Academic literature on the topic 'Biodegradable polymeric nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biodegradable polymeric nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biodegradable polymeric nanoparticles"
Yuan, Xudong, Ling Li, Appu Rathinavelu, Jinsong Hao, Madhusudhanan Narasimhan, Matthew He, Viviene Heitlage, Linda Tam, Sana Viqar, and Mojgan Salehi. "siRNA Drug Delivery by Biodegradable Polymeric Nanoparticles." Journal of Nanoscience and Nanotechnology 6, no. 9 (September 1, 2006): 2821–28. http://dx.doi.org/10.1166/jnn.2006.436.
Full textSwain, Suryakanta, and Debashish Ghose. "Biodegradable polymeric nanoparticles: An overview." Indian Journal of Pharmacy and Pharmacology 9, no. 3 (August 15, 2022): 141–42. http://dx.doi.org/10.18231/j.ijpp.2022.025.
Full textAthira TR, K Selvaraju, and NL Gowrishankar. "Biodegradable polymeric nanoparticles: The novel carrier for controlled release drug delivery system." International Journal of Science and Research Archive 8, no. 1 (February 28, 2023): 630–37. http://dx.doi.org/10.30574/ijsra.2023.8.1.0103.
Full textPatil, Vijay, and Asha Patel. "Biodegradable Nanoparticles: A Recent Approach and Applications." Current Drug Targets 21, no. 16 (December 14, 2020): 1722–32. http://dx.doi.org/10.2174/1389450121666200916091659.
Full textKarlsson, Johan, Hannah J. Vaughan, and Jordan J. Green. "Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments." Annual Review of Chemical and Biomolecular Engineering 9, no. 1 (June 7, 2018): 105–27. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084055.
Full textGuzman, Luis A., Vinod Labhasetwar, Cunxian Song, Yangsoo Jang, A. Michael Lincoff, Robert Levy, and Eric J. Topol. "Local Intraluminal Infusion of Biodegradable Polymeric Nanoparticles." Circulation 94, no. 6 (September 15, 1996): 1441–48. http://dx.doi.org/10.1161/01.cir.94.6.1441.
Full textSoppimath, Kumaresh S., Tejraj M. Aminabhavi, Anandrao R. Kulkarni, and Walter E. Rudzinski. "Biodegradable polymeric nanoparticles as drug delivery devices." Journal of Controlled Release 70, no. 1-2 (January 2001): 1–20. http://dx.doi.org/10.1016/s0168-3659(00)00339-4.
Full textGOMEZGAETE, C., N. TSAPIS, M. BESNARD, A. BOCHOT, and E. FATTAL. "Encapsulation of dexamethasone into biodegradable polymeric nanoparticles." International Journal of Pharmaceutics 331, no. 2 (March 1, 2007): 153–59. http://dx.doi.org/10.1016/j.ijpharm.2006.11.028.
Full textKumari, Avnesh, Sudesh Kumar Yadav, and Subhash C. Yadav. "Biodegradable polymeric nanoparticles based drug delivery systems." Colloids and Surfaces B: Biointerfaces 75, no. 1 (January 2010): 1–18. http://dx.doi.org/10.1016/j.colsurfb.2009.09.001.
Full textLeimann, Fernanda Vitória, Maiara Heloisa Biz, Karine Cristine Kaufmann, Wallace José Maia, Odinei Hess Honçalves, Lucio Cardozo Filho, Claudia Sayer, and Pedro Henrique Hermes de Araújo. "Characterization of progesterone loaded biodegradable blend polymeric nanoparticles." Ciência Rural 45, no. 11 (November 2015): 2082–88. http://dx.doi.org/10.1590/0103-8478cr20141288.
Full textDissertations / Theses on the topic "Biodegradable polymeric nanoparticles"
Jo, Ami. "The Design of Biodegradable Polyester Nanocarriers for Image-guided Therapeutic Delivery." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/97220.
Full textPh. D.
Heffernan, Michael John. "Biodegradable polymeric delivery systems for protein subunit vaccines." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24787.
Full textCommittee Chair: Dr. Niren Murthy; Committee Member: Dr. Carson Meredith; Committee Member: Dr. Julia Babensee; Committee Member: Dr. Mark Prausnitz; Committee Member: Dr. Ravi Bellamkonda.
COLOMBO, FEDERICO. "Innovative approach for the treatment and the diagnosis of rheumatoid arthritis exploiting polymeric biodegradable nanoparticles targeting synovial endothelium." Doctoral thesis, Università degli Studi di Trieste, 2018. http://hdl.handle.net/11368/2917682.
Full textCella, C. "Development of biodegradable nanoparticles for targeting Tumor Associated Macrophages: synthesis, investigation of the role of the surfactant and surface decoration in complex media." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/366594.
Full textYilgor, Pinar. "Sequential Growth Factor Delivery From Polymeric Scaffolds For Bone Tissue Engineering." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611188/index.pdf.
Full texthowever, the control of the cell organization and cell behavior to create fully functional 3-D constructs has not yet been achieved. To overcome these, activities have been concentrated on the development of multi-functional tissue engineering scaffolds capable of delivering the required bioactive agents to initiate and control cellular activities. The aim of this study was to prepare tissue engineered constructs composed of polymeric scaffolds seeded with mesenchymal stem cells (MSCs) carrying a nanoparticulate growth factor delivery system that would sequentially deliver the growth factors in order to mimic the natural bone healing process. To achieve this, BMP-2 and BMP-7, the osteogenic growth factors, were encapsulated in different polymeric nanocapsules (poly(lactic acid-co-glycolic acid) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)) with different properties (degradation rates, crystallinity) and, therefore, different release rates to achieve the early release of BMP-2 followed by the release of BMP-7, as it is in nature. Initially, these nanoparticulate delivery systems were characterized and then the effect of single, simultaneous and sequential delivery of BMP-2 and BMP-7 from these delivery systems was studied in vitro using rat bone marrow MSCs. The effect of using these two growth factors in a sequential manner by mimicking their natural bioavailability timing was shown with maximized osteogenic activity results. BMP-2 loaded PLGA nanocapsules were subcutaneously implanted into Wistar rats and according to initial results, their biocompatibility as well as the positive effect of BMP-2 release on the formation of osteoclast-like cells was shown. To complete the construction of the bioactive scaffold, this nanoparticulate sequential delivery system was incorporated into two different types of polymeric systems
natural (chitosan) and synthetic (poly(&
#949
-caprolactone) (PCL)). 3-D fibrous scaffolds were produced using these materials by wet spinning and 3-D plotting. Incorporation of nanocapsules into 3-D chitosan scaffolds was studied by two different methods: incorporation within and onto chitosan fibers. Incorporation into 3-D PCL scaffolds was achieved by coating the nanocapsules onto the fibers of the scaffolds in an alginate layer. With both scaffold systems, incorporation of nanocapsule populations capable of delivering BMP-2 and BMP-7 in single, simultaneous and sequential fashion was achieved. As with free nanocapsules, the positive effect of sequential delivery on the osteogenic differentiation of MSCs was shown with both scaffold systems, creating multi-functional scaffolds capable of inducing bone healing.
Quintanar-Guerrero, David. "Étude de nouvelles techniques d'obtention de suspensions de nanoparticules à partir de polymères préformés." Lyon 1, 1997. http://www.theses.fr/1997LYO1T270.
Full textKaur, Jasmeet. "Properties of biologically relevant nanocomposites: effects of calcium phosphate nanoparticle attributes and biodegradable polymer morphology." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33981.
Full textLi, Yonghui. "Biodegradable poly(lactic acid) nanocomposites: synthesis and characterization." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/8543.
Full textDepartment of Grain Science and Industry
X. Susan Sun
Biobased polymers derived from renewable resources are increasingly important due to acute concerns about the environmental issues and limited petroleum resources. Poly(lactic acid) (PLA) is such a polymer that has shown great potential to produce biodegradable plastics. However, low glass transition temperature (Tg), low thermal stability, slow biodegradation rate, and high cost limit its broad applications. This dissertation seeks to overcome these limitations by reinforcing PLA with inorganic nanoparticles and low-cost agricultural residues. We first synthesized PLA nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylized nanoparticles (MgO nanocrystals and TiO2 nanowires) and investigated the structure-property relationships. PLA grafted nanoparticles (PLA-g-MgO, PLA-g-TiO2) were isolated from the bulk nanocomposites via repeated dispersion/centrifugation processes. The covalent grafting of PLA chains onto nanoparticle surface was confirmed by Fourier transform infrared spectroscopy and thermalgravimetric analysis (TGA). Transmission electron microscopy and differential scanning calorimetry (DSC) results also sustained the presence of the third phase. Morphological images showed uniform dispersion of nanoparticles in the PLA matrix and demonstrated a strong interfacial interaction between them. Calculation based on TGA revealed that more than 42.5% PLA was successfully grafted into PLA-g-MgO and more than 30% was grafted into PLA-g-TiO2. Those grafted PLA chains exhibited significantly increased thermal stability. The Tg of PLA-g-TiO2 was improved by 7 °C compared with that of pure PLA. We also reinforced PLA with low-value agricultural residues, including wood flour (WF), soy flour (SF), and distillers dried grains with solubles (DDGS) by thermal blending. Tensile measurements and morphological images indicated that methylene diphenyl diisocyanate (MDI) was an effective coupling agent for PLA/WF and PLA/DDGS systems. MDI compatibilized PLA/WF and PLA/DDGS composites showed comparable tensile strength and elongation at break as pure PLA, with obviously increased Young’s modulus. Increased crystallinity was observed for PLA composites with SF and DDGS. Such PLA composites have similar or superior properties compared with pure PLA, especially at a lower cost and higher biodegradation rate than pure PLA. The results from this study are promising. These novel PLA thermoplastic composites with enhanced properties have potential for many applications, such as packaging materials, textiles, appliance components, autoparts, and medical implants.
Nastiti, Christofori Maria Ratna Rini. "Development and evaluation of polymeric nanoparticle formulations for triamcinolone acetonide delivery." Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/613.
Full textHawkins, Ashley Marie. "BIODEGRADABLE HYDROGELS AND NANOCOMPOSITE POLYMERS: SYNTHESIS AND CHARACTERIZATION FOR BIOMEDICAL APPLICATIONS." UKnowledge, 2012. http://uknowledge.uky.edu/cme_etds/10.
Full textBooks on the topic "Biodegradable polymeric nanoparticles"
De, Arnab, Rituparna Bose, Ajeet Kumar, and Subho Mozumdar. Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1689-6.
Full textSpringer. Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. Springer London, Limited, 2013.
Find full textBose, Rituparna, Arnab De, Ajeet Kumar, and Subho Mozumdar. Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. Springer, 2013.
Find full textWohlbier, Thomas. Nanohybrids. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901076.
Full textBook chapters on the topic "Biodegradable polymeric nanoparticles"
Fattal, Elias, Hervé Hillaireau, Simona Mura, Julien Nicolas, and Nicolas Tsapis. "Targeted Delivery Using Biodegradable Polymeric Nanoparticles." In Fundamentals and Applications of Controlled Release Drug Delivery, 255–88. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0881-9_10.
Full textKempe, Kristian, and Joseph A. Nicolazzo. "Biodegradable Polymeric Nanoparticles for Brain-Targeted Drug Delivery." In Neuromethods, 1–27. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0838-8_1.
Full textDas, Nandita G., and Sudip K. Das. "Development of Biodegradable Polymeric Nanoparticles for Systemic Delivery." In Healthy Ageing and Longevity, 155–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54490-4_6.
Full textSumana, M., A. Thirumurugan, P. Muthukumaran, and K. Anand. "Biodegradable Natural Polymeric Nanoparticles as Carrier for Drug Delivery." In Integrative Nanomedicine for New Therapies, 231–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36260-7_8.
Full textAkagi, Takami, Masanori Baba, and Mitsuru Akashi. "Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine." In Polymers in Nanomedicine, 31–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/12_2011_150.
Full textFufă, Oana, Oana Fuf, George Mihail Vlăsceanu, Georgiana Dolete, Daniela Cabuzu, Rebecca Alexandra Puiu, Andreea Cîrjă, Bogdan Nicoară, and Alexandru Mihai Grumezescu. "Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles." In Handbook of Composites from Renewable Materials, 585–621. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119441632.ch144.
Full textDebnath, Sujit Kumar, Barkha Singh, Nidhi Agrawal, and Rohit Srivastava. "EPR-Selective Biodegradable Polymer-Based Nanoparticles for Modulating ROS in the Management of Cervical Cancer." In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 2863–89. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5422-0_127.
Full textDebnath, Sujit Kumar, Barkha Singh, Nidhi Agrawal, and Rohit Srivastava. "EPR-Selective Biodegradable Polymer-Based Nanoparticles for Modulating ROS in the Management of Cervical Cancer." In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1–28. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1247-3_127-1.
Full textMalviya, Neelesh, Sapna Malviya, Rajiv Saxena, Vishakha Chauhan, and Manisha Dhere. "Smart Biodegradable Polymeric Nanoparticles." In Advancements in Controlled Drug Delivery Systems, 257–80. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8908-3.ch011.
Full textSingh, Vijay Kumar, and Raj K. Keservani. "Application of Nanoparticles as a Drug Delivery System." In Pharmaceutical Sciences, 128–53. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch006.
Full textConference papers on the topic "Biodegradable polymeric nanoparticles"
Alquadeib, Bushra. "Encapsulation of Sertraline in Biodegradable Polymeric Nanoparticles." In The 9th World Congress on New Technologies. Avestia Publishing, 2023. http://dx.doi.org/10.11159/icepr23.132.
Full textLi, Wengang, and Qasim Sahu. "A Review: Progress of Diverter Technology for Oil and Gas Production Applications in the Past Decade." In Gas & Oil Technology Showcase and Conference. SPE, 2023. http://dx.doi.org/10.2118/214118-ms.
Full textZhu, Ming-Qiang, Guo-Feng Zhang, Zhe Hu, Wen-Liang Gong, Matthew P. Aldred, and Zhen-Li Huang. "Biodegradable polymer nanoparticles with photoswitchable fluorescence for super-resolution bioimaging." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ntm.2013.nm2b.7.
Full textSaha, Debasish, Apoorva Agarwal, Jaydeep Bhattacharya, Debes Ray, Vinod K. Aswal, and Joachim Kohlbrecher. "The role of solvent in the formation of biodegradable polymer nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112880.
Full textAykaç, Ahmet, and İzel Ok. "Investigations and Concerns about the Fate of Transgenic DNA and Protein in Livestock." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.046.
Full textAsmatulu, R., A. Garikapati, H. E. Misak, Z. Song, S. Y. Yang, and P. Wooley. "Cytotoxicity of Magnetic Nanocomposite Spheres for Possible Drug Delivery Systems." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40269.
Full textSandri, Monica, Michele Iafisco, Silvia Panseri, Elisa Savini, and Anna Tampieri. "Fully Biodegradable Magnetic Micro-Nanoparticles: A New Platform for Tissue Regeneration and Theranostic." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93223.
Full textYeo, Leslie Y., and James R. Friend. "Surface Acoustic Waves: A New Paradigm for Driving Ultrafast Biomicrofluidics." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18517.
Full textKrasnoshtanova, Alla, and Anastasiya Bezyeva. "DETERMINATION OF THE OPTIMAL CONCENTRATIONS OF PECTIN AND CALCIUM CHLORIDE FOR THE SYNTHESIS OF CHITOSAN-PECTIN MICROPARTICLES." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/09.
Full text