Academic literature on the topic 'Biocatalysis – Industrial applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biocatalysis – Industrial applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biocatalysis – Industrial applications"
Hecht, Katrin, Hans-Peter Meyer, Roland Wohlgemuth, and Rebecca Buller. "Biocatalysis in the Swiss Manufacturing Environment." Catalysts 10, no. 12 (December 4, 2020): 1420. http://dx.doi.org/10.3390/catal10121420.
Full textKuo, Chia-Hung, and Chwen-Jen Shieh. "Biocatalytic Process Optimization." Catalysts 10, no. 11 (November 12, 2020): 1303. http://dx.doi.org/10.3390/catal10111303.
Full textLittlechild, Jennifer A. "Archaeal Enzymes and Applications in Industrial Biocatalysts." Archaea 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/147671.
Full textSime, John T. "Applications of Biocatalysis to Industrial Processes." Journal of Chemical Education 76, no. 12 (December 1999): 1658. http://dx.doi.org/10.1021/ed076p1658.
Full textWu, Shuke, Radka Snajdrova, Jeffrey C. Moore, Kai Baldenius, and Uwe T. Bornscheuer. "Biocatalysis: Enzymatic Synthesis for Industrial Applications." Angewandte Chemie International Edition 60, no. 1 (August 17, 2020): 88–119. http://dx.doi.org/10.1002/anie.202006648.
Full textTrincone, Antonio. "Application-Oriented Marine Isomerases in Biocatalysis." Marine Drugs 18, no. 11 (November 21, 2020): 580. http://dx.doi.org/10.3390/md18110580.
Full textKunzendorf, Andreas, and Uwe T. Bornscheuer. "Optimierte Designer-Enzyme für die pharmazeutische Industrie." BIOspektrum 28, no. 7 (November 2022): 760–62. http://dx.doi.org/10.1007/s12268-022-1852-0.
Full textSanti, Micol, Luca Sancineto, Vanessa Nascimento, Juliano Braun Azeredo, Erika V. M. Orozco, Leandro H. Andrade, Harald Gröger, and Claudio Santi. "Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds." International Journal of Molecular Sciences 22, no. 3 (January 20, 2021): 990. http://dx.doi.org/10.3390/ijms22030990.
Full textVolmer, Jan, Christoph Neumann, Bruno Bühler, and Andreas Schmid. "Engineering of Pseudomonas taiwanensis VLB120 for Constitutive Solvent Tolerance and Increased Specific Styrene Epoxidation Activity." Applied and Environmental Microbiology 80, no. 20 (August 15, 2014): 6539–48. http://dx.doi.org/10.1128/aem.01940-14.
Full textGuo, Fei, and Per Berglund. "Transaminase biocatalysis: optimization and application." Green Chemistry 19, no. 2 (2017): 333–60. http://dx.doi.org/10.1039/c6gc02328b.
Full textDissertations / Theses on the topic "Biocatalysis – Industrial applications"
Mathiba, Kgama. "High pressure liquid chromatographic quantification of nitrile biocatalysis." Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1015710.
Full textUrban, Pawel Lukasz. "Developments in on-capillary monitoring of biocatalytic processes." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489209.
Full textMusengi, Amos. "Exploitation of the potential of a novel bacterial peroxidase for the development of a new biocatalytic process." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/1525.
Full textPeroxidases are ubiquitous catalysts that oxidise a wide variety of organic and inorganic compounds employing peroxide as the electron acceptor. They are an important class of oxidative enzymes which are found in nature, where they perform diverse physiological functions. Apart from the white rot fungi, actinomycetes are the only other known source of extracellular peroxidases. In this study, the production of extracellular peroxidase in wild type actinomycete strains was investigated, for the purpose of large-scale production and finding suitable applications. The adjustment of environmental parameters (medium components, pH, temperature and inducers) to optimise extracellular peroxidase production in five different strains was carried out. Five Streptomyces strains isolated from various natural habitats were initially selected for optimisation of their peroxidase production. Streptomyces sp. strain BSII#1 and Streptomyces sp. strain GSIII#1 exhibited the highest peroxidase activities (1.30±0.04 U ml-1 and 0.757±0.01 U ml-1, respectively) in a complex production medium at 37°C and pH 8.0 in both cases. Maximum enzyme production for Streptomyces strain BSII#1 was obtained in the presence of 0.1 mM veratryl alcohol or pyrogallol, while 0.1 mM guaiacol induced the highest peroxidase production in Streptomyces sp. strain GSIII#1. As the highest peroxidase producer, Streptomyces sp. strain BSII#1 was selected for further studies. The strain was first characterised by a polyphasic approach, and was shown to belong to the genus Streptomyces using various chemotaxonomic, genotypic and phenotypic tests. Production of peroxidase was scaled up to larger volumes in different bioreactor formats. The airlift configuration was optimal for peroxidase production, with Streptomyces sp. strain BSII#1 achieving maximum production (4.76±0.46 U ml-1) in the 3 l culture volume within 60 hrs of incubation. A protocol for the purification of the peroxidase was developed, which involved sequential steps of acid and acetone precipitation, as well as ultrafiltration. A purification factor of at least 46-fold was achieved using this method and the protein was further analysed by LC-MS. The protein was shown to be a 46 kDa protein, and further biochemical characterisation showed that the peroxidase had a narrower spectrum of substrates as compared to reports on other peroxidases derived from actinomycetes. With 2,4-dichlorophenol as the substrate, the Km and Vmax for this enzyme were 0.893 mM and 1.081 μmol min-1, respectively. The purified peroxidase was also capable of catalysing coupling reactions between several phenolic monomer pairs. Overall, the peroxidase from Streptomyces sp. strain BSII#1 could feasibly be produced in larger scales and there remains further room to investigate other potential applications for this enzyme.
Castilla, Ypas Estela. "Biotechnological production of galactosides of pharmaceutical interest: enzyme screening, engineering and application." Doctoral thesis, Universitat Ramon Llull, 2018. http://hdl.handle.net/10803/565506.
Full textLa lactosa es un disacárido de la leche producido por casi todos los mamíferos. Para su digestión debe ser hidrolizado per la enzima lactasa (EC. 3.3.1.23), que es producida por las células epiteliales del intestino delgado, dando lugar a glucosa i galactosa. Su deficiencia o baja concentración (hipolactasia) puede producir diversos síntomas como son hinchazón, dolor abdominal, flatulencias y diarrea. La evaluación de la deficiencia de la lactasa es importante en pediatría y gastroenterología por la elevada frecuencia de esta alteración genética (65%). La mayoría de los métodos de diagnóstico son invasivos y drásticos y no son adecuados para su uso en población infantil. Frente a esta situación, se desarolló un nuevo método no invasivo. Éste se basa en la administración de 4-O-β-D-galactopiranosil-D-xilose (gaxilosa), un análogo estructural de la lactosa. Este compuesto también es sustrato de la lactasa y es hidrolizado dando lugar a galactosa y xilosa. El segundo se absorbe pasivamente a través del intetsino delgado y se elimina a través de la orina donde puede ser detectado por un método colorimétrico senzillo. La síntesi química de la gaxilosa requiere del uso de grupos protectores y de largos y complejos pasos de síntesis para llegar a rendimientos de producción bajos (9%). La ruta biosintética utilizando galactosyltransferasas comporta dificultades técnicas y costes elevados. Por otro lado, las glicosidasas tienen la capacidad de síntesis de glicósidos por transglicosidación con costes bajos. La principal desventaja de esta metodologia son los bajos rendimientos por la actividad hidrolítica de la enzima y los problemas de purificación por la formación de regioisómeros y/u otros productos. La β-galactosidasa de Escherichia coli fue seleccionada, entre otras enzimas, para la producción de gaxilosa a nivel industrial. Después de varios pasos de purificación el rendimiento es del 20-23%. Este trabajo pretende aumentar el rendimiento de la producción de gaxilosa. Primero se modificaron las condiciones de reacción para aumentar la activitat enzimática de transglicosidación. Por otro lado, se buscó otra enzima para la producción industrial. Estudios bibliográficos y experimentales permitieron la selección de una nueva enzima capaz de sintetitzar más gaxilosa, llegando a un rendimiento del 35% utilizando 3,3 veces menos enzima (con la consecuente disminución de los costes de producción). Aunque la nueva enzima presentaba una actividad de transglicosidación mayor, la actividad hidrolítica remanente no permite aumentar el rendimento. Para modificar la actividad enzimática y aumentar la síntesis de gaxilosa se decidió modificar la enzima mediante ingeniería de proteínas (racional y aleatoria).
Lactose is a milk disaccharide produced by nearly all mammalian species. For its digestion, it must be hydrolysed to galactose and glucose by lactase (EC 3.2.1.23), which is normally produced by the cells that line the small intestine. Deficiency or low levels of lactase (hypolactase) can cause common symptoms including bloating, abdominal pain or cramps, flatulence and diarrhea. Evaluation of enzyme deficiency is important in pediatrics and gastroenterology due to the high frequency of genetic predisposition (65%). Many of the standard diagnostic procedures are invasive, quite drastic and not applicable to infants and young childen. A non-invasive method was developed based on the use of 4-O-β-D-galactopyranosyl-D-xylose (gaxilose), a structural analogue of lactose (it only lacks the hydroxymethyl group at position 5). This compound is substrate of the lactase enzyme in vivo, yielding D-galactose and D-xylose. The latter is passively absorbed from the small intestine and is eliminated in the urine where it can be quantified by a colorimetric procedure. Chemical synthesis of gaxilose requires the addition of protective groups and suffers from long, tedious reaction sequences with low overall productivity (9%). The biosynthetic route involving galactosyltransferase enzymes implies technical difficulties (unstable and expensive enzymes) and high costs. Glycosidases have been shown to catalyse the formation of glycosides by transglycosylation at low cost. Disadvantatges of this approach include yield limitations due to competing hydrolysis reactions, and purification problems because of the formation of other regioisomers and by-products. Escherichia coli β-galactosidase was selected to produce gaxilose at industrial level. After an enzymatic reaction and several purification steps, a yield of 20-23% is reached. The present work aims to increase gaxilose production yield by different strategies. First, enzymatic conditions were modified to increase enzymatic gaxilose production. On ther other hand, other enzymes were searched to be used as gaxilose biocatalysts. Bibliographic and experimental studies allowed to find one enzyme able to increase gaxilose yield up to 35% using 3.3-fold less enzyme, and thus diminishing the production costs). Despite the higher transglycosidase activity of the new enzyme, its hydrolase activity did not allow the increase of gaxilose prodution. Protein engineering (random and rational approaches) was used to modify the enzyme activity and increase gaxilose synthesis.
Books on the topic "Biocatalysis – Industrial applications"
Biocatalysis based on heme peroxidases: Peroxidases as potential industrial biocatalysts. New York: Springer-Verlag, 2010.
Find full textGrunwald, Peter. Biocatalysis: Biochemical fundamentals and applications. London: Imperial College Press, 2009.
Find full textBiocatalysis: Biochemical fundamentals and applications. London: Imperial College Press, 2009.
Find full textHilterhaus, Lutz, Andreas Liese, Ulrich Kettling, and Garabed Antranikian, eds. Applied Biocatalysis: From Fundamental Science to Industrial Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.
Full textInternational Symposium on Biocatalysis and Biotechnology (4th 2008 Taipei, Taiwan). Biocatalysis and molecular engineering. Hoboken, N.J: Wiley, 2010.
Find full textGreen polymer chemistry: Biocatalysis and biomaterials. Washington, DC: American Chemical Society, 2010.
Find full textBook chapters on the topic "Biocatalysis – Industrial applications"
Vojcic, Ljubica, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg. "Engineering Proteases for Industrial Applications." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 101–19. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch6.
Full textSchneider, Nadine, Andrea Volkamer, Eva Nittinger, and Matthias Rarey. "Supporting Biocatalysis Research with Structural Bioinformatics." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 71–100. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch5.
Full textJu, Xin, Jie Zhang, Kui Chan, Xiaoliang Liang, Junhua Tao, and Jian-He Xu. "Application of High-Throughput Screening in Biocatalysis." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 53–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch4.
Full textGauss, Dominik, Bernhard Schönenberger, Getachew S. Molla, Birhanu M. Kinfu, Jennifer Chow, Andreas Liese, Wolfgang R. Streit, and Roland Wohlgemuth. "Biocatalytic Phosphorylation of Metabolites." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 147–77. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch8.
Full textKrüger, Anna, Skander Elleuche, Kerstin Sahm, and Garabed Antranikian. "Robust Biocatalysts - Routes to New Diversity." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 31–51. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch3.
Full textBernaerts, Katrien, Luuk Mestrom, and Stefaan De Wildeman. "Biocatalysis toward New Biobased Building Blocks for Polymeric Materials." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 405–28. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch17.
Full textPatel, Ramesh N. "Pharmaceutical Intermediates by Biocatalysis: From Fundamental Science to Industrial Applications." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 367–403. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch16.
Full textda Cruz Silvério, Sara Isabel, and Lígia Raquel Marona Rodrigues. "Biocatalysis in Ionic Liquids: Enzymatic Synthesis of Sugar Fatty Acid Esters." In Nanotechnology-Based Industrial Applications of Ionic Liquids, 51–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44995-7_4.
Full textWessjohann, Ludger, Anne-Katrin Bauer, Martin Dippe, Jakob Ley, and Torsten Geißler. "Biocatalytic Synthesis of Natural Products byO-Methyltransferases." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 121–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch7.
Full textBeutel, Sascha, Louis Villain, and Thomas Scheper. "Industrial Application of Membrane Chromatography for the Purification of Enzymes." In Applied Biocatalysis: From Fundamental Science to Industrial Applications, 297–316. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527677122.ch13.
Full textConference papers on the topic "Biocatalysis – Industrial applications"
Bhushan, Indu. "Efficient media for high production of microbial lipase from Bacillus subtilis (BSK-L) using response surface methodology for enantiopure synthesis of drug molecules." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.044.
Full textTopakas, Evangelos, Anastasia Zerva, and Nikolaos Tsafantakis. "Greek Basidiomycete Wild Strains for the Production of Bioactive Compounds and Enzymes with Applications in Cosmetic and Biocatalysis Industries." In 1st International Electronic Conference on Catalysis Sciences. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/eccs2020-07561.
Full text