Academic literature on the topic 'Bio-oil energy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bio-oil energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bio-oil energy"

1

Chen, Lihao, and Kunio Yoshikawa. "Bio-oil upgrading by cracking in two-stage heated reactors." AIMS Energy 6, no. 1 (2018): 203–315. http://dx.doi.org/10.3934/energy.2018.1.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

N. Tande, Lifita, and Valerie Dupont. "Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling." AIMS Energy 4, no. 1 (2016): 68–92. http://dx.doi.org/10.3934/energy.2016.1.68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amin, Rafiqi Rajauddin, Rimbi Rodiyana Sova, Dewinta Intan Laily, and Dina Kartika Maharani. "STUDI POTENSI LIMBAH TEMBAKAU MENJADI BIO-OIL MENGGUNAKAN METODE FAST-PYROLYSIS SEBAGAI ENERGI TERBARUKAN." Jurnal Kimia Riset 5, no. 2 (December 7, 2020): 151. http://dx.doi.org/10.20473/jkr.v5i2.22513.

Full text
Abstract:
The rapid development of industry causes the need for fuel and energy to increase, especially fossil fuels (petroleum). This has the effect of an energy crisis. Biomass is of particular concern as one of the renewable energy sources to address the current energy crisis. Biomass consists of hemiselulose, cellulose, and lignin that can be converted into liquids (bio-oils) of pyrolysis. One of the wastes that can be converted into bio-oil is tobacco waste. Tobacco waste is produced by more than 2 million tons eachs. The waste has the potential to be further processed into bio oil using fast pyrolysis method with efficient and quality bio-oil manufacturing measures. The bio-oil results from tobacco waste using the fast pyrolysis method have values of carbon, hydrogen, nitrogen, oxygen and other organic compounds and the H/C ratio is greater than the yield of tobacco waste bio-oil using the low pyrolysis method. Where the bio-oil of tobacco waste using the fast pyrolysis method has a high heating value equivalent to the distribution of hydrocarbons from biodiesel, which means it has the potential as an alternative energy to replace petroleum. The potential as a substitute fuel for petroleum must also be balanced with fast and efficient production, maximizing bio-oil production by selecting the reactor and the optimum temperature usedKeywords: Waste, Tobacco, Bio-Oil, Renewable Energy, Fast-pyrolisis
APA, Harvard, Vancouver, ISO, and other styles
4

Rahmatullah, Rizka Wulandari Putri, and Enggal Nurisman. "Produksi bio-oil dari limbah kulit durian dengan proses pirolisis lambat." Jurnal Teknik Kimia 25, no. 2 (July 1, 2019): 50–53. http://dx.doi.org/10.36706/jtk.v25i2.425.

Full text
Abstract:
Permintaan bahan bakar fosil semakin meningkat sementara pasokannya kian berkurang dari waktu ke waktu. Hal ini mendorong untuk mengembangkan sumber energy alternative seperti biomassa sebagai energy baru terbarukan. Biomassa dapat dikonversi menjadi energy alternative dalam bentuk bio-oil melalui proses pirolisis. Komposisi biomassa seperti lignoselulosa (lignin, selulosa dan hemiselulosa) didekomposisi dengan proses pirolisis menjadi komponen organic seperti fenol, alkohol, keton, aldehid dan ester. Bio-oil merupakan bahan bakar terbarukan dan lebih ramah lingkungan dari pada bahan bakar fosil (minyak bumi). Bio-oil dapat disebut sebagai "green energy" dalam banyak aplikasi untuk menggantikan minyak bumi dan juga dapat digunakan sebagai "green chemical". Dalam aplikasinya, bio-oil dapat digunakan sebagai energy ramah lingkungan karena memiliki emisi lebih rendah dari pada bahan bakar fosil. Senyawa fenolik memiliki komposisi paling dominan dalam bio-oil di mana fenol memiliki banyak kegunaan untuk resin, antiseptik, pengawet dan desinfektan. Produksi bio-oil dalam penelitian ini dilakukan dengan proses pirolisis lambat pada reactor dengan kisaran suhu 250-400oC selama 30 menit. Eksperimen ini dilakukan denganbahan baku kulit durian pada ukuran10 mesh dan 20 mesh. Analisia GC-MS digunakan untuk mengetahui komponen bio-oil. Produk bio-oil memiliki viskositas 1,189 cP, dan densitas 1,031 g/cm3 dan pH 6. Bio-oil mengandung beberapak omponen seperti senyawa fenolik (66,37%), metil ester (2,71%), siklridridana (3,66%), benzocycloheptariene (3,39), indole (5,19%), glisin (3,01%), pentadekana (4,07%), 5-tert-butylpyrogallol (3,07%), asam bromoacetic (3,40%) dan asamtetradecanoic (5,16%).
APA, Harvard, Vancouver, ISO, and other styles
5

Seo, Hyoung-Ju, Ha-na Kim, and Eui-Chan Jeon. "Economic effects of the liquid biofuel industry in South Korea using input–output analysis." Energy & Environment 31, no. 3 (September 10, 2019): 424–39. http://dx.doi.org/10.1177/0958305x19874317.

Full text
Abstract:
Bio-energy is a research field that is of worldwide interest. South Korea, which imports all of its heavy fuel oil for consumption, passed a new law allowing bio-heavy oil made from animal fat, by-product of biodiesel processes, palm oil, and other leftover oil to be used to generate electricity in place of heavy fuel oil. As there is lack of policy research with respect to liquid biofuels, the purpose of this study is to define the bio-heavy oil industry in South Korea and to investigate the economic effects of bio-heavy oil. An input–output analysis model was used and demonstrated that the production-, value-added-, import-, and employment-induced effects of the bio-heavy oil industry were larger than those induced by the heavy fuel oil industry. As the import of fuel by the heavy fuel oil industry was greater than the bio-heavy oil industry, the import substitution effect of the bio-heavy oil industry was found to be greater. This resulted in a positive value for the net-induced effect of the bio-heavy oil industry. When considering the global concern with respect to the development and expansion of biofuel feedstock, this study shows the possibility of transforming heavy fuel oil plants distributed around the world into renewable energy sources.
APA, Harvard, Vancouver, ISO, and other styles
6

Feng, Ping, Jie Li, Jinyu Wang, Huan Wang, and Zhiqiang Xu. "Effect of Bio-Oil Species on Rheological Behaviors and Gasification Characteristics of Coal Bio-Oil Slurry Fuels." Processes 8, no. 9 (August 26, 2020): 1045. http://dx.doi.org/10.3390/pr8091045.

Full text
Abstract:
Bio-oil is a promising fuel as one of the main products from biomass fast pyrolysis for improving energy density and reducing transportation cost, but high acidity and low calorific value limit its direct application. It can be used to prepare coal bio-oil slurry as partial green fuels for potential feeds for synthesis gas production via gasification with the advantages over traditional coal-water slurries of calorific values and being additives-free. In the present work, three bio-oils were blended with lignite to prepare slurry fuels for the investigation of the effect of bio-oil species on rheological behaviors and gasification characteristics of coal bio-oil slurry fuels. Results show that slurry prepared with bio-oil from fruit tree pyrolysis is highly viscous and has higher activation energy in gasification. Slurries prepared with bio-oils from straw pyrolysis and pyroligneous acid from wood pyrolysis exhibited an acceptably lower viscosity, and the gasification temperatures were lower than for coal. The activation energy decreased by 15.98 KJ/mol and 2.77 KJ/mol, respectively, which indicates these bio-oils are more suitable with lignite for slurries preparation.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Jie, Ye Xi Zhong, and Cai Ying Ni. "Energy Supply by Energy Forest in Enköping Sweden." Advanced Materials Research 347-353 (October 2011): 1354–57. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.1354.

Full text
Abstract:
Green structure can not only be used for energy saving system, but also can be an energy production source called bio-energy, to support the use of renewable energy sources for generating electricity and heat. The district heating system in Enköping has connected all mayor buildings in the town and also most of the single-family houses. In 1994 a CHP plant was commissioned on bio-energy and in 1997 an oil-fired boiler was converted to wood powder. Since then all electricity and all heat produced are based on bio-energy.
APA, Harvard, Vancouver, ISO, and other styles
8

Abnisa, Faisal, Arash Arami-Niya, W. M. A. Wan Daud, and J. N. Sahu. "Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes." BioEnergy Research 6, no. 2 (February 19, 2013): 830–40. http://dx.doi.org/10.1007/s12155-013-9313-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yanti, Rina Novia. "Pemanfaatan Limbah Perkebunan Kelapa Sawit Sebagai Sumber Energi Terbarukan." Dinamika Lingkungan Indonesia 10, no. 1 (January 31, 2023): 7. http://dx.doi.org/10.31258/dli.10.1.p.7-11.

Full text
Abstract:
Indonesia is the world's largest palm oil producer with a land area of 14.3 million as of 2019. With this area, it will produce biomass in the form of replanted stems, midribs, empty palm oil bunches (TKKS), shells and fruit fibers. Biomass waste, including palm oil solid waste, has the potential to be used as raw material for renewable energy or bioenergy. This study aims to utilize palm oil plantation waste into bio oil and bio briquettes. The raw materials used in this study were empty oil palm fruit bunches (TKKS) and palm oil shell waste. Bio oil is made by the pyrolysis process. This research produces pyrolysis products, namely bio oil as a substitute for diesel fuel from EFB waste and from shells to produce bio briquettes. Found in pyrolysis products, namely bio-oil, aromatic compounds, aliphatic hydrocarbon compounds, acid compounds and hydrocarbon compounds. Hydrocarbon compounds are compounds that exist in fuel oil. In OPEFB bio oil, 19 types of hydrocarbon compounds were found. Meanwhile, bio briquettes from oil palm shells produce a calorific value of > 5000 which has met the Indonesian national standard (SNI) 01-6235 in 2000. Meanwhile, the water content value meets the Indonesian National Standard, which is a maximum of 15%.
APA, Harvard, Vancouver, ISO, and other styles
10

Hasanudin, Hasanudin, Wan Ryan Asri, Utari Permatahati, Widia Purwaningrum, Fitri Hadiah, Roni Maryana, Muhammad Al Muttaqii, and Muhammad Hendri. "Conversion of crude palm oil to biofuels via catalytic hydrocracking over NiN-supported natural bentonite." AIMS Energy 11, no. 2 (2023): 197–212. http://dx.doi.org/10.3934/energy.2023011.

Full text
Abstract:
<abstract> <p>Nickel nitride supported on natural bentonite was prepared and tested for hydrocracking Crude Palm Oil (CPO). The catalyst was prepared using the wet impregnation method and various nickel nitride loading. Subsequently, the nickel nitrate-bentonite was calcined and nitrided under H<sub>2</sub> steam. The surface acidity of as-synthesized NiN-bentonite was evaluated using the gravimetric pyridine gas. Meanwhile, the physiochemical features of the catalyst were assessed using XRD, FT-IR and SEM-EDX. The results showed that the NiN species was finely dispersed without affecting the bentonite's structure. Furthermore, the co-existence of Ni and N species on EDX analysis suggested the NiN was successfully supported onto the bentonite, while the surface acidity features of raw bentonite were increased to 1.713 mmol pyridine/g at 8 mEq/g of nickel nitride loading. The catalytic activity towards the CPO hydrocracking demonstrated that the surface acidity features affect the CPO conversion, with the highest conversion achieved (84.21%) using NiN-bentonite 8 mEq/g loading. At all nickel nitride loading, the NiN-bentonite could generate up to 81.98–83.47% of bio-kerosene fraction, followed by the bio-gasoline ranging from 13.12–13.9%, and fuel oil ranging from 2.89–4.57%.</p> </abstract>
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bio-oil energy"

1

Puy, Marimon Neus. "Integrated sustainability analysis of innovative uses of forest biomass. Bio-oil as an energy vector." Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/48708.

Full text
Abstract:
Aquesta investigació ofereix un enfocament multidisciplinari, des d’un punt de vista ambiental, social, econòmic i tecnològic, per a estudiar nous usos de la biomassa forestal utilitzant diferents metodologies, com són els grups de discussió, l’anàlisi del cicle de vida i experimental en una planta pilot de piròlisi. En primer lloc, es realitza una avaluació integrada per mitjà de grups de discussió per a identificar les barreres polítiques, socials i ambientals que han impedit que els sistemes integrats de biomassa forestal hagin continuat desenvolupant‐se en el context mediterrani. Els resultats mostren que, tot i les grans oportunitats i apostes per aquests sistemes, és necessari considerar factors socioecològics específics, com ara els règims de propietat, la baixa productivitat dels boscos mediterranis, la feble capacitat institucional, logística i dificultats d'abastament i la falta de rendibilitat econòmica dels productes forestals, si la biomassa forestal ha de contribuir decisivament a la producció de fonts d'energia renovables a Europa. En segon lloc, es duu a terme una anàlisi del cicle de vida d'una planta de gasificació de biomassa forestal i de fusta de post‐consum. Aquest estudi mostra que la biomassa forestal necessita majors requeriments d'energia, degut principalment a una fase d'assecatge addicional que necessita per complir amb els requeriments d’entrada de la gasificació. Finalment, els aspectes tecnològics s’analitzen estudiant la piròlisi de la biomassa. Primer, s’aplica el model d'activació d’energies distribuïdes (DAEM) a la desvolatilització de la biomassa i els seus components. Posteriorment, s’estudia la piròlisi d’estelles de biomassa forestal en una planta pilot amb un reactor de cargol sense fi (10 kg/h) per a estudiar les condicions òptimes d'operació (temperatura de reacció, temps de residència de sòlids i flux màssic) i per a determinar les propietats fisicoquímiques dels productes obtinguts. Els resultats mostren que es pot aconseguir una piròlisi completa de les estelles de biomassa en aquest tipus de reactor i que el major rendiment per a la producció de líquid (59%) i les millors propietats dels productes s’obtenen en la temperatura més baixa estudiada (773 K) i aplicant temps de residència de sòlids de més de 2 minuts. La caracterització química del biooil mitjançant GC/MS mostra que els compostos més abundants són compostos polars volàtils, fenols i benzenediols. Es poden observar molt poques diferències en les propietats físiques de les diferents mostres de bio‐oil, el qual és similar al bio‐oil obtinguts en reactors semblants. Els balanços d'energia del procés de piròlisi de la planta pilot i d’una planta escalada (1500 kg/h) mostren que es necessita una unitat d'assecatge i una cambra de combustió de carbó si la piròlisi s’ha de realitzar en una planta mòbil, tot i que el procés és autosuficient energèticament quan el contingut d'humitat de la biomassa és inferior al 6%. L'anàlisi econòmica demostra que els costos totals de producció de biocombustible a la planta pilot escalada se situen entre 269 i 289 €/m3, depenent del cost de la biomassa (40‐50 €/tona). El punt d'equilibri de la planta de piròlisi és de 116 €/barril quan la biomassa es compra a 50 €/tona i 108 €/barril quan el cost de la biomassa és de 40 €/tona. A llarg termini, el bio‐oil ofereix un gran potencial com a vector energètic i en el futur escenari d’una biorefineria, un nou enfocament que s'estudia a través de la dissolució de la fusta en líquids iònics mitjançant microones. En conjunt, aquests nous usos representen una gran oportunitat per al sector forestal en el context mediterrani, ja que ofereixen productes d’alt valor afegit com és el bio‐oil. El bio‐oil és un vector energètic, tan versàtil com el petroli, i que pot ser la base per a una nova generació de biocombustibles de segona generació i, alhora, matèria primera per a biorefineries. A més, aquesta tesi també està relacionada amb la sostenibilitat social, suggerint accions i propostes associades amb el desenvolupament local i l’economia en xarxa i facilitant la presa de decisions, cosa que ajuda a fer un pas endavant cap a un coneixement global i integral de la sostenibilitat.
This research offers a multidisciplinary approach, from the environmental, social, economic and technological standpoint, to study different novel uses of forest biomass using different methodologies such as IA‐Focus Groups, Life Cycle Assessment and experimental in a pyrolysis pilot plant. First, an integrated assessment of forest biomass systems by focus groups methodology is carried out to identify what political, social and environmental barriers have prevented integrated forest biomass systems to be further developed in the Mediterranean context. Results show that while the opportunities and stakes are high, specific socio‐ecologic factors, such as property regimes, low productivity of Mediterranean forests, weak institutional capacity, logistics and supply difficulties and the lack of economic profitability of forest products, need to be taken into account if forest biomass is to contribute decisively to securing renewable sources of energy in Europe, integrating landscape planning with resource policies or mitigating climate change. Second, a life cycle assessment of a gasification plant using forest biomass and post‐consumer wood is performed. This study shows that forest biomass needs higher energy requirements due to mainly an additional drying stage in order to comply with the gasification demands. Finally, technological aspects are investigated by studying biomass pyrolysis. An application of the Distributed Activation Energy Model (DAEM) to biomass and biomass constituents’ devolatilisation is performed to study the thermal decomposition of biomass. Next, pine woodchips pyrolysis is carried out in an auger reactor pilot plant (10 kg/h) to study the optimal operation conditions (reaction temperature, solid residence time and mass flow rate) and to characterize the properties of the products obtained. Results show that complete woodchip pyrolysis can be achieved in the auger reactor and the greatest yields for liquid production (59%) and optimum product characterisation are obtained at the lowest temperature studied (773 K) applying solid residence times longer than 2 minutes. Bio‐oil GC/MS characterisation shows that the most abundant compounds are volatile polar compounds, phenols and benzenediols. Very few differences can be observed in the physical properties of the bio‐oil samples regardless of the operating conditions, and these properties are similar to bio‐oil obtained in other auger reactors. Energy balances of the pyrolysis process in the pilot plant and in a scaled up auger reactor mobile plant (1500 kg/h) show that a drying unit and a char combustor are needed if the pyrolysis has to be performed in a mobile plant, even though the process is energy‐independent when moisture content is lower than 6%. The economic assessment shows that total costs of producing bio‐oil in the scaled‐up pilot plant is between 269 and 289 €/m3 depending on the biomass cost (40‐50€/ton). The break‐even point of the pyrolysis plant is 116 €/barrel when the biomass is purchased at 50 €/ton and 108 €/barrel when the biomass cost is 40 €/ton. In the long term, bio‐oil offers great potential as an energy vector and in a biorefinery scenario, a novel approach that is studied by performing microwave‐assisted dissolution of wood in ionic liquids. On the whole, these novel uses offer great opportunity for the Mediterranean forestry sector, since they offer value‐added products such as bio‐oil. Bio‐oil represents a new energy carrier, which is as versatile as oil and which may be the basis for a new generation of secondgeneration biofuels and, in turn, raw material for biorefineries. This dissertation is also related to social sustainability by suggesting actions and proposals related to local development and the network economy, as well as facilitating decision‐making processes, which help to make a step forward to a global and integral knowledge of sustainability.
APA, Harvard, Vancouver, ISO, and other styles
2

Silva, João Paulo da. "Caracterização da casca de café (coffea arábica, L) in natura, e de seus produtos obtidos pelo processo de pirólise em reator mecanicamente agitado." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263770.

Full text
Abstract:
Orientador: Araí Augusta Bernárdez Pécora
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-20T08:12:42Z (GMT). No. of bitstreams: 1 Silva_JoaoPauloda_M.pdf: 4733188 bytes, checksum: eafa56a24fccf56e0480ae89bf0d28cb (MD5) Previous issue date: 2012
Resumo: O café é um importante produto na balança comercial brasileira e seu processamento gera a casca como um resíduo. O objetivo deste trabalho foi a caracterização física, termoquímica e fluidodinâmica da casca de café (coffea arábica, L) visando sua aplicação em processo de pirólise convencional em reator mecanicamente agitado e posterior caracterização das frações líquida e sólida geradas. O trabalho envolveu as seguintes etapas: (i) caracterização física e termoquímica da casca de café moída; (ii) ensaios fluidodinâmicos no leito contendo mistura binária casca de café-areia (5% de biomassa na mistura); (iii) ensaios de pirólise em reator mecanicamente agitado; e (iv) caracterização das frações sólida e líquida geradas no processo de pirólise. A etapa de caracterização das partículas envolveu a determinação da análise granulométrica, esfericidade, massas específicas, razão de Hausner, análise elementar, análise imediata, poder calorífico, análise termogravimétrica e diferencial térmica, análises da composição das cinzas e análise do teor de hemicelulose, celulose e lignina. Os ensaios de pirólise foram realizados seguindo um planejamento experimental composto central rotacional com objetivo de avaliar a influência da taxa de aquecimento (8 a 22 °C/min) e do tempo de estabilidade entre os estágios de aquecimento (1,2 a 6,8 min) sobre o rendimento da fração líquida. O maior rendimento da fração líquida foi de 56,5 %, obtido em uma taxa de aquecimento de 22°C/min e tempo de estabilidade entre os estágios de aquecimento de 4 min. Na etapa de caracterização do carvão vegetal gerado foram determinadas as massas especificas, análise elementar, análise imediata, poder calorífico, análise termogravimétrica e diferencial térmica, além da determinação da velocidade mínima de fluidização no leito contendo a mistura carvão-areia (5% de biomassa na mistura). A fração líquida foi submetida à análise de umidade, pH, poder calorífico e cromatografia gasosa acoplada a espectrometria de massa. Os resultados dos ensaios fluidodinâmicos mostraram que a presença de 5% (em massa) de casca de café no leito provoca o aumento da velocidade de mínima fluidização em 45%. Foi verificado que a casca de café possui um grande potencial como fonte energética para aplicação em processos de pirólise em função das propriedades do carvão e do líquido gerado em temperaturas superiores a 300oC. A composição e teor de cinzas da casca de café também fazem do carvão uma boa opção como fertilizante em função dos nutrientes presentes. Em todas as frações líquidas geradas foram observados compostos com aplicações industriais, mostrando que o óleo obtido através da pirólise da casca de café possui potencial não só como combustível, mas também como fonte de componentes para a indústria química
Abstract: Coffee is an important product in the Brazilian commercial balance and its processing generates husks as waste. In order to increase information available about coffee husks biomass and its energetic potential, this work presents an experimental study including: (i) physical and thermo-chemical characterization of grinded coffee husks; (ii) hydrodynamics tests to minimum fluidization velocity determination of the binary mixture coffee husks-sand (5% weight fraction of biomass); (iii) pyrolysis tests in a mechanically agitated bed; and (iv) characterization of pyrolysis solid and liquid products. The particle characterization step included the determination of particle size distribution, sphericity, densities, Hausner ratio, ultimate and proximate analysis, heating value, thermo-gravimetric analysis, thermo-differential analysis, ash composition, and hemicelluloses, cellulose and lignin content. The pyrolysis tests were carried out following a central composite rotate design of experiments in order to evaluate the heating rate (from 8 to 22oC/min) and the time between the heating stages (from 1.2 to 6.8min) on the bio oil yield. The bio-oil greatest yield was 56.5% that was obtained using a heating rate of 22oC/min and time between the heating stages of 4min. The bio-char characterization involved density, ultimate and proximate analyses, heating value, thermo-gravimetric analysis, differential thermal analyses and determination of the minimum fluidization velocity of the char-sand mixture (5% weight fraction of biomass). The liquid fraction was submitted to moisture, pH, heating value and gas chromatography (using a mass spectrometer) analysis. Results from hydrodynamics studies show that the presence of 5% biomass in the bed material increases the minimum fluidized bed velocity about 45%. Pyrolysis results show that coffee husks presents a good potential as feedstock to the process due to char and bio-oil (fractions obtained at temperatures higher than 300oC) properties. Additionally, results from ash characterization showed that the bio-char produced presents a good potential as fertilizer. High values chemical compounds were identified in the produced liquid fractions, showing that this product presents high potential, not only as a fuel, but also as a source of chemical compounds to the chemical industry
Mestrado
Termica e Fluidos
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
3

Danje, Stephen. "Fast pyrolysis of corn residues for energy production." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17822.

Full text
Abstract:
Thesis (MScEng)--Stellenbosch University, 2011.
ENGLISH ABSTRACT: Increasing oil prices along with the climate change threat have forced governments, society and the energy sector to consider alternative fuels. Biofuel presents itself as a suitable replacement and has received much attention over recent years. Thermochemical conversion processes such as pyrolysis is a topic of interest for conversion of cheap agricultural wastes into clean energy and valuable products. Fast pyrolysis of biomass is one of the promising technologies for converting biomass into liquid fuels and regarded as a promising feedstock to replace petroleum fuels. Corn residues, corn cob and corn stover, are some of the largest agricultural waste types in South Africa amounting to 8 900 thousand metric tonnes annually (1.7% of world corn production) (Nation Master, 2005). This study looked at the pyrolysis kinetics, the characterisation and quality of by-products from fast pyrolysis of the corn residues and the upgrading of bio-oil. The first objective was to characterise the physical and chemical properties of corn residues in order to determine the suitability of these feedstocks for pyrolytic purposes. Secondly, a study was carried out to obtain the reaction kinetic information and to characterise the behaviour of corn residues during thermal decomposition. The knowledge of biomass pyrolysis kinetics is of importance in the design and optimisation of pyrolytic reactors. Fast pyrolysis experiments were carried out in 2 different reactors: a Lurgi twin screw reactor and a bubbling fluidised bed reactor. The product yields and quality were compared for different types of reactors and biomasses. Finally, a preliminary study on the upgrading of bio-oil to remove the excess water and organics inorder to improve the quality of this liquid fuel was performed. Corn residues biomass are potential thermochemical feedstocks, with the following properties (carbon 50.2 wt. %, hydrogen 5.9 wt. % and Higher heating value 19.14 MJ/kg) for corn cob and (carbon 48.9 wt. %, hydrogen 6.01 wt. % and Higher heating value 18.06 MJ/kg) for corn stover. Corn cobs and corn stover contained very low amounts of nitrogen (0.41-0.57 wt. %) and sulphur (0.03-0.05 wt. %) compared with coal (nitrogen 0.8-1.9 wt. % and sulphur 0.7-1.2 wt. %), making them emit less sulphur oxides than when burning fossil fuels. The corn residues showed three distinct stages in the thermal decomposition process, with peak temperature of pyrolysis shifting to a higher value as the heating rate increased. The activation energies (E) for corn residues, obtained by the application of an iso-conversional method from thermogravimetric tests were in the range of 220 to 270 kJ/mol. The products obtained from fast pyrolysis of corn residues were bio-oil, biochar, water and gas. Higher bio-oil yields were produced from fast pyrolysis of corn residues in a bubbling fluidised bed reactor (47.8 to 51.2 wt. %, dry ash-free) than in a Lurgi twin screw reactor (35.5 to 37 wt. %, dry ash-free). Corn cobs produced higher bio-oil yields than corn stover in both types of reactors. At the optimised operating temperature of 500-530 °C, higher biochar yields were obtained from corn stover than corn cobs in both types of reactors. There were no major differences in the chemical and physical properties of bio-oil produced from the two types of reactors. The biochar properties showed some variation in heating values, carbon content and ash content for the different biomasses. The fast pyrolysis of corn residues produced energy products, bio-oil (Higher heating value = 18.7-25.3 MJ/kg) and biochar (Higher heating value = 19.8-29.3 MJ/kg) comparable with coal (Higher heating value = 16.2-25.9 MJ/kg). The bio-oils produced had some undesirable properties for its application such as acidic (pH 3.8 to 4.3) and high water content (21.3 to 30.5 wt. %). The bio-oil upgrading method (evaporation) increased the heating value and viscosity by removal of light hydrocarbons and water. The corn residues biochar produced had a BET Brynauer-Emmet-Teller (BET) surface area of 96.7 to 158.8 m2/g making it suitable for upgrading for the manufacture of adsorbents. The gas products from fast pyrolysis were analysed by gas chromatography (GC) as CO2, CO, H2, CH4, C2H4, C2H6, C3H8 and C5+ hydrocarbons. The gases had CO2 and CO of more than 80% (v/V) and low heating values (8.82-8.86 MJ/kg).
AFRIKAANSE OPSOMMING: Die styging in olie pryse asook dreigende klimaatsveranderinge het daartoe gelei dat regerings, die samelewing asook die energie sektor alternatiewe energiebronne oorweeg. Biobrandstof as alternatiewe energiebron het in die afgope paar jaar redelik aftrek gekry. Termochemiese omskakelingsprosesse soos pirolise word oorweeg vir die omskakeling van goedkoop landbou afval na groen energie en waardevolle produkte. Snel piroliese van biomassa is een van die mees belowende tegnologië vir die omskakeling van biomassa na vloeibare brandstof en word tans gereken as ’n belowende kandidaat om petroleum brandstof te vervang. Mielieafval, stronke en strooi vorm ’n reuse deel van die Suid Afrikaanse landbou afval. Ongeveer 8900 duisend metrieke ton afval word jaarliks geproduseer wat optel na ongeveer 1.7% van die wêreld se mielie produksie uitmaak (Nation Master, 2005). Hierdie studie het gekk na die kinetika van piroliese, die karakterisering en kwaliteit van by-produkte van snel piroliese afkomstig van mielie-afval asook die opgradering van biobrandstof. Die eerste mikpunt was om die fisiese en chemiese karakteristieke van mielie-afval te bepaal om sodoende die geskiktheid van hierdie afval vir die gebruik tydens piroliese te bepaal. Tweendens is ’n kinetiese studie onderneem om reaksie parameters te bepaal asook die gedrag tydens termiese ontbinding waar te neem. Kennis van die piroliese kinetika van biomassa is van belang juis tydens die ontwerp en optimering van piroliese reaktore. Snel piroliese ekspermente is uitgevoer met behulp van twee verskillende reaktore: ’n Lurgi twee skroef reaktor en ’n borrelende gefluidiseerde-bed reaktor. Die produk opbrengs en kwaliteit is vergelyk. Eindelik is ’n voorlopige studie oor die opgradering van bio-olie uitgevoer deur te kyk na die verwydering van oortollige water en organiese materiaal om die kwaliteit van hierdie vloeibare brandstof te verbeter. Biomassa afkomstig van mielie-afval is ’n potensiële termochemiese voerbron met die volgende kenmerke: mielie stronke- (C - 50.21 massa %, H – 5.9 massa %, HHV – 19.14 MJ/kg); mielie strooi – (C – 48.9 massa %, H – 6.01 massa %, HHV – 18.06 MJ/kg). Beide van hierdie materiale bevat lae hoeveelhede N (0.41-0.57 massa %) and S (0.03-0.05 massa %) in vergelyking met steenkool N (0.8-1.9 massa %) and S (0.7-1.2 massa %). Dit beteken dat hieride bronne van biomassa laer konsentrasies van swael oksiedes vrystel in vergelyking met fossielbrandstowwe. Drie kenmerkende stadia is waargeneem tydens die termiese afbraak van mielie-afval, met die temperatuur piek van piroliese wat skuif na ’n hoër temperatuur soos die verhittingswaarde toeneem. Die waargenome aktiveringsenergie (E) van mielie-afval bereken met behulp van die iso-omskakelings metode van TGA toetse was in die bestek: 220 tot 270 kJ/mol. Die produkte verkry deur Snel Piroliese van mielie-afval was bio-olie, bio-kool en gas. ’n Hoër opbrengs van bio-olie is behaal tydens Snel Piroliese van mielie-afval in die borrelende gefluidiseerde-bed reakctor (47.8 na 51.2 massa %, droog as-vry) in vergelyking met die Lurgi twee skroef reakctor (35.5 na 37 massa %, droog as-vry). Mielie stronke sorg vir ’n hoër opbrengs van bio-olie as mielie strooi in beide reaktore. By die optimum bedryfskondisies is daar in beide reaktor ’n hoër bio-kool opbrengs verkry van mielie stingels teenoor mielie stronke. Geen aansienlike verskille is gevind in die chemise en fisiese kenmerke van van die bio-olie wat geproduseer is in die twee reaktore nie. Daar is wel variasie getoon in die bio-kool kenmerkte van die verskillende Snel Piroliese prosesse. Snel piroliese van mielie-afval lewer energie produkte, bio-olie (HVW = 18.7-25.3MJ/kg) en bio-kool (HVW = 19.8-29.3 MJ/kg) vergelykbaar met steenkool (HVW = 16.2-25.9 MJ/kg). Die bio-olies geproduseer het sommige ongewenste kenmerke getoon byvoorbeeld suurheid (pH 3.8-4.3) asook hoë water inhoud (21.3 – 30.5 massa %). Die metode (indamping) wat gebruik is vir die opgradering van bio-olie het gelei tot die verbetering van die verhittingswaarde asook die toename in viskositeit deur die verwydering van ligte koolwaterstowwe en water. Die mielie-afval bio-kool toon ’n BET (Brunauer-Emmet-Teller) oppervlakte area van 96.7-158.8 m2/g wat dit toepaslik maak as grondstof vir absorbante. The gas geproduseer tydens Snel Piroliese is geanaliseer met behulp van gas chromotografie (GC) as CO2, CO, H2, CH4, C2H4, C2H6, C3H8 and C5+ koolwaterstowwe. Die vlak van CO2 en CO het 80% (v/V) oorskry en met lae verhittingswaardes (8.82-8.86 MJ/kg).
APA, Harvard, Vancouver, ISO, and other styles
4

Correia, Lígia Araújo Ramos. "Estudo do processo de pirólise para o aproveitamento sustentável de lodo digerido doméstico." Universidade Federal do Tocantins, 2013. http://hdl.handle.net/11612/541.

Full text
Abstract:
Com a crescente demanda de energia no mundo, a busca por novas fontes alternativas de energia tem motivado novos estudos por fontes energéticas renováveis que permitam substituir gradualmente os combustíveis fósseis, responsáveis por emissões de níveis de poluentes superiores aos associados aos biocombustíveis. O aumento populacional aliado à melhoria da eficiência do tratamento de esgoto implica diretamente o aumento da produção do lodo de esgoto, que é o principal resíduo sólido gerado nessas estações. O lodo de esgoto pode ser aplicado em processos tecnológicos, como a pirólise, a gaseificação e a combustão, para produção de energia alternativa. A pirólise é uma tecnologia promissora, favorece a produção de quatro frações quando aplicada ao lodo residual: bio-óleo (fração líquida orgânica), fração aquosa, fração sólida e gasosa, com elevado potencial combustível. Este artigo tem como objetivo avaliar o processo de pirólise aplicado a lodo residual doméstico como uma fonte alternativa de energia e identificar as condições de processo que resultaram em maiores rendimentos do bio-óleo produzido.
With the growing demand for energy in the world, the search for new sources of energy have motivated new studies about renewable energy sources that allow us to replace fossil fuels gradually, as they are responsible for higher levels of pollutants emission if compared to biofuels. Population growth together with the improvement of sewage treatment efficiency, that directly impacts the growth of sewage sludge production, which is the main solid waste generated in the Sewage Treatment Stations. The sludge can be used in technological processes, like pyrolysis, gasification and combustion, in order to produce alternative energy. The pyrolysis applied in sludge is a promising technology that favor the production of four fractions: biooil (organic liquid fraction), water fraction, solid fraction and gas fraction, showing a high fuel potential. This paper aims to evaluate the pyrolysis process applied to domestic sludge as an alternative source of energy and identify the process conditions that resulted in better efficiency of the biooil produced.
APA, Harvard, Vancouver, ISO, and other styles
5

Roy, Michael Joseph. "Hydrodeoxygenation of lignin model compounds via thermal catalytic reactions." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45752.

Full text
Abstract:
Lignin is an important component of biomass accounting for up to 30% by weight but up to 40% of the total energy content of the plant. As the push towards alternative fuels develops, more and more amounts of lignin will be gathered and used predominately as low grade boiler fuel to run primary processes. We argue there is usefulness in the conversion of lignin into value added specialty chemicals and fuels. In this work, a new approach for hydrodeoxygenation of lignin model compounds using platinum as the catalyst and organic solvent as the reaction medium was conducted, and the results were compared with those obtained using water as the reaction medium. It is shown that the organic solvent, with its increased hydrogen solubility, is able to hydrogenate the model compound with the same effect at lower temperature, hydrogen pressure, and time.
APA, Harvard, Vancouver, ISO, and other styles
6

Gan, Jing. "Hydrothermal conversion of lignocellulosic biomass to bio-oils." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13768.

Full text
Abstract:
Doctor of Philosophy
Department of Biological and Agricultural Engineering
Wenqiao Yuan
Donghai Wang
Corncobs were used as the feedstock to investigate the effect of operating conditions and crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, 0.5% catalyst loading. At selected conditions, bio-oil yield based on the total weight of corn cobs and crude glycerol increased to 36.3% as the crude glycerol/corn cobs ratio increased to 5. Furthermore, the optimization of operating conditions was conducted via response surface methodology. A maximum bio-oil yield of 41.3% was obtained at 280°C, 12min, 21% biomass content, and 1.56% catalyst loading. A highest bio-oil carbon content of 74.8% was produced at 340°C with 9% biomass content. A maximum carbon recovery of 25.2% was observed at 280°C, 12min, 21% biomass content, and 1.03% catalyst loading. The effect of biomass ecotype and planting location on bio-oil production were studied on big bluestems. Significant differences were found in the yield and elemental composition of bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also had the highest carbon and lowest oxygen contents, which were not affected by the planting location. In order to better understand the mechanisms of hydrothermal conversion, the interaction effects between cellulose, hemicellulose and lignin in hydrothermal conversion were studied. Positive interaction between cellulose and lignin, but negative interaction between cellulose and hemicellulose were observed. No significant interaction was found between hemicelluose and lignin. Hydrothermal conversion of corncobs, big bluestems, switchgrass, cherry, pecan, pine, hazelnut shell, and their model biomass also were conducted. Bio-oil yield increased as real biomass cellulose and hemicellulose content increased, but an opposite trend was observed for low lignin content model biomass.
APA, Harvard, Vancouver, ISO, and other styles
7

Hugo, Thomas Johannes. "Pyrolysis of sugarcane bagasse." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5238.

Full text
Abstract:
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: The world’s depleting fossil fuels and increasing greenhouse gas emissions have given rise to much research into renewable and cleaner energy. Biomass is unique in providing the only renewable source of fixed carbon. Agricultural residues such as Sugarcane Bagasse (SB) are feedstocks for ‘second generation fuels’ which means they do not compete with production of food crops. In South Africa approximately 6 million tons of raw SB is produced annually, most of which is combusted onsite for steam generation. In light of the current interest in bio-fuels and the poor utilization of SB as energy product in the sugar industry, alternative energy recovery processes should be investigated. This study looks into the thermochemical upgrading of SB by means of pyrolysis. Biomass pyrolysis is defined as the thermo-chemical decomposition of organic materials in the absence of oxygen or other reactants. Slow Pyrolysis (SP), Vacuum Pyrolysis (VP), and Fast Pyrolysis (FP) are studied in this thesis. Varying amounts of char and bio-oil are produced by the different processes, which both provide advantages to the sugar industry. Char can be combusted or gasified as an energy-dense fuel, used as bio-char fertilizer, or upgraded to activated carbon. High quality bio-oil can be combusted or gasified as a liquid energy-dense fuel, can be used as a chemical feedstock, and shows potential for upgrading to transport fuel quality. FP is the most modern of the pyrolysis technologies and is focused on oil production. In order to investigate this process a 1 kg/h FP unit was designed, constructed and commissioned. The new unit was tested and compared to two different FP processes at Forschungszentrum Karlsruhe (FZK) in Germany. As a means of investigating the devolatilization behaviour of SB a Thermogravimetric Analysis (TGA) study was conducted. To investigate the quality of products that can be obtained an experimental study was done on SP, VP, and FP. Three distinct mass loss stages were identified from TGA. The first stage, 25 to 110°C, is due to evaporation of moisture. Pyrolitic devolatilization was shown to start at 230°C. The final stage occurs at temperatures above 370°C and is associated with the cracking of heavier bonds and char formation. The optimal decomposition temperatures for hemicellulose and cellulose were identified as 290°C and 345°C, respectively. Lignin was found to decompose over the entire temperature range without a distinct peak. These results were confirmed by a previous study on TGA of bagasse. SP and VP of bagasse were studied in the same reactor to allow for accurate comparison. Both these processes were conducted at low heating rates (20°C/min) and were therefore focused on char production. Slow pyrolysis produced the highest char yield, and char calorific value. Vacuum pyrolysis produced the highest BET surface area chars (>300 m2/g) and bio-oil that contained significantly less water compared to SP bio-oil. The short vapour residence time in the VP process improved the quality of liquids. The mechanism for pore formation is improved at low pressure, thereby producing higher surface area chars. A trade-off exists between the yield of char and the quality thereof. FP at Stellenbosch University produced liquid yields up to 65 ± 3 wt% at the established optimal temperature of 500°C. The properties of the bio-oil from the newly designed unit compared well to bio-oil from the units at FZK. The char properties showed some variation for the different FP processes. At the optimal FP conditions 20 wt% extra bio-oil is produced compared to SP and VP. The FP bio-oil contained 20 wt% water and the calorific value was estimated at 18 ± 1 MJ/kg. The energy per volume of FP bio-oil was estimated to be at least 11 times more than dry SB. FP was found to be the most effective process for producing a single product with over 60% of the original biomass energy. The optimal productions of either high quality bio-oil or high surface area char were found to be application dependent.
AFRIKAANSE OPSOMMING: As gevolg van die uitputting van fossielbrandstofreserwes, en die toenemende vrystelling van kweekhuisgasse word daar tans wêreldwyd baie navorsing op hernubare en skoner energie gedoen. Biomassa is uniek as die enigste bron van hernubare vaste koolstof. Landbouafval soos Suikerriet Bagasse (SB) is grondstowwe vir ‘tweede generasie bio-brandstowwe’ wat nie die mark van voedselgewasse direk affekteer nie. In Suid Afrika word jaarliks ongeveer 6 miljoen ton SB geproduseer, waarvan die meeste by die suikermeulens verbrand word om stoom te genereer. Weens die huidige belangstelling in bio-brandstowwe en ondoeltreffende benutting van SB as energieproduk in die suikerindustrie moet alternatiewe energie-onginningsprosesse ondersoek word. Hierdie studie is op die termo-chemiese verwerking van SB deur middel van pirolise gefokus. Biomassa pirolise word gedefinieer as die termo-chemiese afbreking van organiese bio-materiaal in die afwesigheid van suurstof en ander reagense. Stadige Pirolise (SP), Vakuum Pirolise (VP), en Vinnige Pirolise word in hierdie tesis ondersoek. Die drie prosesse produseer veskillende hoeveelhede houtskool en bio-olie wat albei voordele bied vir die suikerindustrie. Houtskool kan as ‘n vaste energie-digte brandstof verbrand of vergas word, as bio-houtskoolkompos gebruik word, of kan verder tot geaktiveerde koolstof geprosesseer word. Hoë kwaliteit bio-olie kan verbrand of vergas word, kan as bron vir chemikalië gebruik word, en toon potensiaal om in die toekoms opgegradeer te kan word tot vervoerbrandstof kwaliteit. Vinnige pirolise is die mees moderne pirolise tegnologie en is op bio-olie produksie gefokus. Om die laasgenoemde proses te toets is ‘n 1 kg/h vinnige pirolise eenheid ontwerp, opgerig en in werking gestel. Die nuwe pirolise eenheid is getoets en vegelyk met twee verskillende vinnige pirolise eenhede by Forschungszentrum Karlsruhe (FZK) in Duitsland. Termo-Gravimetriese Analise (TGA) is gedoen om die ontvlugtigingskenmerke van SB te bestudeer. Eksperimentele werk is verrig om die kwaliteit van produkte van SP, VP, vinnige pirolise te vergelyk. Drie duidelike massaverlies fases van TGA is geïdentifiseer. Die eerste fase (25 – 110°C) is as gevolg van die verdamping van vog. Pirolitiese ontvlugtiging het begin by 230°C. Die finale fase (> 370°C) is met die kraking van swaar verbindings en die vorming van houtskool geassosieer. Die optimale afbrekingstemperatuur vir hemisellulose en sellulose is as 290°C en 345°C, respektiewelik, geïdentifiseer. Daar is gevind dat lignien stadig oor die twede en derde fases afgebreek word sonder ‘n duidelike optimale afbrekingstemperatuur. Die resultate is deur vorige navorsing op TGA van SB bevestig. SP en VP van bagasse is in dieselfde reaktor bestudeer, om ‘n akkurate vergelyking moontlik te maak. Beide prosesse was by lae verhittingstempo’s (20°C/min) ondersoek, wat gevolglik op houtskoolformasie gefokus is. SP het die hoogste houtskoolopbrengs, met die hoogste verbrandingsenergie, geproduseer. VP het hootskool met die hoogste BET oppervlakarea geproduseer, en die bio-olie was weens ‘n dramatiese afname in waterinhoud van beter gehalte. Die meganisme vir die vorming van ‘n poreuse struktuur word deur lae atmosferiese druk verbeter. Daar bestaan ‘n inverse verband tussen die kwantiteit en kwaliteit van die houtskool. Vinnige pirolise by die Universiteit van Stellenbosch het ‘n bio-olie opbrengs van 65 ± 3 massa% by ‘n vooraf vasgestelde optimale temperatuur van 500°C geproduseer. Die eienskappe van bio-olie wat deur die nuwe vinnige pirolise eenheid geproduseer is het goed ooreengestem met die bio-olie afkomstig van FZK se pirolise eenhede. Die houtskool eienskappe van die drie pirolise eenhede het enkele verskille getoon. By optimale toestande vir vinnige pirolise word daar 20 massa% meer bio-olie as by SP en VP geproduseer. Vinnige pirolise bio-olie het ‘n waterinhoud van 20 massa% en ‘n verbrandingswarmte van 18 ± 1 MJ/kg. Daar is gevind dat ten opsigte van droë SB die energie per enheidsvolume van bio-olie ongeveer 11 keer meer is. Vinnige pirolise is die mees doeltreffende proses vir die vervaardiging van ‘n produk wat meer as 60% van die oorspronklike biomassa energie bevat. Daar is gevind dat die optimale hoeveelhede van hoë kwaliteit bio-olie en hoë oppervlakarea houtskool doelafhanklik is.
APA, Harvard, Vancouver, ISO, and other styles
8

Abdullah, Hanisom binti. "High energy density fuels derived from mallee biomass: fuel properties and implications." Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/2259.

Full text
Abstract:
Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon footprint and high energy efficiency. However, biomass as a direct fuel is widely dispersed, bulky, fibrous and of high moisture content and low energy density. High logistic cost, poor grindability and mismatch of fuel property with coal are some of the key issues that impede biomass utilisation for power generation. Therefore, innovations are in urgent need to improve biomass volumetric energy densification, grindability and good fuel matching if co-fired with coal. Biomass pyrolysis is a flexible and low-cost approach that can be deployed for this purpose. Via pyrolysis, the bulky biomass can be converted to biomass-derived high-energy-density fuels such as biochar and/or bio-oil. So far there has been a lack of fundamental understanding of mallee biomass pyrolysis and properties of the fuel products.The series of study in this PhD thesis aims to investigate the production of such high-energy- density fuels obtained from mallee pyrolysis and to obtain some new knowledge on properties of the resultant fuels and their implications to practical applications. Particularly, the research has been designed and carried out to use pyrolysis as a pretreatment technology for the production of biochar, bio-oil and bioslurry fuels. The main outcomes of this study are summarised as follows.Firstly, biochars were produced from the pyrolysis of centimetre-sized particles of mallee wood at 300-500°C using a fixed-bed reactor under slow-heating conditions. The data show that at pyrolysis temperatures > 320°C, biochar as a fuel has similar fuel H/C and O/C ratios compared to Collie coal which is the only coal being mined in WA. Converting biomass to biochar leads to a substantial increase in fuel mass energy density from ~10 GJ/tonne of green biomass to ~28 GJ/tonne of biochars prepared from pyrolysis at 320°C, in comparison to 26 GJ/tonne for Collie coal. However, there is little improvement in fuel volumetric energy density, which is still around 7-9 GJ/m[superscript]3 in comparison to 17 GJ/m[superscript]3 of Collie coal. Biochars are still bulky and grinding is required for volumetric energy densification. Biochar grindability experiments have shown that the fuel grindability increases drastically even at pyrolysis temperature as low as 300°C. Further increase in pyrolysis temperature to 500°C leads to only small increase in biochar grindability. Under the grinding conditions, a significant size reduction (34-66 % cumulative volumetric size <75 μm) of biochars can be achieved within 4 minutes grinding (in comparison to only 19% for biomass after 15 minutes grinding), leading to a significant increase in volumetric energy density (e.g. from ~8 to ~19 GJ/m[superscript]3 for biochar prepared from pyrolysis at 400°C). Whereas grinding raw biomass typically result in large and fibrous particles, grinding biochar produce short and round particles highly favourable for fuel applications.Secondly, it is found that the pyrolysis of different biomass components produced biochars with distinct characteristics, largely because of the differences in the biological structure of these components. Leaf biochars showed the poorest grindability due to the presence of abundant tough oil glands in leaf. Even for the biochar prepared from the pyrolysis of leaf at 800°C, the oil gland enclosures remained largely intact after grinding. Biochars produced from leaf, bark and wood components also have significant differences in ash properties. Even with low ash content, wood biochars have low Si/K and Ca/K ratios, suggesting these biochars may have a high slagging propensity in comparison to bark and leaf biochars.Thirdly, bio-oil and biochar were also produced from pyrolysis of micron-size wood particle using a fluidised-bed reactor system under fast-heating conditions. The excellent grindability of biochar had enabled desirable particle size reduction of biochar into fine particles which can be suspended into bio-oil for the preparation of bioslurry fuels. The data have demonstrated that bioslurry fuels have desired fuel and rheological characteristics that met the requirements for combustion and gasification applications. Depending on biochar loading, the volumetric energy density of bioslurry is up to 23.2 GJ/m[superscript]3, achieving a significant energy densification (by a factor > 4) in comparison to green wood chips. Bioslurry fuels with high biochar concentrations (11-20 wt%) showed non-Newtonian characteristics with pseudoplastic behaviour. The flow behaviour index, n decreases with the increasing of biochar concentration. Bioslurry with higher biochar concentrations has also demonstrated thixotropic behaviour. The bioslurry fuels also have low viscosity (<453 mPa.s) and are pumpable at both room and elevated temperatures. The concentrations of Ca, K, N and S in bioslurry are below the limits of slurry fuel guidelines.Fourthly, bio-oil is extracted using biodiesel to produce two fractions, a biodiesel-rich fraction (also referred as bio-oil/biodiesel blend) and a bio-oil rich fraction. The results has shown that the compounds (mainly phenolic) extracted from bio-oil into the biodiesel-rich fraction reduces the surface tension of the resulted biodiesel/bio-oil blends that are known as potential liquid transport fuels. The bio-oil rich fraction is mixed with ground biochar to produce a bioslurry fuel. It is found that bioslurry fuels with 10% and 20% biochar loading prepared from the bio-oil rich fraction of biodiesel extraction at a biodiesel to bio-oil blend ratio 0.67 have similar fuel properties (e.g. density, surface tension, volumetric energy density and stability) in comparison to those prepared using the original whole bio-oil. The slurry fuels have exhibited non-Newtonian with pseudoplastic characteristics and good pumpability desirable for fuel handling. The viscoelastic behaviour of the slurry fuels also has shown dominantly fluid-like behaviour in the linear viscoelastic region therefore favourable for atomization in practical applications. This study proposes a new bio-oil utilisation strategy via coproduction of a biodiesel/bio-oil blend and a bioslurry fuel. The biodiesel/bio-oil blend utilises a proportion of bio-oil compounds (relatively high value small volume) as a liquid transportation fuel. The bioslurry fuel is prepared by mixing the rest low-quality bio-oil rich fractions (relatively low value and high volume) with ground biochar, suitable for stationary applications such as combustion and gasification.Overall, the present research has generated valuable data, knowledge and fundamental understanding on advanced fuels from mallee biomass using pyrolysis as a pre-treatment step. The flexibility of pyrolysis process enables conversion of bulky, low fuel quality mallee biomass to biofuels of high volumetric energy density favourable to reduce logistic cost associated with direct use of biomass. The significance structural, fuel and ash properties differences among various mallee biomass components were also revealed. The production of bioslurry fuels as a mixture of bio-oil and biochar is not only to further enhance the transportability/handling of mallee biomass but most importantly the slurry quality highly matched requirements in stationary applications such as combustion and gasification. The co-production of bioslurry with bio-oil/biodiesel extraction was firstly reported in this field. Such a new strategy, which uses high-quality extractable bio-oil compounds into bio-oil/biodiesel blend as a liquid transportation fuel and utilises the low-quality bio-oil rich fraction left after extraction for bioslurry preparation, offers significant benefits for optimised use of bio-oil.
APA, Harvard, Vancouver, ISO, and other styles
9

Williams, Alexander W. "An investigation of the kinetics for the fast pyrolysis of loblolly pine woody biomass." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41093.

Full text
Abstract:
In the search for fossil fuel alternatives the production of bio-oil through the pyrolysis of biomass is one method which has shown evidence of scalability, meaning that the technology could be scaled up for the processing of biomass on the order of tons per day. Pyrolysis is the thermal degradation of compounds in the absence of oxygen. Of particular interest is the pyrolysis of sustainable energy crops such as Loblolly pine (Pinus taeda). The goal of this study is to develop a new method of characterizing the fast pyrolysis of biomass for the advancement of reactor design. The objectives are to determine bulk kinetic coefficients for the isothermal fast pyrolysis of biomass, evaluate the interchangeability of fast and slow pyrolysis kinetic parameters and compare generally accepted pyrolysis mechanisms derived from a common data set. A technical objective is to apply the most suitable derived kinetic parameters to model pyrolysis within a moving bed reactor. A novel fast pyrolysis micro-reactor is presented along with its design and development process. The micro-reactor allows for the control over both temperature and residence time of the reacting biomass. This system provides the experimental data for the characterization of biomass pyrolysis kinetic parameters. Thermal validation tests are presented and experimental yield results are given for raw Loblolly Pine, Avicel cellulose and Beechwood xylan for the derivation of kinetic descriptors. Cellulose and xylan results show good agreement with literature when the proper experimental conditions are met and whole wood pyrolysis results clearly demonstrate the dissimilarity between fast and slow pyrolysis apparent kinetic rates. The experimental results are then used to evaluate five different pyrolysis kinetic model configurations: single component global pyrolysis, two component global pyrolysis, product based pyrolysis, pseudo-component based pyrolysis and pseudo-component pyrolysis with an intermediate solid compound. Pseudo-component models are of particular interest because they may provide a generalized model, parameterized by the fractional composition of cellulose, hemicellulose and lignin in biomass species. Lignin pyrolysis yields are calculated to evaluate the suitability of a pseudo-component parallel non-competing superposition pyrolysis model. Lignin yields are estimated by taking the difference between whole wood pyrolysis and predicted cellulose and hemicellulose pyrolysis behaviors. The five models are then evaluated by comparison of predicted yields to the results for the pyrolysis of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Model evaluations show that pseudo-component superposition is not suitable as a generic pyrolysis model for the fast pyrolysis of biomass observed using the micro-reactor. Further analytical evaluations indicate that the assumption of parallel non-competing reactions between pseudo-components is not valid. Among the other models investigated the intermediate solid compound model showed the best fit to the verification experimentation results followed closely by the two component global model. Finally, the derived kinetic parameters are applied to the design of moving bed vacuum pyrolysis reactors which provide for the separation of heat and mass transfer pathways, resulting in the reduction of char entrainment and secondary reactions within collected bio-oils. Reaction kinetics and porous bed heat and mass transfer are accounted for within the bed model. Model development and predictive results are presented and sensitivity to activation energy variations investigated.
APA, Harvard, Vancouver, ISO, and other styles
10

Rogers, John G. "A techno-economic assessment of the use of fast pyrolysis bio-oil from UK energy crops in the production of electricity and combined heat and power." Thesis, Aston University, 2009. http://publications.aston.ac.uk/15376/.

Full text
Abstract:
This thesis investigates the cost of electricity generation using bio-oil produced by the fast pyrolysis of UK energy crops. The study covers cost from the farm to the generator’s terminals. The use of short rotation coppice willow and miscanthus as feedstocks was investigated. All costs and performance data have been taken from published papers, reports or web sites. Generation technologies are compared at scales where they have proved economic burning other fuels, rather than at a given size. A pyrolysis yield model was developed for a bubbling fluidised bed fast pyrolysis reactor from published data to predict bio-oil yields and pyrolysis plant energy demands. Generation using diesel engines, gas turbines in open and combined cycle (CCGT) operation and steam cycle plants was considered. The use of bio-oil storage to allow the pyrolysis and generation plants to operate independently of each other was investigated. The option of using diesel generators and open cycle gas turbines for combined heat and power was examined. The possible cost reductions that could be expected through learning if the technology is widely implemented were considered. It was found that none of the systems analysed would be viable without subsidy, but with the current Renewable Obligation Scheme CCGT plants in the 200 to 350 MWe range, super-critical coal fired boilers co-fired with bio-oil, and groups of diesel engine based CHP schemes supplied by a central pyrolysis plant would be viable. It was found that the cost would reduce with implementation and the planting of more energy crops but some subsidy would still be needed to make the plants viable.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bio-oil energy"

1

Malaysia, Lembaga Minyak Sawit, ed. Proceedings of chemistry, processing technology & bio-energy conference: PIPOC 2011 International Palm Oil Congress. Kuala Lumpur, Malaysia: Malaysian Palm Oil Board, Ministry of Plantation Industries and Commodities, Malaysia, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Malaysia, Lembaga Minyak Sawit, ed. Proceedings of chemistry, processing technology & bio energy conference: PIPOC 2009 International Palm Oil Congress, palm oil, balancing ecologics with economics. Kuala Lumpur, Malaysia: Malaysian Palm Oil Board, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koppelaar, Rembrandt, and Willem Middelkoop. The Tesla Revolution. NL Amsterdam: Amsterdam University Press, 2017. http://dx.doi.org/10.5117/9789462982062.

Full text
Abstract:
Though oil prices have been on a downward trajectory in recent months, that doesn't obscure the fact that fossil fuels are finite, and we will eventually have to grapple with the end of their dominance. At the same time, however, skepticism about the alternatives remains: we've never quite achieved the promised 'too cheap to meter' power of the future, be it nuclear, solar, or wind. And hydrogen and bio-based fuels are thus far a disappointment. So what does the future of energy look like? The Tesla Revolution has the answers. In clear, unsensational style, Willem Middelkoop and Rembrandt Koppelaar offer a layman's tour of the energy landscape, now and to come. They show how rapid technological advances in batteries and solar technologies are already driving large-scale transformations in power supply, while economic and geopolitical changes, combined with a growing political awareness that there are alternatives to fossil fuels will combine in the coming years to bring an energy revolution ever closer. Within in our lifetimes, the authors argue, we will see changes that will reshape economics, the balance of political power, and even the most mundane aspects of our daily lives. Determinedly forward-looking and optimistic, though never straying from hard facts, The Tesla Revolution paints a striking picture of our global energy future.
APA, Harvard, Vancouver, ISO, and other styles
4

Freitas, Lisiane dos Santos, Roberta Menezes Santos, Diego Fonseca Bispo, Thainara Bovo Massa, Thiago Vinícius Barros, Lucio Cardozo Filho, Alberto Wisniewski Jr., et al. Energia da Biomassa: termoconversão e seus produtos. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-5861-079-3.

Full text
Abstract:
In this book, the authors briefly present a description of the main pyrolysis process, the pretreatment of biomass, the characteristics of biomass, and pyrolysis products through an upgraded methods and its application. The book is divided into ten chapters dedicated to showing the potential of the thermochemical process to convert biomass into biogas, bio-oil, pyrolysis water, and biochar, which are products that can be used as intermediates in the chemical industry, in agriculture, or as biofuels. The critical knowledge of the characteristics of the biomass and possible pretreatment methods before pyrolysis can be used to help determine the routes to obtain products with superior economic value. The main types of thermal conversion, the technologies, reactors, and catalyst used to upgrade the bio-oil into biofuels, is presented is a didactic form. The characterization of classic and new techniques is addressed in order to clarify the main information obtained about the chemical characteristics of biomass and pyrolysis products. The content also shows the importance and main applications of pyrolysis products for the economy and the environment.
APA, Harvard, Vancouver, ISO, and other styles
5

An economic analysis of a major bio-fuel program undertaken by OECD countries. [Ottawa]: Agriculture and Agri-Food Canada, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bio-oil energy"

1

Awathare, Pranay, Suradipa Choudhury, Supriya Ghule, Amara Lasita, Rudvi Pednekar, Anadhi Panchal, Bhaskar Singh, and Abhishek Guldhe. "Algal Biomass for Biodiesel and Bio-oil Production." In Clean Energy Production Technologies, 117–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3582-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salas, Margarita Rosa Albis, Vladimir Strezov, and Hossain M. Anawar. "System Approach to Bio-Oil Production from Microalgae." In Renewable Energy Systems from Biomass, 121–34. Boca Raton: Taylor & Francis, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315153971-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dinda, Srikanta, Nikhil S. V. Reddy, U. Appala Naidu, and S. Girish. "Development of Bio-Based Epoxide from Plant Oil." In Materials, Energy and Environment Engineering, 25–32. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2675-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kedir, Miftah F. "Pyrolysis Bio-oil and Bio-char Production from Firewood Tree Species for Energy and Carbon Storage in Rural Wooden Houses of Southern Ethiopia." In African Handbook of Climate Change Adaptation, 1313–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_183.

Full text
Abstract:
AbstractThe need for emission reduction for climate management had triggered the application of pyrolysis technology on firewood that yield bio-oil, bio-char, and syngas. The purpose of present study was to select the best bio-oil and bio-char producing plants from 17 firewood tree species and to quantify the amount of carbon storage. A dried and 1 mm sieved sample of 150 g biomass of each species was pyrolyzed in assembled setup of tubular furnace using standard laboratory techniques. The bio-oil and bio-char yields were 21.1–42.87% (w/w) and 23.23–36.40% (w/w), respectively. The bio-oil yield of Acacia seyal, Dodonea angustifolia, Euclea schimperi, Eucalyptus globulus, Casuarina equisetifolia, and Grevillea robusta were over 36% (w/w), which make the total yield of bio-oil and bio-char over 62% (w/w) of the biomass samples instead of the 12% conversion efficiency in traditional carbonization. The calorific value of firewood was 16.31–19.66 MJ kg–1 and bio-oil was 23.3–33.37 MJ kg–1. The use of bio-oil for household energy and bio-char for carbon storage reduced end use emission by 71.48–118.06%, which could increase adaptation to climate change in comparison to open stove firewood by using clean fuel and reducing indoor pollution.
APA, Harvard, Vancouver, ISO, and other styles
5

Dalal, Rohit, Roshan Wathore, and Nitin Labhasetwar. "Sustainable Production of Biochar, Bio-Gas and Bio-Oil from Lignocellulosic Biomass and Biomass Waste." In Energy, Environment, and Sustainability, 177–205. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8682-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Verma, Anand Mohan, and Nanda Kishore. "Current Advances in Bio-Oil Upgrading: A Brief Discussion." In Sustainable Energy Technology and Policies, 289–313. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7188-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gollakota, Anjani R. K., Malladi D. Subramanyam, Nanda Kishore, and Sai Gu. "Upgradation of Bio-oil Derived from Lignocellulose Biomass—A Numerical Approach." In Springer Proceedings in Energy, 197–212. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2773-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Verma, Anand Mohan, and Nanda Kishore. "A Succinct Review on Upgrading of Lignin-Derived Bio-oil Model Components." In Sustainable Energy Technology and Policies, 315–34. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7188-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bagheri, Samira. "Catalytic Upgrading of Bio-oil: Biomass Gasification in the Presence of Catalysts." In Catalysis for Green Energy and Technology, 155–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43104-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xie, Huaqing, Qingbo Yu, Kun Wang, Xinhui Li, and Qin Qin. "Thermodynamic and Experimental Study on the Steam Reforming Processes of Bio-oil Compounds for Hydrogen Productio." In Energy Technology 2014, 241–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118888735.ch30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bio-oil energy"

1

Bahri, Syaiful, Edy Saputra, Irene Detrina, Yusnitawati, and Muhdarina. "Bio oil from palm oil industry solid waste." In International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010). IEEE, 2010. http://dx.doi.org/10.1109/esd.2010.5598783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khumsak, Onarin, Weerapong Wattananoi, and Nakorn Worasuwannarak. "Bio-oil production from the torrefied biomass." In 2011 IEEE Conference on Clean Energy and Technology (CET). IEEE, 2011. http://dx.doi.org/10.1109/cet.2011.6041438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Xiaoxiang, Zhaoping Zhong, and Naoko Ellis. "Characterization and Fourier Transform Infrared Spectrum Analysis of Bio-oil/Bio-diesel Emulsion." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, Murni, Laveena Chugani, Cheng Seong Khor, and Suzana Yusup. "Simulation of Pyrolytic Bio-Oil Upgrading Into Hydrogen." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Xiujuan, Shurong Wang, Zuogang Guo, and Zhongyang Luo. "Properties of Bio-Oil from Alga Fast Pyrolysis." In 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5748790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chenni, H., M. Djeghballou, S. Daba, N. Outili, and A. H. Meniai. "Valorization of waste cooking oil into bio-sourced products." In 2022 13th International Renewable Energy Congress (IREC). IEEE, 2022. http://dx.doi.org/10.1109/irec56325.2022.10001971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pradhan, D., and R. K. Singh. "Bio-oil from biomass: Thermal pyrolysis of mahua seed." In 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS). IEEE, 2013. http://dx.doi.org/10.1109/iceets.2013.6533433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Zuogang, Shurong Wang, Qianqian Yin, Guohui Xu, Zhongyang Luo, Kefa Cen, and Torsten H. Fransson. "Catalytic Cracking Characteristics of Bio-Oil Molecular Distillation Fraction." In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11057552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gu, Yueling, Zuogang Guo, Lingjun Zhu, Guohui Xu, and Shurong Wang. "Experimental Research on Catalytic Esterification of Bio-Oil Volatile Fraction." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alrashidi, Hessah, Ahmed Farid Ibrahim, and Hisham Nasr-El-Din. "Bio-Oil Dispersants Effectiveness on AsphalteneSludge During Carbonate Acidizing Treatment." In SPE Trinidad and Tobago Section Energy Resources Conference. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/191165-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography