Academic literature on the topic 'Biochar characterisation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biochar characterisation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biochar characterisation"
Singh, Balwant, Bhupinder Pal Singh, and Annette L. Cowie. "Characterisation and evaluation of biochars for their application as a soil amendment." Soil Research 48, no. 7 (2010): 516. http://dx.doi.org/10.1071/sr10058.
Full textAdekanye, Timothy, Oluwasogo Dada, Kolapo Jegede, and Makun Aderinto. "Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterisation." Research in Agricultural Engineering 68, No. 1 (March 23, 2022): 27–34. http://dx.doi.org/10.17221/106/2020-rae.
Full textSom, A. Md, Z. Wang, and A. Al-Tabbaa. "Palm frond biochar production and characterisation." Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103, no. 1 (March 2012): 39–50. http://dx.doi.org/10.1017/s1755691012000035.
Full textIdowu, Gideon A., and Ashleigh J. Fletcher. "The Manufacture and Characterisation of Rosid Angiosperm-Derived Biochars Applied to Water Treatment." BioEnergy Research 13, no. 1 (November 21, 2019): 387–96. http://dx.doi.org/10.1007/s12155-019-10074-x.
Full textNajmi, N. H., Nur Farhana Diyana Mohd Yunos, Norinsan Kamil Othman, and Muhammad Asri Idris. "Characterisation of Reduction of Iron Ore with Carbonaceous Materials." Solid State Phenomena 280 (August 2018): 433–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.280.433.
Full textArun, Sija, and Payal Maharathi. "Characterisation of Biochar Obtained from Organic Material and its Application for Removal of Ciprofloxacin." Oriental Journal of Chemistry 35, no. 3 (June 14, 2019): 1086–93. http://dx.doi.org/10.13005/ojc/350323.
Full textChia, Chee Hung, Paul Munroe, Stephen Joseph, and Yun Lin. "Microscopic characterisation of synthetic Terra Preta." Soil Research 48, no. 7 (2010): 593. http://dx.doi.org/10.1071/sr10012.
Full textLepak-Kuc, Sandra, Mateusz Kiciński, Przemyslaw P. Michalski, Krystian Pavlov, Mauro Giorcelli, Mattia Bartoli, and Malgorzata Jakubowska. "Innovative Biochar-Based Composite Fibres from Recycled Material." Materials 14, no. 18 (September 14, 2021): 5304. http://dx.doi.org/10.3390/ma14185304.
Full textCerqueira, Wildson V., Tatiana F. Rittl, Etelvino H. Novotny, and Annibal D. Pereira Netto. "High throughput pyrogenic carbon (biochar) characterisation and quantification by liquid chromatography." Analytical Methods 7, no. 19 (2015): 8190–96. http://dx.doi.org/10.1039/c5ay01242b.
Full textGao, Zhan, Franz-Hubert Haegel, Johan A. Huisman, Odilia Esser, Egon Zimmermann, and Harry Vereecken. "Spectral induced polarization for the characterisation of biochar in sand." Near Surface Geophysics 15, no. 6 (October 1, 2017): 645–56. http://dx.doi.org/10.3997/1873-0604.2017045.
Full textDissertations / Theses on the topic "Biochar characterisation"
Uras, Umit. "Biochar from vacuum pyrolysis of agricultural residues : characterisation and its applications." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18011.
Full textENGLISH ABSTRACT: According to recent studies, biochar has the potential to improve soil fertility, mitigate climate change, reduce off-site pollution and assist in managing wastes. The application of biochar to soil is not a new concept; Amazonian dark earths are carbon-rich soils with high soil fertility that were created before 1541. Vacuum pyrolysis is a thermo-chemical conversion technique in which biomass is transformed into bio-oil, biochar and non-condensable gas. The objective of this work was to investigate the chemical and physical properties of biochar produced from vacuum pyrolysis of black wattle, vineyard annual prunings and sugar cane bagasse for their potential as soil amendment and adsorbent. The vacuum pyrolysis of black wattle, vineyard prunings and sugar cane bagasse (pyrolysis temperature: 460°C, pressure: 8kPaabs, heating rate: 17°C/min) resulted in biochar yields of 23.5%, 31.0% and 19.7% on a weight basis, respectively. The nature of the biomass had a substantial effect on yields of the products. High ash content combined with high lignin composition led to higher biochar yields for vineyard prunings. The highest surface acidity was observed for sugar cane bagasse (2.3 mmol/g), whereas the lowest surface acidity was observed for vineyard biochar (1.67 mmol/g). Consequently, the pH of the biochars was in the order: vineyard (10.43)> black wattle (9.74)> sugar cane bagasse (6.56). The cation exchange capacities (CEC) of biochars were 122 cmol/kg, 101 cmol/kg and 65 cmol/kg for sugar cane bagasse, black wattle and vineyard, respectively. The electrical conductivities (EC) were highly correlated with feedstock nature. The Ca and K rich vineyard biochar resulted in the highest EC (0.83 dS/m), whilst EC values of black wattle and sugar cane bagasse were 0.67 dS/m and 0.17 dS/m, respectively. Biochars contained substantial amounts of plant-available nutrients, while being low in toxic inorganic content (Pb, As, Cd). The BET surface areas of sugar cane bagasse, black wattle and vineyard were 259 mª/g, 241 mª/g and 91 mª/g, respectively. The adsorption capacity was found to increase with increased contact time and initial solution concentration. The experimental equilibrium time were found to be 3505 min, 1350 min and 150 min for adsorption of 20 mg/L methylene blue solution for vineyard, black wattle and sugar cane bagasse, respectively. Equilibrium data were well fitted to Langmuir and Freundlich isotherms. The maximum adsorption capacities were found to be 15.15 mg/g, 14.49 mg/g and 19.23 mg/g for vineyard, black wattle and sugar cane bagasse when modelled with Langmuir isotherms. The adsorption kinetics was found to follow the pseudo-second order kinetic model. In summary, biochar from sugar cane bagasse is a promising adsorbent for the removal of basic dyes due to its high surface area and microporous structure. This biochar can be applied to slightly acidic soils for nutrient retention and the exchange of nutrients. On the other hand, possessing high amounts of nutrients, biochars from black wattle and vineyard are potential soil amendentment agents. Biochar from black wattle is more beneficial compared to biochar from vineyard due to its higher surface area, microporosity and cation exchange capacity.
AFRIKAANSE OPSOMMING: Volgens onlangse studies, het houtskool die potensiaal om grond vrugbaarheid te verbeter, klimaat verandering te versag, besoedeling te verlaag en ondersteuning te verleen in die bestuur van afval. Die toevoeging van houtskool in grond is nie ‘n nuwe konsep nie; Amazone donker gronde is koolstof ryk gronde met hoë vrugbaarheid wat voor 1541 geskep is. Vakuum pirolise is ‘n termo-chemiese omskakelings tegniek waarin biomassa afgebreek word na bio-olie, houtskool en nie-kondenseerbare gasse. Die doelwit van hierdie werk was om die chemiese en fisiese eienskappe van houtskool, wat geproduseer is deur die vakuum pirolise van swart wattel, jaarlikse wingerd snoeisels, en suikerriet bagasse, vir hulle potensiaal vir grond verbetering en adsorpsie toepassings te ondersoek. Die vakuum pirolise van swart wattel, jaarlikse wingerd snoeisels, en suikerriet bagasse (pirolise temperatuur: 460°C, druk: 8kPaabs, verhittingstempo: 17°C/min) het houtskool opbrengste van 23.5%, 31.0% en 19.7% op massa basis, respektiewelik tot gevolg. Die tipe biomassa het ‘n beduidende effek op die opbrengs van die produkte. Hoë as-inhoud, gekombineer met hoë lignien inhoud, lei tot hoër houtskool opbrengste vir wingerd snoeisels. Die hoogste oppervlak suurheid is gevind vir suikerriet bagasse (2.3 mmol/g), terwyl die laagste waarde gevind is vir die wingerd snoeisels (1.67 mmol/g). Gevolglik, is die pH van die houtskole in die volgorde van: wingerd (10.43) > swart wattle (9.74) > suikerriet bagasse (6.56). Die katioon uitruiling vermoë (CEC) van die houtskole was 122 cmol/kg, 101 cmol/kg and 65 cmol/kg vir suikerriet bagasse, swart wattel en wingerd snoeisels respektiewelik. Die elektriese konduktiwiteite (EC) is gekorreleer met die eienskappe van die biomassas. Die Ca en K ryke wingerd snoeisel houtskool het die hoogste EC waarde (0.83 dS/m) tot gevolg, terwyl die EC waardes vir swart wattel en suikerriet bagasse bepaal is as 0.67 dS/ 0.16 dS/m respektiewelik. Die houtskole het groot hoeveelhede plant-beskikbare voedingstowwe bevat, terwyl dit laag was in toksiese anorganiese stowwe (Pb, As, Cd). Die BET oppervlak areas van suikerriet bagasse, swart wattel en wingerd snoeisels was 259 mª/g, 241 mª/g en 91 mª/g respektiewelik. Daar is gevind dat die adsorpsie kapasiteit toeneem met toenemende kontak tyd met die aanvanklike oplossing. Die eksperimentele ewewigs tye is gevind as 350 min, 1350 min en 150 min vir die adsorpsie van ‘n 20 mg/L metileen blou oplossing vir wingerd snoeisels, swart wattel en suikerriet bagasse, respektiewelik. Die ewewigs data het die Langmuir en Freundlich isoterme goed gepas. Die maksimum adsorpsie kapasiteite is gevind as 15.15 mg/g, 14.9 mg/g en 19.23 mg/g vir wingerd snoeisels, swart wattel en suikerriet bagasse wanneer dit gemodeleer is met Langmuir isoterme. Daar is bevind dat die adsorpsie kinetika ‘n pseudo-tweede orde kintika model volg. In opsomming, houtskool van suikerriet bagasse is ‘n veelbelowende adsorpsie middel vir die verwydering van basiese kleurstowwe, as gevolg van die hoë oppervlak area en mikroporie-struktuur van hierdie houtskool. Dié houtskool kan gebruik word op effense suur gronde vir voedingstof behoud en uitruiling. Aan die ander kant, houtskole van swart wattel en wingerd snoeisels wat hoë hoeveelhede voedingsstowwe bevat, is potensiële grond verbeterings middels. Houtskool afkomstig van swart wattel is meer voordelig as die van wingerd snoeisels, as gevolg van die hoër oppervlak area, mikroporositeit en katioon uitruilings vermoë van die swart wattel houtskool.
Mayer, Zsuzsa. "Pyrolysis of contaminated energy crops and the characterisation of the gained biochar." Thesis, Aston University, 2013. http://publications.aston.ac.uk/19249/.
Full textXin, Jiat Lee. "Evaluation of cost effective adsorbent and biochar from Malaysia oil palm wastes : synthesis, characterisation and optimisation studies." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/48864/.
Full textGhidotti, Michele <1988>. "Analytical Methods for the Characterisation of Volatile and Water-Soluble Organic Compounds in Biochar. Relationships with Thermal Stability and Seed Germination." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/8038/1/Ghidotti_Michele_tesi.pdf.
Full textFARINA, MATTEO. "Nuclear Magnetic Resonance: structural characterisation of polymers and biochars." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/127430.
Full textEnander, Karin. "Folded polypeptide scaffolds for biosensor and biochip applications : design, synthesis, functionalisation and characterisation /." Linköping : Univ, 2003. http://www.bibl.liu.se/liupubl/disp/disp2003/tek848s.pdf.
Full textRobinson, James P. "Generation and characterisation of graphite and bio-oil from the pyrolysis of woody biomass." Thesis, 2017. http://hdl.handle.net/1959.7/uws:45890.
Full textBooks on the topic "Biochar characterisation"
Singh, Balwant, Marta Camps-Arbestain, and Johannes Lehmann, eds. Biochar. CSIRO Publishing, 2017. http://dx.doi.org/10.1071/9781486305100.
Full textBook chapters on the topic "Biochar characterisation"
Novotny, E. H., R. Auccaise, L. B. Lima, and B. E. Madari. "Characterisation of Humic Substances Extracted from Soil Treated with Charcoal (Biochar)." In Functions of Natural Organic Matter in Changing Environment, 971–74. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5634-2_178.
Full textBardalai, Monoj, D. K. Mahanta, and Biplab Das. "Production and Characterisation of Teak Tree Saw Dust and Rice Husk Biochar." In Pollutants from Energy Sources, 291–306. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3281-4_14.
Full textConference papers on the topic "Biochar characterisation"
Indren, Mathu, Nishanth Cheruvu, Cristian Birzer, and Paul Medwell. "Biochar production and characterisation — A field study." In 2017 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2017. http://dx.doi.org/10.1109/ghtc.2017.8239333.
Full textde Jager, Kylie, Michael Mentink, Henry Lancashire, Yazan Al-Ajam, Stephen Taylor, and Anne Vanhoestenberghe. "Characterisation of a multi-channel multiplexed EMG recording system: towards realising variable electrode configurations." In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2019. http://dx.doi.org/10.1109/biocas.2019.8918710.
Full textWilkinson, J. M., N. Hack, L. I. Thorsen, and J. A. Thomas. "MONOCLONAL ANTIBODIES RECOGNISING PROTEINS OF THE OUTER AND INNER SURFACE OF THE PLATELET PLASMA MEMBRANE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644493.
Full textWasi, S., P. Alles, D. Gauthier, U. Bhargava, J. Farsi, J. E. Aubin, and J. Sodeki. "STUDIES ON SMALL MOLECULAR WEIGHT ADHESION PROTEINS (SAPs) FROM CONNECTIVE TISSUES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643556.
Full text