Academic literature on the topic 'Biocompatibility'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biocompatibility.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biocompatibility":

1

Teichmann, Klaus D. "Biocompatibility." Journal of Cataract & Refractive Surgery 29, no. 8 (August 2003): 1470. http://dx.doi.org/10.1016/s0886-3350(03)00602-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hester, Doug. "Biocompatibility." Canadian Medical Association Journal 187, no. 6 (February 17, 2015): 441. http://dx.doi.org/10.1503/cmaj.141214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Denes, Eric, Guislaine Barrière, Evelyne Poli, and Guillaume Lévêque. "Alumina Biocompatibility." Journal of Long-Term Effects of Medical Implants 28, no. 1 (2018): 9–13. http://dx.doi.org/10.1615/jlongtermeffmedimplants.2018025635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bloomenstein, Marc R., Ian B. Gaddie, Paul Karpecki, and Scot Morris. "Understanding Biocompatibility." Cornea 31, no. 12 (December 2012): 1507. http://dx.doi.org/10.1097/ico.0b013e31825e83de.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ratner, Buddy D. "The Biocompatibility Manifesto: Biocompatibility for the Twenty-first Century." Journal of Cardiovascular Translational Research 4, no. 5 (June 28, 2011): 523–27. http://dx.doi.org/10.1007/s12265-011-9287-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Murabayashi, Shun, and Yukihiko Nose. "Biocompatibility: Bioengineering aspects." Bio-Medical Materials and Engineering 23, no. 1-2 (2013): 129–42. http://dx.doi.org/10.3233/bme-120738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ryhänen, J. "Biocompatibility of Nitinol." Minimally Invasive Therapy & Allied Technologies 9, no. 2 (January 2000): 99–105. http://dx.doi.org/10.3109/13645700009063056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rigby, G., and P. Vadgama. "Highlight. Materials biocompatibility." Analytical Communications 33, no. 11 (1996): 19H. http://dx.doi.org/10.1039/ac996330019h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rubin, Paul G. "Biocompatibility and sensitivity." Journal of the American Dental Association 117, no. 2 (August 1988): 288. http://dx.doi.org/10.14219/jada.archive.1988.0184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lemperle, Gottfried, and Peter Kind. "BIOCOMPATIBILITY OF ARTECOLL." Plastic and Reconstructive Surgery 103, no. 1 (January 1999): 338–39. http://dx.doi.org/10.1097/00006534-199901000-00080.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biocompatibility":

1

Wang, Haibo. "Hydroxyapatite degradation and biocompatibility." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1087238429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xiv, 190 p.; also includes graphics. Includes bibliographical references (p. 166-190).
2

Roka, Eszter. "Biocompatibility evaluation and synthesis of macrocyclic compounds." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1027/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La faible solubilité de certains médicaments cause des problèmes majeurs dans les formulations pharmaceutiques, puisque la solubilité dans l'eau est un critère indispensable pour la biodisponibilité. Les composés macrocycliques tels que les CDs et les calixarènes ont une cavité relativement hydrophobe, leur permettant ainsi d'encapsuler de nombreuses molécules. Les CDs ont déjà été utilisées comme excipients pharmaceutiques pour l'amélioration de la solubilité. La structure de ces macrocycles permet d'effectuer de nombreuses modifications, qui causent des changements tant au niveau de leurs caractéristiques physico-chimiques que sur leurs effets sur les organismes vivants. Ainsi, l'évaluation de la biocompatibilité de ces dérivés est primordiale en vue de leur utilisation en pharmacie. Puisque l'étude de la biocompatibilité de plusieurs dérivés de β-CD a déjà été étudiée, l'objectif de cette recherche était d'étendre ces expériences à des dérivés de l'α-CD qui sont disponibles dans le commerce. Nous nous sommes intéressés aux relations entre structure et toxicité. Ainsi les dérivés alkyl éther d'α-CD, avec des chaînes alkyle de longueur croissante et substitués sur différentes positions, ont été synthétisés et leur toxicité étudiée. Les para-sulphonato-calix[n]-arènes quant à eux, ont souvent été étudiés et ont montré une forte capacité à complexer de nombreux médicaments. Ils ont aussi démontré une activité biologique polyvalente. Néanmoins, leurs effets sur le mécanisme de transport paracellulaire n'a jamais été évaluée. Les tests de viabilité cellulaire et d'hémolyse nous ont permis d'une part de classer les α-CDs et de choisir les dérivés les plus sûrs, et d'autre part de comparer leur effets toxiques dans des systèmes différents. La comparaison des α- et ß-CDs portant les mêmes modifications chimiques nous a montré l'importance du nombre d'unités de construction. Le rapport entre l'effet cytotoxique et le nombre de groupes hydroxyles libres est également très important. Les dérivés portant de longues chaînes alkyles possèdent une faible solubilité, ce qui nous a conduits vers d'autres modifications chimiques : la sulfonation de ces derniers dérivés semble avoir un impact bénéfique sur la biocompatibilité de CDs. Elle a aussi amélioré la solubilité des calixarènes. Les calix[4] et [8]arène sulphonates ont prouvé leur effet positif sur l'absorption paracellulaire, tandis que le calix[6]arène sulphonate n'a pas eu d'effet similaire. Notre recherche conclut que les changements structurels sur les anneaux macrocycliques peuvent avoir un impact majeur sur la biocompatibilité. Comme les possibilités de modification sont pratiquement illimitées, l'évaluation de la structure et de l'activité est indispensable pour faciliter les choix les plus sûrs dans les applications pharmaceutiques à venir
The low solubility of drug candidates cause a major problem in pharmaceutical formulations, as the aqueous solubility is an indispensable criterion for appropriate bioavailability. Macrocyclic compounds possess a relatively hydrophobic cavity, which is suitable for guest molecule inclusion. Cyclodextrins and calixarenes are widely studied organic host-compounds, and CDs have already been used as pharmaceutical excipients for solubility enhancement. The macrocycles’ chemical structure allows their versatile modification, which eventuates changes not only in physicochemical characteristics, but in their effects on living organisms, as well. Thus, the biocompatibility evaluation of the derivatives is fundamental. Owing to the already performed assessment of numerous β-CD derivatives’ biocompatibility, the aim of this research was to extend these experiments to commercially available α-CDs. They have been used less frequently, however several derivatives, which have not been tested yet in vitro, have the possibility of future pharmaceutical use. Their importance is also certified by their benefits in nanoparticle formation. We have been interested in concrete structure-toxicity correlations, thus alkyl ether α-CD derivatives were synthetized bearing increasing length alkyl chains, in different positions. Para-sulphonato-calix[n]-arenes have already been widely examined due to their efficient drug complexation and versatile biological activity, however, their effects on paracellular transport mechanism have not been evaluated until now.The cell viability and hemolysis tests have allowed us to rank the α-CDs and to choose the safest derivatives, also to compare their toxic effects in different systems. The comparison of α- and β-CDs bearing the same chemical modifications highlighted the importance of the number of building units. Important information has been evaluated regarding the connection between the cytotoxic effect and the number of free hydroxyl groups. Derivatives with long alkyl chains possess low solubility, which led us towards further chemical modifications. Sulfonation seemed to have beneficial impact on the biocompatibility. Sulfonation also improved the solubility of calixarenes. C4S and C8S proved their positive effect on paracellular absorption in a non-toxic concentration range, however C6S had no similar effect, thus their behaviour in in vitro absorption model system arose forward-looking questions.Our research concludes, that the structural changes on the macrocyclic rings may have major impact on the biocompatibility. As the modification possibilities are practically unlimited, the evaluation of structure and activity cannot be avoided, facilitating the safest choice for further pharmaceutical use
A gyógyszerhatóanyagok rossz vízoldékonysága nagy kihívást jelent formulálásuk során, ugyanis a vízoldékonyság elengedhetetlen feltétele a megfelelő biohasznosulásnak. A makrociklusos vegyületek belső ürege viszonylag hidrofób, ez alkalmassá teszi őket vendégmolekulákkal való komplexképzésre. A ciklodextrinek és kalixarének széles körben tanulmányozott vegyületek, egyes CD-ek bejegyzett oldékonyságnövelő segédanyagok. A makrociklusok felépítése számos kémiai módosításra ad lehetőséget, amelyek nem csupán a fiziko-kémiai tulajdonságok változását eredményezik, hanem az élő organizmusokra kifejtett hatásokat is módosítják. Ezen származékok biokompatibilitás vizsgálata tehát elengedhetetlen. Számos β-CD származék biokompatibilitása ismert már, így kutatásunk célul tűzte ki ezen vizsgálatok α-CD-ekre történő kiterjesztését. Az α-CD-ek alkalmazása ritkább, azonban vannak származékok, amelyek in vitro vizsgálata még nem történt meg, de jelentőségük a nanopartikulum-képzésben már igazolt. A szerkezet-toxicitás összefüggések feltárása érdekében olyan alkil-éter CD származékokat szintetizáltunk, amelyek növekvő szénatomszámú alkil-csoportokkal rendelkeznek, eltérő pozíciókban. A para-szulfonáto-kalix[n]aréneket hatóanyag-komplexáló tulajdonságuk, valamint sokoldalú biológiai aktivitásuk miatt széles körben tanulmányozták már, azonban a paracelluláris anyagtranszportra gyakorolt hatásuk ezidáig még nem volt ismert. A sejtéletképességi és hemolízis vizsgálatok hozzásegítettek az egyes α-CD-ek rangsorolásához, továbbá a vegyületek különböző rendszerekben mért toxikussága is összevethetővé vált. A megegyező kémiai módosításokon átesett α- és β-CD-ek biokompatibilitása rávilágított a CD-gyűrű mértének jelentőségére. Egyértelmű összefüggést fedeztünk fel a toxicitás és a szabad hidroxil-csoportok száma között. A hosszú alkil-csoporttal rendelkező CD-ek rossz oldékonysága további kémiai módosításokat tett szükségszerűvé; a szulfát csoportok jelenléte jótékony hatással volt az oldhatóságra, és a citotoxicitásra is. A szulfatálás a kalixarének oldékonyságát is növelte. A C4S és C8S vegyületek növelték a paracelluláris felszívódás mértékét szubtoxikus koncentrációban, azonban a C6S nem mutatott hasonló hatást. Ezen eredmények további kérdéseket vetnek fel a pontos hatásmechanizmusról. Eredményeink rávilágítanak a makrociklusok szerkezetének és biokompatibilitásának összefüggéseire, valamint ezen ismeretek fontosságára annak érdekében, hogy minden formulációban a legbiztonságosabb segédanyagok legyenek alkalmazhatóak
3

Sun, Tao, and 孙韬. "Surface modification of titanium metal for medical applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45457694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bentley, P. K. "Biocompatibility assessment of novel perfluorochemical emulsions." Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Campoccia, Davide. "Aspects of biocompatibility of hyaluronan derivatives." Thesis, University of Liverpool, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reverte, Maëva. "Etude de la biocompatibilité d acides nucléiques modifiés par des acides boroniques : développement de nouveaux outils de diagnostic." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La modification d’oligonucléotides est un domaine attrayant de la chimie organique. De nombreuses études se sont intéressées à la génération de liens internucléosidiques artificiels à visée thérapeutique, diagnostic ou encore pour des applications en chimie prébiotique. Ce manuscript de thèse rapporte la synthèse et l’étude de biocompatibilité d’acides nucléiques modifiés à leurs extrémités 5’ par un acide boronique. Les comportement des oligomères boroniques a été évalué en présence de différentes classes d’enzymes telles que les ligases, les polymérases ou encore les phosphodiestérases. Les résultats de biocompatibilité obtenus en présence de ces enzymes nous ont permis d’utiliser ces acides nucléiques modifiés comme de réels outils de diagnostic pour réaliser de la détection de point de mutation ou encore de la détection de péroxynitrite in-cellulo
The modification of oligonucleotides is an attractive field of organic chemistry. Many studies have focused on the generation of artificial internucleoside linkages for therapeutic, diagnostic or for applications in prebiotic chemistry. This thesis manuscript reports the synthesis and study of nucleic acids biocompatibility modified at their 5 'ends by a boronic acid function. The behavior of boronic oligomers was assessed in the presence of different classes of enzymes, such as ligases, polymerases or phosphodiesterases. The biocompatibility results obtained in the presence of these enzymes allowed us to use these modified nucleic acids as real diagnostic tools to achieve mutation point detection or detection of peroxynitrite in-cellulo
7

Le, Coadou Cécile. "Caractérisation de films de zircone yttriée et développement d’un procédé de brasage avec du TA6V pour des applications biomédicales." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI041/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les maladies neurodégénératives sont en forte progression dans nos sociétés, mais elles sont également mieux connues et mieux soignées. Par exemple, la stimulation cérébrale profonde est de nos jours utilisée pour lutter contre des maladies comme la maladie de Parkinson. Pour cela, un boitier semblable à celui d'un pacemaker, placé sous la clavicule, est habituellement utilisé pour délivrer des impulsions électriques dans des zones spécifiques du cerveau grâce à des électrodes. Afin d'éviter certaines complications, un boitier ultrafin a été imaginé. Il peut être placé directement au niveau du crâne, au plus proche de la zone à traiter. Les matériaux composant ce boitier doivent présenter certaines caractéristiques. Nous avons choisi de travailler avec des feuilles de TA6V et de zircone yttriée et avons réalisé un assemblage hermétique par l'obtention d'une brasure fine en Ti2Ni.Les feuilles de zircone yttriée présentent des propriétés remarquables mais elles sont notoirement dégradées par un vieillissement hydrothermal. Une étude en vieillissement accéléré a été réalisée sur les feuilles de zircone telles que reçues mais également dans des conditions proches de l'utilisation. Le vieillissement mesuré est suffisamment limité pour envisager une utilisation in vivo, avec cependant une réserve concernant les zircones sous-stœchiométriques. Enfin, le profil de vieillissement et sa vitesse de progression ont pu être précisés.L'assemblage TA6V-zircone a été réalisé par brasage réactif in situ via l'apport initial en nickel pur et la création d'un joint de brasage en Ti2Ni. Le système TA6V-Ni-ZrO2 met en jeu plusieurs phénomènes, que nous avons cherché à déconvoluer : diffusion (solide et liquide), formation et croissance d'intermétalliques et réactions d'oxydo-réduction. La croissance des intermétalliques à partir du couple TA6V-Ni a été particulièrement étudiée. Cela a permis de relier certains événements à la température et de préciser les vitesses de croissance du Ti2Ni (selon son état physique). Grâce à l'ensemble des résultats, un procédé de brasage métal-céramique adapté aux matériaux ultrafins a été d'identifié et réalisé sur système avec succès
Neurodegenerative diseases are increasingly present in our society but they are also better known and treated. For example, deep brain stimulation is nowadays used to treat diseases such as Parkinson disease. For this purpose, a pacemaker-like device localized in the infraclavicular region is commonly used to deliver electrical pulses in concerned area of the brain thanks to electrodes. In order to avoid some complications, an ultrathin housing was designed. It could be directly implanted under the scalp, close to the area to be treated. Materials of the housing have to be display some features. TA6V, yttria-stabilized zirconia sheets and a hermetic brazing with a Ti2Ni joint were selected to develop this housing.Yttria-stabilized zirconia sheets have remarkable properties but they undergo a degradation caused by hydrothermal aging. An accelerated aging study was done on pristine sheets but also under near-reality conditions. The observed aging is sufficiently limited to consider an in vivo application, subject to one reservation for the under-stoichiometric zirconia. Finally, the aging profile and the propagation rate were specified.The TA6V-zirconia joining was obtained by an in situ reactive brazing, thanks to a filler metal in pure nickel and the formation of a Ti2Ni joint. Several phenomena occur in the TA6V-Ni-ZrO2 system, which were separately studied: (solid and liquid) diffusion, formation and growth of intermetallic compounds and redox reactions. The intermetallic compounds growth from the TA6V-Ni couple was studied in detail. Thanks to all of the results, a metal-ceramic brazing process for ultrathin materials was identified and successfully achieved on our system
8

Blanquer, Jerez Andreu. "Biocompatibility of new biomaterials for orthopaedic applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/386500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L’ús de materials biocompatibles ha assolit una importància creixent en aplicacions ortopèdiques i quirúrgiques, degut a l’envelliment de la població. Els aliatges metàl·lics que s’empren actualment en medicina presenten propietats físiques i mecàniques diferents a les de l’os humà, incrementant la probabilitat de pèrdua de l’implant. Per aquesta raó, s’estan desenvolupant nous aliatges metàl·lics amb millors propietats. En aquest sentit, la present tesi té com objectiu l’anàlisi de la biocompatibilitat de nous aliatges pel seu ús en implants ortopèdics. En primer lloc, s’ha demostrat la biocompatibilitat del vidre metàl·lic massís TiZrCuPd en termes de citotoxicitat, i d’adhesió i de diferenciació d’osteoblasts. En segon lloc, s’ha avaluat l’efecte de dues modificacions de superfície, anodització electroquímica i modificació física, dels aliatges TiZrCuPd i Ti-6Al-4V sobre el comportament dels osteoblasts. En aquest cas, no hem observat cap efecte de la topografia en la proliferació, l’adhesió i la diferenciació. En tercer lloc, hem demostrat que els aliatges TiZrPdSi i TiZrPdSiNb són biocompatibles i afavoreixen l’adhesió, la proliferació i la diferenciació d’osteoblasts. Finalment, hem avaluat l’efecte electroestimulador de dos nous nanogeneradors piezoelèctrics, basats en ZnO, emprant dues línies cel·lulars implicades en la regeneració òssia (osteoblasts i macròfags). Els resultats observats indiquen que els nanogeneradors són biocompatibles i que la seva interacció amb les cèl·lules produeix un camp elèctric local que estimula la motilitat dels macròfags i l’augment de la concentració intracel·lular de Ca2+ en osteoblasts. Aquests nous materials intel·ligents presenten propietats força interessants pel seu ús en aplicacions biomèdiques. En conjunt, els resultats obtinguts en els nostres estudis contribueixen en el desenvolupament de materials per millorar la reparació i la regeneració òssia.
The use of biocompatible materials has attained an increasing importance for medical surgery and orthopaedics due to population aging. Metallic alloys currently used in bone implants have physical and mechanical properties different from those of the bone, which increases the probability of implant loosening. For this reason, new metallic alloys with better properties are being developed. In this regard, the present thesis aims to analyse the biocompatibility of new biomaterials for orthopaedic applications. First, we demonstrated the biocompatibility of TiZrCuPd bulk metallic glass in terms of cytotoxicity, and osteoblast adhesion and differentiation. Second, we assessed the effect of surface modification of TiZrCuPd and Ti-6Al-4V alloys by electrochemical anodization and physical modification on osteoblast behaviour. Differences in topography did not cause changes on osteoblasts adhesion, proliferation and differentiation. Third, we demonstrated that TiZrPdSi and TiZrPdSiNb alloys are also biocompatible and enhance osteoblasts adhesion, spreading, proliferation and differentiation. Fourth, we evaluated the electrostimulation effect of two new ZnO piezoelectric nanogenerators using two cell lines involved in bone regeneration (osteoblasts and macrophages). We observed that both nanogenerators are biocompatible and that their interaction with cells produces a local electric field that stimulate macrophages motility and the increase in intracellular Ca2+ concentration in osteoblasts. Thus, these new smart materials have interesting properties for their use in biomedical devices. Collectively, the results obtained in our studies contribute to the progress in the development of better materials for bone repair and regeneration.
9

Zeng, Muling. "Bacterial cellulose: fabrication, characterization and biocompatibility studies." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
En marzo de 2011, apliqué a una beca del CSC (Consejo de Becas de China), en cooperación con la Universitat Autònoma de Barcelona (UAB). Después de medio año, conseguí la beca y comencé mi tesis doctoral bajo la supervisión de la Dra. Anna Roig y la Dra. Anna Laromaine. Mi proyecto asignada era en celulosa bacteriana: su síntesis, caracterización y estudios de biocompatibilidad. La celulosa bacteriana es un polisacárido de fuentes renovables, y puede ser producida por algunos tipos de bacterias en la naturaleza. Presenta propiedades químicas y físicas notables, incluyendo una alta pureza química y cristalinidad, una red de nanofibras, porosa, alta capacidad de absorción de agua y resistencia mecánica. La celulosa bacteriana se utiliza para una amplia variedad de aplicaciones comerciales. Por otra parte, la celulosa bacteriana es biocompatible con afinidad biológica y biodegradabilidad, que suscita la atención de investigadores en el área de la biomedicina. El primer objetivo de mi tesis fue aprender a producir películas de celulosa bacteriana y encontrar estrategias para controlar sus propiedades. Un segundo objetivo fue el desarrollo de métodos para la fabricación de nanocompuestos basedos con celulosa bacteriana. El objetivo final estudia la biocompatibilidad de las capas de celulosa bacteriana que hemos producido y su utilidad como soportes tridimensionales para el crecimiento celular. Así se pretende establecer una plataforma para el estudio de la interacción de células y nanopartículas en un entorno 3D más realista. Durante el primer año, se realizó la puesta a punto en el laboratorio del sistema para producir capas de celulosa bacteriana a partir de dos cepas bacterianas y secarlas a partir de tres métodos de secado:a temperatura ambiente, secado por liofilización y secado supercrítico. Por otra parte, se realizó la caracterización completa de las capas de celulosa bacteriana: su porosidad, la transparencia, la capacidad de absorción de agua y las propiedades mecánicas que se podían controlar seleccionando la cepa bacteriana y el método de secado. En el segundo año, se sintetizó la celulosa bacteriana compuesta con nanopartículas por el método asistida por microondas como materiales de celulosa funcionales novedosos. Este método es eficiente y rápido, forma un recubrimiento de las capas de celulosa bacteriana por nanopartículas de forma homogénea y controlable. Secando las capas de celulosa utilizando diferentes rutas, se puede controlar la cantidad final del contenido de las nanopartículas en los materiales compuestos. Así capas con dominios hidrófobos / hidrófilos favorecían el anclaje de nanopartículas de forma selectiva para crear materiales de celulosa más complejos y funcionales. En este último año, se ha llevado a cabo el estudio de la biocompatibilidad de las capas de celulosa bacteriana in vitro. Aunque la celulosa bacteriana se considera generalmente un material no citotóxico, su biocompatibilidad es un requisito importante para su uso en aplicaciones biológicas y médicas y no ha sido evaluado completamente. Además se fabricó una estructura de celulosa bacteriana 3D mejorada. La tesis se estructura en seis capítulos. Capítulo 1 proporciona una introducción a la celulosa bacteriana. Capítulo 2 ofrece una descripción detallada de la fabricación de capas de celulosa bacteriana (BCF). Capítulo 3 se centra en la síntesis de compuestos de celulosa bacteriana funcionales que incorporan nanopartículas. Capítulo 4 presenta estudios de biocompatibilidad de la celulosa bacteriana como estructura 2D y 3D para estudios celulares in vitro. Capítulo 5 se enumeran las principales conclusiones derivadas de la presente tesis y algunas sugerencias para el trabajo futuro.Capítulo 6 recoge información sobre el autor y las publicaciones durante el doctorado.
In March 2011, I started the application of a scholarship from CSC (Chinese Scholarship Council), which cooperated with the Universitat Autònoma de Barcelona (UAB). After about half year, I secured the scholarship and began my doctoral thesis under the supervision of Dr. Anna Roig and Dr. Anna Laromaine. My project assignment was on bacterial cellulose: fabrication, characterization and biocompatibility studies. Bacterial cellulose is a renewable polysaccharide, which is produced by some types of bacteria in nature. It presents remarkable chemical and physical properties, including high chemical purity and crystallinity, nano-scale fibre network, porosity, high water absorption capacity and mechanical strength. Bacterial cellulose is being used for a wide variety of commercial applications, for example textiles, cosmetics, food products and other technical areas. Furthermore, bacterial cellulose is also biocompatible with excellent biological affinity and biodegradability, which is drawing immense attention from the bio and medical area researchers. The objective of my thesis was to learn how to produce bacterial cellulose films and find strategies to control their properties. A second objective was to developed methods to fabricate nanocomposites based on bacterial cellulose. The final objective was related to prove the biocompatibility of the in-house produced bacterial cellulose films and to be able to use them as three-dimensional scaffolds for cell in-growth. In this way setting up a platform that will allow us to study the interaction of cells and nanoparticles in a realistic 3D environment. During the first year, a lab set-up was successfully built to produce bacterial cellulose from two bacterial strains and three methods of drying were accessed to dry the thin films; at room temperature, freeze drying and supercritical drying. Moreover, the full characterization of bacterial cellulose films was accomplished: their porosity, transparency, water absorption capacity and mechanical properties were tuned by selecting the bacterial strain and the drying method. In the second year, bacterial cellulose composited with nanoparticles as novel functional cellulose materials were synthesized by microwave-assisted method. This method is efficient and fast to form a homogenous conformal and controllable coating of nanoparticles on the bacterial cellulose films. By drying the cellulose films using different routes, the final amount of the nanoparticles content in the composites can be controlled. Furthermore, those films were patterned with hydrophobic/hydrophilic domains and selectively anchored nanoparticles to create more complex and functional cellulose composites. During the last year, an investigation of the biocompatibility of the bacterial cellulose films in vitro was performed. Although bacterial cellulose is generally considered non-cytotoxic material, its biocompatibility as a major requirement for the use in biological and medical applications has not been fully evaluated. Furthermore, an improved 3D bacterial cellulose scaffold was fabricated. The thesis is organized into six chapters. Chapter 1 provides an introduction to bacterial cellulose. Chapter 2 describes a detailed description of the fabrication of bacterial cellulose films (BCFs). Chapter 3 focuses on the synthesis of functional bacterial cellulose composites incorporating nanoparticles. Chapter 4 presents the studies of bacterial cellulose biocompatibility as 2D and 3D scaffold for cell studies in vitro. Chapter 5 lists the main conclusions derived from the present thesis and some suggestions for the future work. Chapter 6 gathers information about the author and the publications during the Ph.D. studies.
10

Somayajula, Dilip Ayyala. "Biocompatibility of osteoblast cells on titanium implants." Cleveland, Ohio : Cleveland State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1207322725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (M.S.)--Cleveland State University, 2008.
Abstract. Title from PDF t.p. (viewed on May 8, 2008). Includes bibliographical references (p. 72-76). Available online via the OhioLINK ETD Center. Also available in print.

Books on the topic "Biocompatibility":

1

Schmalz, Gottfried. Biocompatibility of Dental Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Silver, Frederick H., and David L. Christiansen. Biomaterials Science and Biocompatibility. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0557-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

F, Williams D., ed. Techniques of biocompatibility testing. Boca Raton, Fla: CRC Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silver, Frederick H. Biomaterials science and biocompatability. New York: Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hildebrand, Hartmut F., and Maxime Champy, eds. Biocompatibility of Co-Cr-Ni Alloys. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0757-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

NATO Advanced Research Workshop on Biological Incidences of Co-Cr-Ni Alloys Used in Orthopaedic Surgery and Stomatology (1985 Bischenberg, France). Biocompatibility of Co-Cr-Ni alloys. New York: Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jonathan, Black. Biological performance of materials: Fundamentals of biocompatibility. 4th ed. Boca Raton: Taylor & Francis, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Silver, Frederick H. Biocompatibility: Interactions of biological and implantable materials. New York, N.Y: VCH, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jonathan, Black. Biological performance of materials: Fundamentals of biocompatibility. 2nd ed. New York: Dekker, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jonathan, Black. Biological performance of materials: Fundamentals of biocompatibility. 3rd ed. New York: Marcel Dekker, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biocompatibility":

1

Man, N. K., J. Zingraff, and P. Jungers. "Biocompatibility." In Long-Term Hemodialysis, 42–48. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0027-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leitgeb, Norbert. "Biocompatibility." In Safety of Electromedical Devices, 77–79. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99683-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hasirci, Vasif, and Nesrin Hasirci. "Biocompatibility." In Fundamentals of Biomaterials, 159–72. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8856-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gooch, Jan W. "Biocompatibility." In Encyclopedic Dictionary of Polymers, 80. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reyes Rojas, Armando, Alfredo Aguilar Elguezabal, Alessandro Alan Porporati, Miguel Bocanegra Bernal, and Hilda Esperanza Esparza Ponce. "Biocompatibility." In Synthesis Lectures on Biomedical Engineering, 17–21. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25420-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peters, Kirsten, Ronald E. Unger, and C. James Kirkpatrick. "Biocompatibility Testing." In Biomedical Materials, 423–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

de Vos, Paul, and Reinout van Schilfgaarde. "Biocompatibility Issues." In Cell Encapsulation Technology and Therapeutics, 63–75. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1586-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Walton, Daniel F., and Alfred K. Cheung. "Membrane Biocompatibility." In Suki and Massry’s THERAPY OF RENAL DISEASES AND RELATED DISORDERS, 1029–42. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6632-5_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheung, Alfred K. "Membrane Biocompatibility." In Therapy of Renal Diseases and Related Disorders, 813–39. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-0689-4_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peters, Kirsten, Ronald E. Unger, and C. James Kirkpatrick. "Biocompatibility Testing." In Biomedical Materials, 261–92. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84872-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biocompatibility":

1

Pecheva, E., P. Laquerriere, Sylvie Bouthors, D. Fingarova, L. Pramatarova, T. Hikov, D. Dimova-Malinovska, P. Montgomery, Angelos Angelopoulos, and Takis Fildisis. "Polycrystalline Silicon: a Biocompatibility Assay." In ORGANIZED BY THE HELLENIC PHYSICAL SOCIETY WITH THE COOPERATION OF THE PHYSICS DEPARTMENTS OF GREEK UNIVERSITIES: 7th International Conference of the Balkan Physical Union. AIP, 2010. http://dx.doi.org/10.1063/1.3322581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Piña, C., K. Torres, B. Palma, G. Torres-Villaseñor, N. Perez, A. Olivera, P. Izquierdo, and J. Luna del Villar. "Biocompatibility test of Zinalco alloy." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parel, Jean-Marie A., Stefan Kaminski, Viviana Fernandez, E. Alfonso, Peggy Lamar, Emmanuel Lacombe, Bernard Duchesne, Sander Dubovy, Fabrice Manns, and Pascal O. Rol. "Synthetic cornea: biocompatibility and optics." In International Symposium on Biomedical Optics, edited by Fabrice Manns, Per G. Soederberg, and Arthur Ho. SPIE, 2002. http://dx.doi.org/10.1117/12.470584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sato, Yoshinori, Makoto Ohtsubo, Balachandran Jeyadevan, Kazuyuki Tohji, Ken-ichi Motomiya, Rikizo Hatakeyama, Go Yamamoto, et al. "Biocompatibility of carbon nanotube disk." In Optics East, edited by M. Saif Islam and Achyut K. Dutta. SPIE, 2004. http://dx.doi.org/10.1117/12.579687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buzdugan, Mircea Ion, Horia Balan, and Dorin Muresan. "Electromagnetic compatibility versus electromagnetic biocompatibility." In 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC 2010). IEEE, 2010. http://dx.doi.org/10.1109/epepemc.2010.5606920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rivolta, I., B. Lettiero, A. Panariti, R. D’Amato, V. Maurice, M. Falconieri, N. Herlein, E. Borsella, G. Miserocchi, and Elisabetta Borsella. "Si-based Nanoparticles: a biocompatibility study." In BONSAI PROJECT SYMPOSIUM: BREAKTHROUGHS IN NANOPARTICLES FOR BIO-IMAGING. AIP, 2010. http://dx.doi.org/10.1063/1.3505090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Park, Jaebum, and Mike McShane. "Nanofilm coatings for transport control and biocompatibility." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doursounian, L., J. Honiger, J. C. Bonnet, M. Jagueux, and A. Apoil. "Magnetic articular prosthesis: functional study and biocompatibility." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Augustynek, Martin, Josef Cihak, Dominik Vilimek, Jan Kubicek, Marek Penhaker, and Klara Fiedorova. "Biocompatibility of Medical Devices and Their Risks." In 2019 8th European Workshop on Visual Information Processing (EUVIP). IEEE, 2019. http://dx.doi.org/10.1109/euvip47703.2019.8946251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Battistoni, Silvia, Victor Erokhin, Nicola Cornella, Tatiana Berzina, Paolo Macchi, and Salvatore Iannotta. "Analysis of PANI biocompatibility with neuronal cells." In 2015 International Conference on Memristive Systems (MEMRISYS). IEEE, 2015. http://dx.doi.org/10.1109/memrisys.2015.7378403.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Biocompatibility":

1

Tomova, Zlatina, Angelina Vlahova, Christo Kissov, Rada Kazakova, and Dimitar D. Radev. Corrosion Resistance and Biocompatibility of Multicomponent Ni- and Co ‑ Base Dental Alloys Obtained by Methods of Powder Metallurgy. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2018. http://dx.doi.org/10.7546/crabs.2018.07.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raychev, Nikolay. Can human thoughts be encoded, decoded and manipulated to achieve symbiosis of the brain and the machine. Web of Open Science, October 2020. http://dx.doi.org/10.37686/nsrl.v1i2.76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This article discusses the current state of neurointerface technologies, not limited to deep electrode approaches. There are new heuristic ideas for creating a fast and broadband channel from the brain to artificial intelligence. One of the ideas is not to decipher the natural codes of nerve cells, but to create conditions for the development of a new language for communication between the human brain and artificial intelligence tools. Theoretically, this is possible if the brain "feels" that by changing the activity of nerve cells that communicate with the computer, it is possible to "achieve" the necessary actions for the body in the external environment, for example, to take a cup of coffee or turn on your favorite music. At the same time, an artificial neural network that analyzes the flow of nerve impulses must also be directed at the brain, trying to guess the body's needs at the moment with a minimum number of movements. The most important obstacle to further progress is the problem of biocompatibility, which has not yet been resolved. This is even more important than the number of electrodes and the power of the processors on the chip. When you insert a foreign object into your brain, it tries to isolate itself from it. This is a multidisciplinary topic not only for doctors and psychophysiologists, but also for engineers, programmers, mathematicians. Of course, the problem is complex and it will be possible to overcome it only with joint efforts.

To the bibliography