Journal articles on the topic 'Bio-/nano-interface'

To see the other types of publications on this topic, follow the link: Bio-/nano-interface.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bio-/nano-interface.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ramsden, J. J. "The bio–nano interface." Nanotechnology Perceptions 5, no. 2 (July 30, 2009): 151–65. http://dx.doi.org/10.4024/n11ra09a.ntp.05.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leszczynski, Jerzy. "Nano meets bio at the interface." Nature Nanotechnology 5, no. 9 (September 2010): 633–34. http://dx.doi.org/10.1038/nnano.2010.182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prinz Setter, Ofer, and Ester Segal. "Halloysite nanotubes – the nano-bio interface." Nanoscale 12, no. 46 (2020): 23444–60. http://dx.doi.org/10.1039/d0nr06820a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Mufti, A. Wesam, U. Hashim, Md Mijanur Rahman, and Tijjani Adam. "Nano–bio interface: the characterization of functional bio interface on silicon nanowire." Microsystem Technologies 21, no. 8 (July 20, 2014): 1643–49. http://dx.doi.org/10.1007/s00542-014-2241-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohapatra, Shyam S. "EDITORIAL: NANOBIO COLLABORATIVE EXPLORES NANO-BIO INTERFACE." Technology & Innovation 13, no. 1 (January 1, 2011): 1–3. http://dx.doi.org/10.3727/194982411x13003853540117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Torimitsu, Keiichi. "Nano-Bio Interface - Neural & Molecular Functions." Advances in Science and Technology 53 (October 2006): 91–96. http://dx.doi.org/10.4028/www.scientific.net/ast.53.91.

Full text
Abstract:
This paper briefly introduces the nano-bio related-research being carried out in our research group. The work is based on a fusion of neuroscience and bio-molecular science with nanotechnology. This interdisciplinary research is extremely promising for creating a new technology and developing a new knowledge. Nano-bio research could be a key to understanding the signal processing mechanism that lies behind memory and the learning system in our brain. Developing a novel biocompatible device that runs with biological functions is one of our research goals.
APA, Harvard, Vancouver, ISO, and other styles
7

Rouse, Ian, David Power, Erik G. Brandt, Matthew Schneemilch, Konstantinos Kotsis, Nick Quirke, Alexander P. Lyubartsev, and Vladimir Lobaskin. "First principles characterisation of bio–nano interface." Physical Chemistry Chemical Physics 23, no. 24 (2021): 13473–82. http://dx.doi.org/10.1039/d1cp01116b.

Full text
Abstract:
We present a multiscale computational approach for the first-principles study of bio-nano interactions. Using titanium dioxide as a case study, we evaluate the affinity of titania nanoparticles to water and biomolecules through atomistic and coarse-grained techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Jing, Waseem Akthar Quershi, Yiye Li, Jianxun Xu, and Guangjun Nie. "Analytical methods for nano-bio interface interactions." Science China Chemistry 59, no. 11 (October 14, 2016): 1467–78. http://dx.doi.org/10.1007/s11426-016-0340-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liang, Jieying, and Kang Liang. "Nano-bio-interface engineering of metal-organic frameworks." Nano Today 40 (October 2021): 101256. http://dx.doi.org/10.1016/j.nantod.2021.101256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hennig, Andreas, Sheshanath Bhosale, Naomi Sakai, and Stefan Matile. "CD Methods Development at the Bio-Nano Interface." CHIMIA International Journal for Chemistry 62, no. 6 (June 25, 2008): 493–96. http://dx.doi.org/10.2533/chimia.2008.493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Shang, Li, and G. Ulrich Nienhaus. "Small fluorescent nanoparticles at the nano–bio interface." Materials Today 16, no. 3 (March 2013): 58–66. http://dx.doi.org/10.1016/j.mattod.2013.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nel, Andre E., Lutz Mädler, Darrell Velegol, Tian Xia, Eric M. V. Hoek, Ponisseril Somasundaran, Fred Klaessig, Vince Castranova, and Mike Thompson. "Understanding biophysicochemical interactions at the nano–bio interface." Nature Materials 8, no. 7 (June 14, 2009): 543–57. http://dx.doi.org/10.1038/nmat2442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pulido-Reyes, Gerardo, Francisco Leganes, Francisca Fernández-Piñas, and Roberto Rosal. "Bio-nano interface and environment: A critical review." Environmental Toxicology and Chemistry 36, no. 12 (October 20, 2017): 3181–93. http://dx.doi.org/10.1002/etc.3924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lin, Ziliang, Wenting Zhao, Lindsey Hanson, Chong Xie, Yi Cui, and Bianxiao Cui. "At the Nano-Bio Interface: Probing Live Cells with Nano Sensors." Biophysical Journal 106, no. 2 (January 2014): 225a. http://dx.doi.org/10.1016/j.bpj.2013.11.1318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Yan-Wen, Huan Tang, Di Wu, Dong Liu, Yuanfang Liu, Aoneng Cao, and Haifang Wang. "Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin." Environmental Science: Nano 3, no. 4 (2016): 788–98. http://dx.doi.org/10.1039/c6en00031b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zheng, Yongfang, Yuchen Lin, Yimin Zou, Yanlian Yang, and Chen Wang. "Peptide-/protein-mediated nano-bio interface and its applications." Chinese Science Bulletin 63, no. 35 (November 2, 2018): 3783–98. http://dx.doi.org/10.1360/n972018-00835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Liangliang, Xingcan Shen, Changchun Wen, Chunfang Wei, Hong Liang, and Shichen Ji. "SERS studies of the inorganic nano-bio interface interaction." SCIENTIA SINICA Chimica 47, no. 2 (January 13, 2017): 183–90. http://dx.doi.org/10.1360/n032016-00153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhou, Ruhong, Thomas Weikl, and Yu-qiang Ma. "Theoretical modeling of interactions at the bio-nano interface." Nanoscale 12, no. 19 (2020): 10426–29. http://dx.doi.org/10.1039/d0nr90092c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Barkhade, Tejal, Ambadas Phatangare, Shailendra Dahiwale, Santosh Kumar Mahapatra, and Indrani Banerjee. "Nano‐bio interface study betweenFecontentTiO2nanoparticles and adenosine triphosphate biomolecules." Surface and Interface Analysis 51, no. 9 (June 25, 2019): 894–905. http://dx.doi.org/10.1002/sia.6663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Miaoyi, Ove J. R. Gustafsson, Emily H. Pilkington, Aleksandr Kakinen, Ibrahim Javed, Ava Faridi, Thomas P. Davis, and Pu Chun Ke. "Nanoparticle–proteome in vitro and in vivo." Journal of Materials Chemistry B 6, no. 38 (2018): 6026–41. http://dx.doi.org/10.1039/c8tb01634h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Jianhang, Guanbin Gao, Xintong Tang, Meng Yu, Meng He, and Taolei Sun. "Isomeric Effect of Nano-Inhibitors on Aβ40 Fibrillation at The Nano-Bio Interface." ACS Applied Materials & Interfaces 13, no. 4 (January 25, 2021): 4894–904. http://dx.doi.org/10.1021/acsami.0c21906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hou, Ji-Dan, Yun-Ping Zhang, and Chun-Ju Tang. "New polymer nano-biomaterials in rehabilitation nursing of orthopedic surgery injuries." Materials Express 12, no. 1 (January 1, 2022): 173–77. http://dx.doi.org/10.1166/mex.2022.2130.

Full text
Abstract:
Changes in nano-bio materials’ surface electronic structure and crystal structure produce small-size effects that macroscopic objects do not have. This makes it have a series of excellent macroscopic properties such as force, magnetism, electricity, optics, chemistry, and biology that traditional materials do not have. This article studies the application of new polymer nano-bio materials in orthopedic trauma. We study the effect of nanolevel hydroxyapatite gradient coating on the expression of osteoblast phenotypic factors. The shear strength of the implant-bone interface is better than the titanium alloy group and the titanium alloy group. So we can conclude that the nano-grade hydroxyapatite gradient coating material has good biological characteristics. It can promote the early healing of the bone trauma interface. This material is worthy of clinical application.
APA, Harvard, Vancouver, ISO, and other styles
23

Thomas, Spencer, Jeffrey Comer, Min Jung Kim, Shanna Marroquin, Vaibhav Murthy, Meghana Ramani, Tabetha Gaile Hopke, Jayden McCall, Seong-O. Choi, and Robert DeLong. "Comparative functional dynamics studies on the enzyme nano-bio interface." International Journal of Nanomedicine Volume 13 (August 2018): 4523–36. http://dx.doi.org/10.2147/ijn.s152222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sanchez-Cano, Carlos, Ramon A. Alvarez-Puebla, John M. Abendroth, Tobias Beck, Robert Blick, Yuan Cao, Frank Caruso, et al. "X-ray-Based Techniques to Study the Nano–Bio Interface." ACS Nano 15, no. 3 (March 2, 2021): 3754–807. http://dx.doi.org/10.1021/acsnano.0c09563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Najafpour, Mohammad Mahdi, Mohadeseh Zarei Ghobadi, Anthony W. Larkum, Jian-Ren Shen, and Suleyman I. Allakhverdiev. "The biological water-oxidizing complex at the nano–bio interface." Trends in Plant Science 20, no. 9 (September 2015): 559–68. http://dx.doi.org/10.1016/j.tplants.2015.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Campbell, Alan S., Chenbo Dong, Fanke Meng, Jeremy Hardinger, Gabriela Perhinschi, Nianqiang Wu, and Cerasela Zoica Dinu. "Enzyme Catalytic Efficiency: A Function of Bio–Nano Interface Reactions." ACS Applied Materials & Interfaces 6, no. 8 (April 9, 2014): 5393–403. http://dx.doi.org/10.1021/am500773g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kwon, Sun Sang, Jae Hyeok Shin, Jonghyun Choi, SungWoo Nam, and Won Il Park. "Nanotube-on-graphene heterostructures for three-dimensional nano/bio-interface." Sensors and Actuators B: Chemical 254 (January 2018): 16–20. http://dx.doi.org/10.1016/j.snb.2017.07.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

El-Fatyany, Aya, Hongzhi Wang, Saied M. Abd El-atty, and Mehak Khan. "Biocyber Interface-Based Privacy for Internet of Bio-nano Things." Wireless Personal Communications 114, no. 2 (May 26, 2020): 1465–83. http://dx.doi.org/10.1007/s11277-020-07433-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Chunming, and Lei Dong. "Exploring ‘new’ bioactivities of polymers at the nano–bio interface." Trends in Biotechnology 33, no. 1 (January 2015): 10–14. http://dx.doi.org/10.1016/j.tibtech.2014.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Celina, Darren Yohan, and Devika B. Chithrani. "Optimized bio-nano interface using peptide modified colloidal gold nanoparticles." Colloids and Interface Science Communications 1 (August 2014): 54–56. http://dx.doi.org/10.1016/j.colcom.2014.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Junzhe, Xiao He, Peng Zhang, Yuhui Ma, Yayun Ding, Zhenyu Wang, and Zhiyong Zhang. "Quantifying the dissolution of nanomaterials at the nano-bio interface." Science China Chemistry 58, no. 5 (April 1, 2015): 761–67. http://dx.doi.org/10.1007/s11426-015-5401-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mout, Rubul, and Vincent M. Rotello. "Bio and Nano Working Together: Engineering the Protein-Nanoparticle Interface." Israel Journal of Chemistry 53, no. 8 (May 23, 2013): 521–29. http://dx.doi.org/10.1002/ijch.201300026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

He, Xiaojia, Winfred G. Aker, Peter P. Fu, and Huey-Min Hwang. "Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: a review and perspective." Environmental Science: Nano 2, no. 6 (2015): 564–82. http://dx.doi.org/10.1039/c5en00094g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Koumoulos, E. P., S. A. M. Tofail, C. Silien, D. De Felicis, R. Moscatelli, D. A. Dragatogiannis, E. Bemporad, M. Sebastiani, and C. A. Charitidis. "Metrology and nano-mechanical tests for nano-manufacturing and nano-bio interface: Challenges & future perspectives." Materials & Design 137 (January 2018): 446–62. http://dx.doi.org/10.1016/j.matdes.2017.10.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Boruah, Jayanta S., Kamatchi Sankaranarayanan, and Devasish Chowdhury. "Insight into carbon quantum dot–vesicles interactions: role of functional groups." RSC Advances 12, no. 7 (2022): 4382–94. http://dx.doi.org/10.1039/d1ra08809b.

Full text
Abstract:
An interaction study at the nano–bio interface involving phosphatidylcholine vesicles (as a model cell membrane) and four different carbon dots bearing different functional groups (–COOH, –NH2, –OH, and BSA-coated).
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Wentao, and Hedi Mattoussi. "Engineering the Bio–Nano Interface Using a Multifunctional Coordinating Polymer Coating." Accounts of Chemical Research 53, no. 6 (May 19, 2020): 1124–38. http://dx.doi.org/10.1021/acs.accounts.9b00641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhao, Lina. "Nano/bio interface study in peptide coated gold cluster nanomedicine design." Nanomedicine: Nanotechnology, Biology and Medicine 14, no. 5 (July 2018): 1791. http://dx.doi.org/10.1016/j.nano.2017.11.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Verderio, Paolo, Svetlana Avvakumova, Giulia Alessio, Michela Bellini, Miriam Colombo, Elisabetta Galbiati, Serena Mazzucchelli, Jesus Peñaranda Avila, Benedetta Santini, and Davide Prosperi. "Delivering Colloidal Nanoparticles to Mammalian Cells: A Nano-Bio Interface Perspective." Advanced Healthcare Materials 3, no. 7 (January 20, 2014): 957–76. http://dx.doi.org/10.1002/adhm.201300602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Caselli, Lucrezia, Andrea Ridolfi, Gaetano Mangiapia, Pierfrancesco Maltoni, Jean-François Moulin, Debora Berti, Nina-Juliane Steinke, Emil Gustafsson, Tommy Nylander, and Costanza Montis. "Interaction of nanoparticles with lipid films: the role of symmetry and shape anisotropy." Physical Chemistry Chemical Physics 24, no. 5 (2022): 2762–76. http://dx.doi.org/10.1039/d1cp03201a.

Full text
Abstract:
Topological effects are key in driving nano-bio interface phenomena: the symmetry of the lipid membrane (cubic or lamellar) dictates the interaction mechanism, while nanoparticles shape (sphere or rod) modulates the interaction strength.
APA, Harvard, Vancouver, ISO, and other styles
40

Xie, Changjian, Junzhe Zhang, Yuhui Ma, Yayun Ding, Peng Zhang, Lirong Zheng, Zhifang Chai, Yuliang Zhao, Zhiyong Zhang, and Xiao He. "Bacillus subtilis causes dissolution of ceria nanoparticles at the nano–bio interface." Environmental Science: Nano 6, no. 1 (2019): 216–23. http://dx.doi.org/10.1039/c8en01002a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

S. Joglekar, Shreeram, Harish M. Gholap, Prashant S. Alegaonkar, and Anup A. Kale. "The interactions between CdTe quantum dots and proteins: understanding nano-bio interface." AIMS Materials Science 4, no. 1 (2017): 209–22. http://dx.doi.org/10.3934/matersci.2017.1.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Singh, Sushant, Anh Ly, Soumen Das, Tamil S. Sakthivel, Swetha Barkam, and Sudipta Seal. "Cerium oxide nanoparticles at the nano-bio interface: size-dependent cellular uptake." Artificial Cells, Nanomedicine, and Biotechnology 46, sup3 (October 12, 2018): S956—S963. http://dx.doi.org/10.1080/21691401.2018.1521818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Alkilany, Alaaldin M., Samuel E. Lohse, and Catherine J. Murphy. "The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano–Bio Interface." Accounts of Chemical Research 46, no. 3 (June 25, 2012): 650–61. http://dx.doi.org/10.1021/ar300015b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

de Puig, Helena, Irene Bosch, Lee Gehrke, and Kimberly Hamad-Schifferli. "Challenges of the Nano–Bio Interface in Lateral Flow and Dipstick Immunoassays." Trends in Biotechnology 35, no. 12 (December 2017): 1169–80. http://dx.doi.org/10.1016/j.tibtech.2017.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Aimé, Carole, Gervaise Mosser, Gaëlle Pembouong, Laurent Bouteiller, and Thibaud Coradin. "Controlling the nano–bio interface to build collagen–silica self-assembled networks." Nanoscale 4, no. 22 (2012): 7127. http://dx.doi.org/10.1039/c2nr31901b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gauvin, Florent, Clément Richard, and Mathieu Robert. "Modification of bamboo fibers/bio-based epoxy interface by nano-reinforced coatings." Polymer Composites 39, no. 5 (June 16, 2016): 1534–42. http://dx.doi.org/10.1002/pc.24097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

das, Subhabrata, Teguh Citra Asmara, Zhaoning Song, Andrivo Rusydi, Bernardo Barbiellini, Ponisseril Somasundaran, and Venkatesan Renugopalakrishnan. "Probing Biophysicochemical Interactions at Nano-Bio Interface of Perovskite Tandem Biosolar Cells." Biophysical Journal 116, no. 3 (February 2019): 577a. http://dx.doi.org/10.1016/j.bpj.2018.11.3105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kumar, Rajiv. "Biomedical applications of nanoscale tools and nano-bio interface: A blueprint of physical, chemical, and biochemical cues of cell mechanotransduction machinery." Biomedical Research and Clinical Reviews 4, no. 2 (June 18, 2021): 01–04. http://dx.doi.org/10.31579/2692-9406/064.

Full text
Abstract:
A dream to have control over the cell behavior by nanoscale tools and nano-bio interface to mimic remodeling of cell mechanotransduction machinery, is an updated approach and the latest theme of current research.[1] To achieve such a goal, the nanofabrication technique plays a key role in designing novel nanoscale tools capable of stimulating the natural extracellular matrix (ECM). These nano-bio tools can create a valuable nanoscale interface, and finally, these advanced tools control cell behavior. Structurally and compositionally, the cells are too complicated and well equipped with remarkable features. It has a lot of complexity in it. The initial hurdle is the natural composition of cells and the surroundings of the nanoscale. The cell is too complicated, and it is a difficult and tough task to determine the features of its areas. The emergence of nanoscale tools, which are capable of analyzing and performing by applying single-molecule with high precision is helping for boosting cellular events for enhancing biomedical claims.[2] These tools and biomedical methods consist of nanomaterials that can perform as nanodevices, expose the cellular environment and simulate the cell-matrix interface. These biomedical methods are now considered major outfits for further analysis. [3] To detect the surface patterning of the cells and concerned topographies of cellular environments, these nanoscale devices, and 3D microporous scaffolds derived from nanomaterials are the main equipment applied to exploit the hidden areas and undiscovered activities of the cell components.
APA, Harvard, Vancouver, ISO, and other styles
49

Zafar, Sidra, Mohsin Nazir, Taimur Bakhshi, Hasan Ali Khattak, Sarmadullah Khan, Muhammad Bilal, Kim-Kwang Raymond Choo, Kyung-Sup Kwak, and Aneeqa Sabah. "A Systematic Review of Bio-Cyber Interface Technologies and Security Issues for Internet of Bio-Nano Things." IEEE Access 9 (2021): 93529–66. http://dx.doi.org/10.1109/access.2021.3093442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Spedalieri, Cecilia, Gergo Péter Szekeres, Stephan Werner, Peter Guttmann, and Janina Kneipp. "Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars." Nanomaterials 11, no. 5 (April 30, 2021): 1183. http://dx.doi.org/10.3390/nano11051183.

Full text
Abstract:
Gold nanostars are a versatile plasmonic nanomaterial with many applications in bioanalysis. Their interactions with animal cells of three different cell lines are studied here at the molecular and ultrastructural level at an early stage of endolysosomal processing. Using the gold nanostars themselves as substrate for surface-enhanced Raman scattering, their protein corona and the molecules in the endolysosomal environment were characterized. Localization, morphology, and size of the nanostar aggregates in the endolysosomal compartment of the cells were probed by cryo soft-X-ray nanotomography. The processing of the nanostars by macrophages of cell line J774 differed greatly from that in the fibroblast cell line 3T3 and in the epithelial cell line HCT-116, and the structure and composition of the biomolecular corona was found to resemble that of spherical gold nanoparticles in the same cells. Data obtained with gold nanostars of varied morphology indicate that the biomolecular interactions at the surface in vivo are influenced by the spike length, with increased interaction with hydrophobic groups of proteins and lipids for longer spike lengths, and independent of the cell line. The results will support optimized nanostar synthesis and delivery for sensing, imaging, and theranostics.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography