6. http://dx.doi.org/10.1108/00368799410781089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

MOCHIZUKI, MASATSUGU. "Biodegradable Nonwovens." Sen'i Gakkaishi 49, no. 2 (1993): P67—P74. http://dx.doi.org/10.2115/fiber.49.2_p67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Neun, David J. "Biodegradable Disinfectants." Science News 144, no. 4 (July 24, 1993): 51. http://dx.doi.org/10.2307/3977593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Baguley, Carolyn. "Biodegradable wrappers." Veterinary Record 182, no. 18 (May 4, 2018): 519.2–519. http://dx.doi.org/10.1136/vr.k1917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Waters, Adele. "Biodegradable wrappers." Veterinary Record 182, no. 18 (May 4, 2018): 519.3–520. http://dx.doi.org/10.1136/vr.k1956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Takiyama, Eiichiro. "Biodegradable Plastics." Kobunshi 42, no. 3 (1993): 251. http://dx.doi.org/10.1295/kobunshi.42.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

DOI, Yoshiharu. "Biodegradable Polymers." Kobunshi 54, no. 4 (2005): 256. http://dx.doi.org/10.1295/kobunshi.54.256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chandra, R. "Biodegradable polymers." Progress in Polymer Science 23, no. 7 (November 1998): 1273–335. http://dx.doi.org/10.1016/s0079-6700(97)00039-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Park, Min Hee, Min Kyung Joo, Bo Gyu Choi, and Byeongmoon Jeong. "Biodegradable Thermogels." Accounts of Chemical Research 45, no. 3 (October 12, 2011): 424–33. http://dx.doi.org/10.1021/ar200162j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jana, Tirthankar, Bidhan C. Roy, and Sukumar Maiti. "Biodegradable film." Polymer Degradation and Stability 69, no. 1 (June 2000): 79–82. http://dx.doi.org/10.1016/s0141-3910(00)00043-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jain, Deepanshu, Ejaz Mahmood, and Shashideep Singhal. "Biodegradable Stents." Journal of Clinical Gastroenterology 51, no. 4 (April 2017): 295–99. http://dx.doi.org/10.1097/mcg.0000000000000725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jana, Tirthankar, Bidhan C. Roy, and Sukumar Maiti. "Biodegradable film." European Polymer Journal 37, no. 4 (April 2001): 861–64. http://dx.doi.org/10.1016/s0014-3057(00)00184-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tsao, George T. "Biodegradable polyesters." Trends in Biotechnology 19, no. 5 (May 2001): 198. http://dx.doi.org/10.1016/s0167-7799(01)01602-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zheng, Y. F., X. N. Gu, and F. Witte. "Biodegradable metals." Materials Science and Engineering: R: Reports 77 (March 2014): 1–34. http://dx.doi.org/10.1016/j.mser.2014.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Voigt, H. D., R. Kakuschke, and J. Schaffer. "Biodegradable packaging." Trends in Food Science & Technology 8, no. 8 (August 1997): 281. http://dx.doi.org/10.1016/s0924-2244(97)87546-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Crommen, Jan H. L., Etienne H. Schacht, and Erik H. G. Mense. "Biodegradable polymers." Biomaterials 13, no. 9 (January 1992): 601–11. http://dx.doi.org/10.1016/0142-9612(92)90028-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Godavitarne, Charles, Alastair Robertson, Jonathan Peters, and Benedict Rogers. "Biodegradable materials." Orthopaedics and Trauma 31, no. 5 (October 2017): 316–20. http://dx.doi.org/10.1016/j.mporth.2017.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Maitra, Ranjan S., Jeff C. Brand, and David N. M. Caborn. "Biodegradable Implants." Sports Medicine and Arthroscopy Review 6, no. 2 (April 1998): 103???117. http://dx.doi.org/10.1097/00132585-199804000-00006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

YAMASHITA, Makoto. "Biodegradable plastics." Journal of Environmental Conservation Engineering 20, no. 12 (1991): 765–69. http://dx.doi.org/10.5956/jriet.20.765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

YAMASHITA, IWAO. "Biodegradable plastics." NIPPON GOMU KYOKAISHI 64, no. 1 (1991): 16–24. http://dx.doi.org/10.2324/gomu.64.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Barber, F. Alan. "Biodegradable Materials." Sports Medicine and Arthroscopy Review 23, no. 3 (September 2015): 112–17. http://dx.doi.org/10.1097/jsa.0000000000000062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Atthoff, Björn, Fredrik Nederberg, Jöns Hilborn, and Tim Bowden. "Biodegradable Ionomers." Macromolecules 39, no. 11 (May 2006): 3907–13. http://dx.doi.org/10.1021/ma0603783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nanda, P. K., K. K. Rao, R. K. Kar, and P. L. Nayak. "Biodegradable polymers." Journal of Thermal Analysis and Calorimetry 89, no. 3 (August 11, 2006): 935–40. http://dx.doi.org/10.1007/s10973-006-7491-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Steinbüchel, Alexander. "Biodegradable plastics." Current Opinion in Biotechnology 3, no. 3 (June 1992): 291–97. http://dx.doi.org/10.1016/0958-1669(92)90107-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fambri, L., A. Pegoretti, M. Mazzurana, and C. Migliaresi. "Biodegradable fibres." Journal of Materials Science: Materials in Medicine 5, no. 9-10 (1994): 679–83. http://dx.doi.org/10.1007/bf00120355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Roy, Ipsita. "Biodegradable Polymers." Journal of Chemical Technology & Biotechnology 85, no. 6 (June 2010): 731. http://dx.doi.org/10.1002/jctb.2420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

King, K. R., C. C. J. Wang, M. R. Kaazempur-Mofrad, J. P. Vacanti, and J. T. Borenstein. "Biodegradable Microfluidics." Advanced Materials 16, no. 22 (November 18, 2004): 2007–12. http://dx.doi.org/10.1002/adma.200306522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pkhakadze, G., M. Grigorieva, I. Gladir, and V. Momot. "Biodegradable polyurethanes." Journal of Materials Science: Materials in Medicine 7, no. 5 (May 1996): 265–67. http://dx.doi.org/10.1007/bf00058564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Antonova, L. V., E. O. Krivkina, M. A. Rezvova, V. V. Sevost'yanova, A. V. Mironov, T. V. Glushkova, K. Yu Klyshnikov, E. A. Ovcharenko, Yu A. Kudryavceva, and L. S. Barbarash. "BIODEGRADABLE VASCULAR GRAFT REINFORCED WITH A BIODEGRADABLE SHEATH." Complex Issues of Cardiovascular Diseases 8, no. 2 (June 23, 2019): 87–97. http://dx.doi.org/10.17802/2306-1278-2019-8-2-87-97.

Full text
Abstract:
Background. Tissue-engineered vascular grafts can be reinforced by a biostable or biodegradable polymer sheath. A combination of electrospinning, routinely used for fabrication of biodegradable tubular grafts, and the layer-by-layer coating allows forming a polymeric sheath ensuring long-term integrity and high biocompatibility of the vascular grafts after the implantation. Aim To evaluate mechanical properties and in vivo performance of biodegradable small-diameter vascular grafts with a reinforcing sheath.Methods. Tubular grafts (4 mm diameter) were fabricated from poly(3-hydroxybutyrate-co3-hydroxyvalerate) and poly(ε-caprolactone) by emulsion electrospinning with the incorporation of vascular endothelial growth factor (VEGF) into the inner third of the graft and basic fibroblast growth factor (bFGF) along with stromal cell-derived factor-1α (SDF-1α) into the outer two thirds of the graft wall. Poly(ε-caprolactone) sheath was formed by the layer-by-layer coating. Upon graft fabrication, scanning electron microscopy was performed to assess the grafts’ surface, tensile testing allowed evaluating mechanical properties. The samples were implanted into the ovine carotid artery (n = 5 animals) for 12 months with the subsequent histological examination.Results. Sintering temperature of 160°C during the extrusion allowed effective and delicate merging of poly(ε-caprolactone) coating with the outer surface of the poly(3hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) tubular graft. The thickness of poly(ε-caprolactone) fiber was 380–400 μm, the increment of the reinforcing filament was 1 mm. The reinforcing sheath led to a 3-fold increase in durability and elastic modulus of the vascular grafts. At the 12-months follow-up, the grafts reported retained integrity. No signs of inflammation or calcification were found.Conclusion. The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ε-caprolactone) vascular grafts with hierarchically incorporated growth factors and the reinforced poly(ε-caprolactone) spiral sheath demonstrated improved mechanical properties while retaining integrity and high biocompatibility after the long-term implantation into the ovine carotid artery.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography