Academic literature on the topic 'BIOACTIVE GLASS MATERIALS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'BIOACTIVE GLASS MATERIALS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "BIOACTIVE GLASS MATERIALS"
Brook, I. M., and P. V. Hatton. "Glass-ionomers: bioactive implant materials." Biomaterials 19, no. 6 (April 1998): 565–71. http://dx.doi.org/10.1016/s0142-9612(98)00138-0.
Full textObata, Akiko, Sungho Lee, and Toshihiro Kasuga. "Bioactive glass materials for tissue regeneration." Journal of the Ceramic Society of Japan 130, no. 8 (August 1, 2022): 595–604. http://dx.doi.org/10.2109/jcersj2.22054.
Full textBurdușel, Alexandra-Cristina. "Bioactive composites for bone regeneration." Biomedical Engineering International 1, no. 1 (September 30, 2019): 9–15. http://dx.doi.org/10.33263/biomed11.009015.
Full textChen, Chuan Zhong, Xiang Guo Meng, Hui Jun Yu, Ting He, Han Yang, Dian Gang Wang, and Shi Gui Zhao. "Research Progress in Bioactive Glasses for Implant Materials." Key Engineering Materials 591 (November 2013): 108–12. http://dx.doi.org/10.4028/www.scientific.net/kem.591.108.
Full textVitale-Brovarone, C., S. Di Nunzio, O. Bretcanu, and E. Verné. "Macroporous glass-ceramic materials with bioactive properties." Journal of Materials Science: Materials in Medicine 15, no. 3 (March 2004): 209–17. http://dx.doi.org/10.1023/b:jmsm.0000015480.49061.e1.
Full textGonzalo-Juan, Isabel, Fangtong Xie, Malin Becker, Dilshat U. Tulyaganov, Emanuel Ionescu, Stefan Lauterbach, Francesca De Angelis Rigotti, Andreas Fischer, and Ralf Riedel. "Synthesis of Silver Modified Bioactive Glassy Materials with Antibacterial Properties via Facile and Low-Temperature Route." Materials 13, no. 22 (November 13, 2020): 5115. http://dx.doi.org/10.3390/ma13225115.
Full textDieckmann, Phoebe, Dirk Mohn, Matthias Zehnder, Thomas Attin, and Tobias T. Tauböck. "Light Transmittance and Polymerization of Bulk-Fill Composite Materials Doped with Bioactive Micro-Fillers." Materials 12, no. 24 (December 7, 2019): 4087. http://dx.doi.org/10.3390/ma12244087.
Full textSindut, R., Katarzyna Cholewa-Kowalska, and Maria Łączka. "Bioactive Glass-Ceramic Porous Sinters." Advances in Science and Technology 49 (October 2006): 103–8. http://dx.doi.org/10.4028/www.scientific.net/ast.49.103.
Full textMaximov, Maxim, Oana-Cristina Maximov, Luminita Craciun, Denisa Ficai, Anton Ficai, and Ecaterina Andronescu. "Bioactive Glass—An Extensive Study of the Preparation and Coating Methods." Coatings 11, no. 11 (November 13, 2021): 1386. http://dx.doi.org/10.3390/coatings11111386.
Full textShaikh, Muhammad Saad, Muhammad Amber Fareed, and Muhammad Sohail Zafar. "Bioactive Glass Applications in Different Periodontal Lesions: A Narrative Review." Coatings 13, no. 4 (March 31, 2023): 716. http://dx.doi.org/10.3390/coatings13040716.
Full textDissertations / Theses on the topic "BIOACTIVE GLASS MATERIALS"
Eriksson, Alexander. "Bioactivity testing of dental materials." Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-382042.
Full textFu, Qiang. "Freeze casting of bioactive glass and ceramic scaffolds for bone tissue engineering." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Fu_09007dcc806b51af.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 7, 2010) Includes bibliographical references.
Gwinner, Fernanda Pelógia Camargo [UNESP]. "Influência da adição de bioactive glass na liberação de íons do cimento de ionômero de vidro modificado por resina." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/105480.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Esse estudo in vitro avaliou o efeito da adição de diferentes concentrações e composições de bioactive glass (BAG) ao cimento de ionômero de vidro modificado por resina (CIVMR) (Fuji II LC) na liberação de íons Ca2+ e PO4 3- após a imersão em simulador de fluido corpóreo (SFC), comparando com o grupo controle, sem BAG. Foram utilizados 3 tipos de BAG: BAG65 (65mol% SiO2, 31mol% CaO, 4mol% P2O5), BAG75 (75mol% SiO2, 21mol% CaO, 4mol% P2O5), BAG85 (85mol% SiO2, 11mol% CaO, 4mol% P2O5), adicionados ao CIVMR nas proporções de 25%, 35% e 50%. O BAG foi misturado ao pó do CIVMR e misturado com o líquido resinoso do CIVMR. O material foi colocado numa matriz de PVC (5mm x 1mm) e polimerizado, entre laminas de vidro, durante 40s. As amostras foram armazenadas a 37°C, com 100% de umidade, durante 24h. Após esse período as amostras foram trituradas por meio de gral e pistilo e peneiradas para a obtenção de partículas menores que 90μm. A liberação dos íons Ca2+ e PO4 3- foi mensurada após 15min, 30min, 1h, 3h, 6h e 24h de imersão de 20mg de cada material em SFC, com 5 réplicas para cada condição experimental. Para a análise estatística, foi utilizada a área sob a curva (PPM x tempo). Os dados foram submetidos à ANOVA e testes de Dunnet e Tukey (!= 0,05). Os grupos contendo BAG65 liberaram significantemente mais Ca2+ não havendo diferença entre as diferentes concentrações de BAG adicionado. Os grupos contendo BAG75 e BAG85 apresentaram resultados semelhantes, sendo que aqueles com 25% de BAG foram os que apresentaram menores valores de liberação de Ca2+ após 24h de imersão. Com relação a liberação de íons PO4 3-, os grupos contendo BAG65 apresentaram maiores valores de área...
Bioactive restorative materials may stimulate the repair of tooth structure though the release of remineralization-aiding components including calcium and phosphate. The objective of this study was to measure the ion release from resin-modified bioactive glass ionomer cement (RMBGIC) containing various formulations of bioactive glass (BAG). Three types of BAG: BAG65 (65 mol% SiO2, 31 mol% CaO, 4 mol% P2O5), BAG75 (75 mol% SiO2, 21 mol% CaO, 4 mol% P2O5), BAG85 (85 mol% SiO2, 11 mol% CaO, 4 mol% P2O5) were prepared using sol-gel method, grounded, micronized, and mixed with GIC powder (Fuji II LC, GC) in the following proportions: 1:1, 1:2, 1:3. The mixed-ionomer powders were combined with standard RMGIC liquid (Fuji II LC, GC) and light cured (40 s; Ultra Lume LED, 1100 mW/cm2) in cylindrical disk molds (5 mm x 2 mm). The cured RMBGIC specimens were grounded and sieved to 100 !m and immersed (20 mg; n=5) in 3 ml of simulated body fluid (SBF), at 37°C for 1/4, 1/2, 1, 3, 6 and 24 hours with continuous agitation. Following centrifugation and decanting, the [Ca+2] and [HxPO4 3-x] in the SBF were measured using ion specific electrode and visible spectroscopy, respectively. The amount of ion release were statistically analyzed using ANOVA/Tukey ($= 0.05). The [PO4 3-] in SBF immediately increased for all RMBGICs. The ion release slowly decreased after 1 h, yet remained higher than the original SBF over the 24 h period. The [PO4 3-] in SBF for the control GIC continuously decreased. Overall, BAG65 > BAG75= BAG85 > GIC for [PO4 3-]. The [Ca2+] release increase initially for all RMBGICs, remaining with higher values than thecontrol GIC. Resin modified glass ionomer cement... (Complete abstract click electronic access below)
Sanders, Lawrence Matthew. "The Synthesis & Characterization of an Antibacterial Bioactive Glass Suitable as a Bone Void Substitute." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo15447109069978.
Full textGwinner, Fernanda Pelógia Camargo. "Influência da adição de bioactive glass na liberação de íons do cimento de ionômero de vidro modificado por resina /." São José dos Campos : [s.n.], 2009. http://hdl.handle.net/11449/105480.
Full textBanca: Marco Antonio Bottino
Banca: Tarcisio José de Arruda Paes Júnior
Banca: Simonides Consani
Banca: Lourenço Correr Sobrinho
Resumo: Esse estudo in vitro avaliou o efeito da adição de diferentes concentrações e composições de bioactive glass (BAG) ao cimento de ionômero de vidro modificado por resina (CIVMR) (Fuji II LC) na liberação de íons Ca2+ e PO4 3- após a imersão em simulador de fluido corpóreo (SFC), comparando com o grupo controle, sem BAG. Foram utilizados 3 tipos de BAG: BAG65 (65mol% SiO2, 31mol% CaO, 4mol% P2O5), BAG75 (75mol% SiO2, 21mol% CaO, 4mol% P2O5), BAG85 (85mol% SiO2, 11mol% CaO, 4mol% P2O5), adicionados ao CIVMR nas proporções de 25%, 35% e 50%. O BAG foi misturado ao pó do CIVMR e misturado com o líquido resinoso do CIVMR. O material foi colocado numa matriz de PVC (5mm x 1mm) e polimerizado, entre laminas de vidro, durante 40s. As amostras foram armazenadas a 37°C, com 100% de umidade, durante 24h. Após esse período as amostras foram trituradas por meio de gral e pistilo e peneiradas para a obtenção de partículas menores que 90μm. A liberação dos íons Ca2+ e PO4 3- foi mensurada após 15min, 30min, 1h, 3h, 6h e 24h de imersão de 20mg de cada material em SFC, com 5 réplicas para cada condição experimental. Para a análise estatística, foi utilizada a área sob a curva (PPM x tempo). Os dados foram submetidos à ANOVA e testes de Dunnet e Tukey (!= 0,05). Os grupos contendo BAG65 liberaram significantemente mais Ca2+ não havendo diferença entre as diferentes concentrações de BAG adicionado. Os grupos contendo BAG75 e BAG85 apresentaram resultados semelhantes, sendo que aqueles com 25% de BAG foram os que apresentaram menores valores de liberação de Ca2+ após 24h de imersão. Com relação a liberação de íons PO4 3-, os grupos contendo BAG65 apresentaram maiores valores de área... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Bioactive restorative materials may stimulate the repair of tooth structure though the release of remineralization-aiding components including calcium and phosphate. The objective of this study was to measure the ion release from resin-modified bioactive glass ionomer cement (RMBGIC) containing various formulations of bioactive glass (BAG). Three types of BAG: BAG65 (65 mol% SiO2, 31 mol% CaO, 4 mol% P2O5), BAG75 (75 mol% SiO2, 21 mol% CaO, 4 mol% P2O5), BAG85 (85 mol% SiO2, 11 mol% CaO, 4 mol% P2O5) were prepared using sol-gel method, grounded, micronized, and mixed with GIC powder (Fuji II LC, GC) in the following proportions: 1:1, 1:2, 1:3. The mixed-ionomer powders were combined with standard RMGIC liquid (Fuji II LC, GC) and light cured (40 s; Ultra Lume LED, 1100 mW/cm2) in cylindrical disk molds (5 mm x 2 mm). The cured RMBGIC specimens were grounded and sieved to 100 !m and immersed (20 mg; n=5) in 3 ml of simulated body fluid (SBF), at 37°C for 1/4, 1/2, 1, 3, 6 and 24 hours with continuous agitation. Following centrifugation and decanting, the [Ca+2] and [HxPO4 3-x] in the SBF were measured using ion specific electrode and visible spectroscopy, respectively. The amount of ion release were statistically analyzed using ANOVA/Tukey ($= 0.05). The [PO4 3-] in SBF immediately increased for all RMBGICs. The ion release slowly decreased after 1 h, yet remained higher than the original SBF over the 24 h period. The [PO4 3-] in SBF for the control GIC continuously decreased. Overall, BAG65 > BAG75= BAG85 > GIC for [PO4 3-]. The [Ca2+] release increase initially for all RMBGICs, remaining with higher values than thecontrol GIC. Resin modified glass ionomer cement... (Complete abstract click electronic access below)
Doutor
Eghtesadi, Neda. "Mechanical properties of resorbable PCL/FastOs® BG composite materials." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13636.
Full textBioresorbable composites nowadays play an increasingly important role in the modern medicine, especially in orthopaedics for the fixation of bone fractures and tendons. Contrarily to the metallic counterparts, they prevent a second surgical operation to remove them, because they will be gradually integrated in the bone tissues. Finding ways to improve their physical and mechanical properties to better fit the intended specific conditions and environments has been a goal in many researches. It has already established that size, shape, aspect ratio and volume fraction of reinforcing particles are parameters which can effect on mechanical properties of a composite. The aim of this work is to investigate the effect of different proportion of particulate FastOs®BG Di70 bioactive glass filler on the mechanical properties of polycaprolactone (PCL) matrix. The selection of the PCL was based on its set of interesting properties, including the FDA approval for biomedical applications and the relatively low cost. The main drawbacks of PCL are related to its relatively hydrophobic nature and the slow degradation rate it undergoes in vivo (up to 3-4 years). The present work has a multifold purpose and aims at overcoming and/or mitigating the main identifies limitations of PCL, namely enhancing relevant mechanical properties, fastening the biodegradation rate in vivo, and turning the material bioactive. For this, FastOs®BG Di70 bioglass powder was selected as filler. This bioglass is characterised by a high biomineralisation rate in vitro, has a more hydrophilic character and higher Young modulus. The combination of PCL-FastOs®BG Di70 bioglass in different proportions is therefore expected to confer to the composites a more balanced set of properties for the intended applications. The mechanical properties of composites were assessed under different testing modes (tensile, compressive, oscillatory and torsional).
Compósitos biorreabsorvíveis desempenham hoje em dia um papel cada vez mais importante na medicina moderna, especialmente em ortopedia para a fixação de fracturas ósseas e de tendões. Contrariamente aos dispositivos metálicos, eles evitam uma segunda intervenção cirúrgica para os remover, sendo gradualmente integrados nos tecidos ósseos. Encontrar maneiras de melhorar suas propriedades físicas e mecânicas para melhor atender as condições e ambientes específicos a que se destinam tem sido uma meta estabelecida em vários trabalhos de investigação. Com base nesses trabalhos, foi possível estabelecer que o tamanho, a forma e a razão de aspecto, bem como a fracção volúmica das partículas de reforço constituem os principais parâmetros que afectam as propriedades mecânicas de um compósito. O objectivo deste trabalho é investigar o efeito da adição de diferentes proporções de partículas do vidro bioativo FastOs®BG Di70 nas propriedades mecânicas de policaprolactona (PCL) usada como matriz. A selecção desta matriz foi baseada num conjunto de propriedades interessantes que possui, incluindo o facto de ter sido aprovada pela FDA para aplicações biomédicas e ser relativamente barata. As principais desvantagens da PCL estão relacionados com a sua natureza relativamente hidrofóbica, e com uma taxa de degradação lenta in vivo (até 3-4 anos). O presente trabalho tem uma finalidade múltipla e visa a superação e / ou mitigar as principais limitações identificadas para a PCL, ou seja, melhorar as propriedades mecânicas relevantes, acelerar a taxa de biodegradação in vivo, e tornar os materiais compósitos bioactivos. Para o efeito seleccionou-se o biovidro FastOs®BG Di70 na forma de pó como material de enchimento. Este biovidro é caracterizado por uma elevada taxa de biomineralização in vitro, tem um caracter mais hidrófilo e um módulo de elasticidade mais elevado. Assim, da combinação em proporções diferentes de PCL-FastOs®BG Di70, espera-se que resultem materiais compósitos com um conjunto mais equilibrado de propriedades para as aplicações almejadas. As propriedades mecânicas dos compósitos foram avaliadas sob diferentes modos de teste (de tração, compressão, torção e oscilatórios).
Taha, Ayam Ali Hassoon. "Development of a novel bioactive glass propelled via air-abrasion to remove orthodontic bonding materials and promote remineralisation of white spot lesions." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/43997.
Full textRaghuraman, Kapil. "Synthesis and Evaluation of a Zn-Bioactive Glass Series to Prevent Post-Operative Infections in Craniofacial Applications." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1525241500626456.
Full textPerrin, Eloïse. "Elaboration et caractérisation d'un biomatériau bioactif et résorbable à base de polylactide et de verre bioactif." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI110.
Full textThe elaboration and characterization of a bioresorbable and bioactive biomaterial with mechanical properties as high as possible for osteosynthesis applications is the purpose of this study. This biomaterial must promote bone healing while replacing temporarily its mechanical functions. It is made with a polylactic acid and a bioactive glass and it must be easy to process through plasturgy methods in order to obtain small complex shapes as screws, anchors or osteosynthesis plates. The bioactive glass enhances the bioactivity of the material allowing it to link with the bone and the polylactic acid brings good mechanical properties essential to the applications that imply stress support and process aptitude. Biocomposites elaborated with 45S5 bioactive glass already exist but their applications are limited because of poorly understood bioactive glass/polymer interactions implying a weak thermal stability. A systematic control of the thermal degradation of the materials allows to define the best polymer matrix, composite elaboration process and bioactive glass granulometry to obtain an optimized 45S5 composite which stands for reference composite. Then, the in vitro follow-up of composites made with new bioactive glasses enhances the comprehension of the influence of the composition of the bioac-tive glass as well as the polymer/bioactive glass interactions. Hence, a new optimal formulation was identified. This formulation showed bioactivity (hydroxyapatite formation after 15 days in SBF) and a minimized in vitro degradation. Moreover, it showed thermal and rheological properties similar to neat polymer’s, which allows the thermomanufacturing of small pieces easierly than with the 45S5 composite. Plus, after an in vitro degradation in PBS of 4 months, its tensile properties were close to polymers’ and largely superior to 45S5 composite’s
Hum, Jasmin [Verfasser], and Aldo R. [Gutachter] Boccaccini. "Bioactive glass combined with natural derived proteins as composite materials for the application in bone tissue engineering / Jasmin Hum. Gutachter: Aldo R. Boccaccini." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1103801953/34.
Full textBooks on the topic "BIOACTIVE GLASS MATERIALS"
V, Rajendran. Bioactive glasses for implant applications. New Delhi: Defence Research and Development Organisation, Ministry of Defence, 2010.
Find full textBiomedical, Therapeutic and Clinical Applications of Bioactive Glasses. Woodhead Publishing, 2018.
Find full textKaur, Gurbinder. Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses. Elsevier Science & Technology, 2018.
Find full textBook chapters on the topic "BIOACTIVE GLASS MATERIALS"
Kim, Duck Hyun, Kang Sik Lee, Jung Hwa Kim, Jae Suk Chang, and Yung Tae Kim. "The Influence of Bioactive Glass Particles on Osteolysis." In Key Engineering Materials, 193–96. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.193.
Full textNandyala, S. H., P. S. Gomes, G. Hungerford, L. Grenho, M. H. Fernandes, and A. Stamboulis. "Development of Bioactive Tellurite-Lanthanide Ions–Reinforced Hydroxyapatite Composites for Biomedical and Luminescence Applications." In Tellurite Glass Smart Materials, 275–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76568-6_12.
Full textXue, Ming, Jun Ou, Da Li Zhou, Dange Feng, Wei Zhong Yang, Guanda Li, Dan Ping Liu, and Yan Song Wang. "Preparation and Properties of Porous Apatite-Wollastonite Bioactive Glass-Ceramic." In Key Engineering Materials, 169–72. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.169.
Full textLin, Kai Li, Si Yu Ni, Jiang Chang, Wan Yin Zhai, and Wei Ming Gu. "Fabrication and Characterization of Bioactive Glass Reinforced CaSiO3 Ceramics." In Key Engineering Materials, 181–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.181.
Full textMiao, X. "Modification of Porous Alumina Ceramics with Bioinert and Bioactive Glass Coatings." In Frontiers in Materials Science and Technology, 211–14. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-475-8.211.
Full textFathi, Mohammadhossein, Vajihesadat Mortazavi, and Maryam Mazrooei Sebdani. "Preparation of Hydroxyapatite-Forsterite-Bioactive Glass Composite Nanopowder for Biomedical Applications." In Analysis and Design of Biological Materials and Structures, 103–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22131-6_8.
Full textNiemelä, Tiiu, and Minna Kellomäki. "Three Composites of Bioactive Glass and PLA-Copolymers: Mass Loss and Water Absorption in Vitro." In Key Engineering Materials, 431–34. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.431.
Full textCochis, Andrea, Andrea Cochis, Andrea Cochis, Marta Miola, Marta Miola, Oana Bretcanu, Lia Rimondini, Lia Rimondini, and Enrica Vernè. "Magnetic Bioactive Glass Ceramics for Bone Healing and Hyperthermic Treatment of Solid Tumors." In Advanced Magnetic and Optical Materials, 81–112. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119241966.ch3.
Full textDu, Rui Lin, Shao Xian Zeng, Yu Huai Wu, and Xing Hui Xie. "Hydroxyapatite and Bioactive Glass Composite Coating on Ti6Al4V." In Key Engineering Materials, 589–92. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.589.
Full textQuintero, L. A., and D. M. Escobar. "Chemical Composition Effect of Sol-Gel Derived Bioactive Glass Over Bioactivity Behavior." In Proceedings of the 3rd Pan American Materials Congress, 11–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52132-9_2.
Full textConference papers on the topic "BIOACTIVE GLASS MATERIALS"
Lukowiak, Anna, Katarzyna Halubek-Gluchowska, Marzena Fandzloch, Weronika Bodylska, Damian Szymanski, Beata Borak, and Yuriy Gerasymchuk. "Luminescent bioactive nanoglasses: different approaches to gain photoactivity." In Fiber Lasers and Glass Photonics: Materials through Applications III, edited by Stefano Taccheo, Maurizio Ferrari, and Angela B. Seddon. SPIE, 2022. http://dx.doi.org/10.1117/12.2620676.
Full textIsmail, Nursyazwani, Hasmaliza Mohamad, and Nurazreena Ahmad. "Fabrication and characterization of 45S5 bioactive glass microspheres." In 3RD INTERNATIONAL POSTGRADUATE CONFERENCE ON MATERIALS, MINERALS & POLYMER (MAMIP) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015700.
Full textJukola, H., L. Nikkola, M. E. Gomes, F. Chiellini, M. Tukiainen, M. Kellomäki, E. Chiellini, et al. "Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896916.
Full textDucheyne, Paul, Hongxia Gao, Ahmed El-Ghannam, Irving Shapiro, and Portonovo Ayyaswamy. "The Use of Bioactive Glass Particles As Microcarriers." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1192.
Full textFakhruddin, Ahmad Kamil, Nurul Amirah Anjalani, and Hasmaliza Mohamad. "Fabrication of bioactive glass-cordierite composite scaffold by gelcasting method." In 3RD INTERNATIONAL POSTGRADUATE CONFERENCE ON MATERIALS, MINERALS & POLYMER (MAMIP) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015707.
Full textFakhruddin, Ahmad Kamil, Chun Wei, and Hasmaliza Mohamad. "Effect of cordierite addition into bioactive glass on mechanical and bioactivity properties." In MATERIALS CHARACTERIZATION USING X-RAYS AND RELATED TECHNIQUES. Author(s), 2019. http://dx.doi.org/10.1063/1.5089368.
Full textGarcía, Andrés J., Paul Ducheyne, and David Boettiger. "Effects of Applied Detachment Force, Fibronectin Adsorption, and Surface Reaction Stage on Initial Cell Adhesion to Bioactive Glass." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1201.
Full textDel Val, J., R. Comesaña, F. Lusquiños, F. Quintero, A. Riveiro, M. Boutinguiza, and J. Pou. "Laser-assisted manufacturing of bioactive glass implants for cranial defect restoration." In ICALEO® 2011: 30th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2011. http://dx.doi.org/10.2351/1.5062217.
Full textAb llah, N., S. B. Jamaludin, Z. C. Daud, and M. A. F. Zaludin. "Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy." In THE 2ND INTERNATIONAL CONFERENCE ON FUNCTIONAL MATERIALS AND METALLURGY (ICoFM 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4958756.
Full textBatra, Uma, Seema Kapoor, J. D. Sharma, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar, and G. S. S. Saini. "Nano-Hydroxyapatite∕Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation." In INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653714.
Full text