Academic literature on the topic 'Bio hydrogène'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bio hydrogène.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bio hydrogène"

1

Sathyaprakasan, Parvathy, and Geetha Kannan. "Economics of Bio-Hydrogen Production." International Journal of Environmental Science and Development 6, no. 4 (2015): 352–56. http://dx.doi.org/10.7763/ijesd.2015.v6.617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jung, Yang-Sook, Sunhee Lee, Jaehyeung Park, and Eun-Joo Shin. "One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Polyol (Polytrimethylene Ether Glycol) and Characterization of Micro-Phase Separation." Polymers 14, no. 20 (October 12, 2022): 4269. http://dx.doi.org/10.3390/polym14204269.

Full text
Abstract:
In this study, a series of bio-based thermoplastic polyurethane (TPU) was synthesized via the solvent-free one-shot method using 100% bio-based polyether polyol, prepared from fermented corn, and 1,4-butanediol (BDO) as a chain extender. The average molecular weight, degree of phase separation, thermal and mechanical properties of the TPU-based aromatic (4,4-methylene diphenyl diisocyanate: MDI), and aliphatic (bis(4-isocyanatocyclohexyl) methane: H12MDI) isocyanates were investigated by gel permeation chromatography, Fourier transform infrared spectroscopy, atomic force microscopy, X-ray Diffraction, differential scanning calorimetry, dynamic mechanical thermal analysis, and thermogravimetric analysis. Four types of micro-phase separation forms of a hard segment (HS) and soft segment (SS) were suggested according to the [NCO]/[OH] molar ratio and isocyanate type. The results showed (a) phase-mixed disassociated structure between HS and SS, (b) hydrogen-bonded structure of phase-separated between HS and SS forming one-sided hard domains, (c) hydrogen-bonded structure of phase-mixed between HS, and SS and (d) hydrogen-bonded structure of phase-separated between HS and SS forming dispersed hard domains. These phase micro-structure models could be matched with each bio-based TPU sample. Accordingly, H-BDO-2.0, M-BDO-2.0, H-BDO-2.5, and M-BDO-3.0 could be related to the (a)—form, (b)—form, (c)—form, and (d)—form, respectively.
APA, Harvard, Vancouver, ISO, and other styles
3

Palaniswamy D, Palaniswamy D., Ramesh G. Ramesh G, Sri Pradeep M. Sri Pradeep M, and Ranjith Raja S. Ranjith Raja S. "Investigation of Bio-Wastes and Methods for the Production of Bio-Hydrogen – A Review." International Journal of Scientific Research 1, no. 5 (June 1, 2012): 60–62. http://dx.doi.org/10.15373/22778179/oct2012/20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hendrawan and Kiyoshi Dowaki. "CO2 Emission Reduction Analysis of Bio-Hydrogen Network: An Initial Stage of Hydrogen Society." Journal of Clean Energy Technologies 3, no. 4 (2015): 296–301. http://dx.doi.org/10.7763/jocet.2015.v3.212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmad, Syed A. R., Mritunjai Singh, and Archana Tiwari. "Review on Bio-hydrogen Production Methods." International Journal for Research in Applied Science and Engineering Technology 10, no. 3 (March 31, 2022): 610–14. http://dx.doi.org/10.22214/ijraset.2022.40679.

Full text
Abstract:
Abstract: Hydrogen is a promising replacement for fossil fuels as a long-term energy source. It is a clean, recyclable, high efficient nature and environmentally friendly fuel. Hydrogen is now produced mostly using water electrolysis and natural gas steam reformation. However, biological hydrogen production has substantial advantages over thermochemical and electrochemical. Hydrogen can be produced biologically by bio-photolysis (direct and indirect), photo fermentation, dark fermentation. The methods for producing biological hydrogen were studied in this study. Keywords: Biological hydrogen, steam reformation, bio-photolysis, photo-fermentation, dark fermentation
APA, Harvard, Vancouver, ISO, and other styles
6

Abd-Elrahman, Nabil K., Nuha Al-Harbi, Yas Al-Hadeethi, Adel Bandar Alruqi, Hiba Mohammed, Ahmad Umar, and Sheikh Akbar. "Influence of Nanomaterials and Other Factors on Biohydrogen Production Rates in Microbial Electrolysis Cells—A Review." Molecules 27, no. 23 (December 6, 2022): 8594. http://dx.doi.org/10.3390/molecules27238594.

Full text
Abstract:
Microbial Electrolysis Cells (MECs) are one of the bioreactors that have been used to produce bio-hydrogen by biological methods. The objective of this comprehensive review is to study the effects of MEC configuration (single-chamber and double-chamber), electrode materials (anode and cathode), substrates (sodium acetate, glucose, glycerol, domestic wastewater and industrial wastewater), pH, temperature, applied voltage and nanomaterials at maximum bio-hydrogen production rates (Bio-HPR). The obtained results were summarized based on the use of nanomaterials as electrodes, substrates, pH, temperature, applied voltage, Bio-HPR, columbic efficiency (CE) and cathode bio-hydrogen recovery (C Bio-HR). At the end of this review, future challenges for improving bio-hydrogen production in the MEC are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Fang, H. H. P., H. Liu, and T. Zhang. "Bio-hydrogen production from wastewater." Water Supply 4, no. 1 (February 1, 2004): 77–85. http://dx.doi.org/10.2166/ws.2004.0009.

Full text
Abstract:
The technically feasibility of converting organic pollutants in wastewater into hydrogen by a continuous two-step process was demonstrated. Two carbohydrates, i.e. glucose and sucrose, in wastewater were respectively acidified by dark fermentation at pH 5.5 with 6–6.6 hours of hydraulic retention in a 3-l fermentor, producing an effluent containing mostly acetate and butyrate, and a methane-free biogas comprising mostly hydrogen. The acidified effluent was then further treated by photo fermentation for hydrogen production. The overall yield based on the substrate consumed was 31–32%, i.e. 17–18% for dark fermentation and 14% for photo fermentation. It was found that under certain dark fermentation conditions, hydrogen-producing sludge was agglutinated into granules, resulting in a higher biomass density and increased volumetric hydrogen production efficiency. DNA-based analysis of microbial communities revealed that the respective predominant bacteria were Clostridium in dark fermentation and Rhodobacter in photo fermentation. Further investigations are warranted, particularly, in areas such as improving reactor design, treating protein and lipid rich wastewaters, and studying sludge granulation mechanisms and controlling factors.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Sheng, Haotian Zhu, Enrui Bai, Chongyang Xu, Xiaoyin Xie, and Chuanyu Sun. "Composite Modified Graphite Felt Anode for Iron–Chromium Redox Flow Battery." Inventions 9, no. 5 (September 9, 2024): 98. http://dx.doi.org/10.3390/inventions9050098.

Full text
Abstract:
The iron–chromium redox flow battery (ICRFB) has a wide range of applications in the field of new energy storage due to its low cost and environmental protection. Graphite felt (GF) is often used as the electrode. However, the hydrophilicity and electrochemical activity of GF are poor, and its reaction reversibility to Cr3+/Cr2+ is worse than Fe2+/Fe3+, which leads to the hydrogen evolution side reaction of the negative electrode and affects the efficiency of the battery. In this study, the optimal composite modified GF (Bi-Bio-GF-O) electrode was prepared by using the optimal pomelo peel powder modified GF (Bio-GF-O) as the matrix and further introducing Bi3+. The electrochemical performance and material characterization of the modified electrode were analyzed. In addition, using Bio-GF-O as the positive electrode and Bi-Bio-GF-O as the negative electrode, the high efficiency of ICRFB is realized, and the capacity attenuation is minimal. When the current density is 100 mA·cm−2, after 100 cycles, the coulomb efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) were 97.83%, 85.21%, and 83.36%, respectively. In this paper, the use of pomelo peel powder and Bi3+ composite modified GF not only promotes the electrochemical performance and reaction reversibility of the negative electrode but also improves the performance of ICRFB. Moreover, the cost of the method is controllable, and the process is simple.
APA, Harvard, Vancouver, ISO, and other styles
9

Zuo, J., Y. Zuo, W. Zhang, and J. Chen. "Anaerobic bio-hydrogen production using pre-heated river sediments as seed sludge." Water Science and Technology 52, no. 10-11 (November 1, 2005): 31–39. http://dx.doi.org/10.2166/wst.2005.0676.

Full text
Abstract:
Anaerobic bio-hydrogen production is the focus in the field of bio-energy resources. In this paper, a series of batch experiments were conducted to investigate the effects of several factors on anaerobic bio-hydrogen producing process carried out by pre-heated river sediments. The results showed that several factors such as substrate and its concentration, temperature and the initial pH value could affect the anaerobic bio-hydrogen production in different levels. At 35°C and the initial pH of 6.5, using glucose of 20,000mg COD/L as substrate, the highest hydrogen production of 323.8ml-H2/g TVS in a 100ml batch reactor was reached, the specific hydrogen production rate was 37.7ml-H2/g TVSh, and the hydrogen content was 51.2%. Thereafter using the same pre-heated river sediments as seed sludge, continuous anaerobic bio-hydrogen production was achieved successfully in a lab-scale CSTR with gas-separator. At the organic loading rate of 36kg COD/m3d, the highest hydrogen production was 6.3–6.7l-H2/l-reactord, the specific hydrogen production was 1.3–1.4mol-H2/mol-glucose, and the hydrogen content in the gas was 52.3%. The effluent of the bio-reactor contained some small molecular organics, mainly including ethanol, acetate, butyrate and their molar proportion is 1 : 1 : 0.6.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yong Feng, Jing Wei Zhang, Wei Han, Jian Yu Yang, Yong Juan Zhang, and Zhan Qing Wang. "Review on Engineering of Fermentative Bio-Hydrogen Production." Advanced Materials Research 183-185 (January 2011): 193–96. http://dx.doi.org/10.4028/www.scientific.net/amr.183-185.193.

Full text
Abstract:
The paper not only reviews the progress of engineering and application on bio-hydrogen production, but also discusses characteristics, advantages and disadvantages of biological hydrogen production systems. Meanwhile, it mainly analyzes anaerobic fermentative bio-hydrogen production systems’ technological schemes, design strategies, engineering control parameters, fermentation control, fuel cell, technical means to increase hydrogen evolution and its rate. Under the guidance of the theory of ethanol-type fermentation, the fermentative bio-hydrogen production systems have been established in practice.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bio hydrogène"

1

Papadakis, Michail. "Bio-inspired production of dihydrogen." Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0061.

Full text
Abstract:
Dans ce travail, nous avons synthétisé, caractérisé et testé différentes séries de complexes de nickel basés sur des ligands thiocarbazone pour leur capacité à produire de l’hydrogène à partir de deux processus catalytiques différents. La première partie de ce travail de thèse décrit l'utilisation de deux nouvelles familles basées sur des ligands bis-thiosemicarbazone et étudie comment une modulation appropriée du ligand peut affecter les performances électrocatalytiques pour la production d’hydrogène. La deuxième partie décrit l'utilisation d'un complexe de nickel polynucléaire et comment l'incorporation de plusieurs centres métalliques peut affecter l'activité électrocatalitique du système. Dans la dernière partie du manuscrit, de nouveaux systèmes photocatalytiques ont été développés en utilisant des nanoparticules de carbone comme capteurs de lumière et la série de complexes nickel à ligands thiosemicarbazones comme centres catalytiques pour photoproduire de l’hydrogène
In this work, we have synthesized, characterized and tested different series of nickel complexes based on thiocarbazone ligands for their ability to produce hydrogen from two different catalytic processes. The first part of this Ph.D. work describes the use of two new families based on bis-thiosemicarbazone ligands and investigates how appropriate ligand-tailoring can affect electrocatalytic performance for HER. The second part describes the use of a polynuclear nickel complex and how the incorporation of several metallic centers can affect electrocatalysis. In the last part of the manuscript, new photocatalytic systems were developed using carbon nanodots as light harvesters and the series of nickel-thiosemicarbazone complexes as catalytic centers for photo-producing hydrogen
APA, Harvard, Vancouver, ISO, and other styles
2

Kamara, Konakpo Parfait. "Stratégies d’utilisation du bio hydrogène pour la technologie PEMFC : utilisation directe." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI037.

Full text
Abstract:
La France dans le but de décarboner son mix énergétique et baisser ses émissions de CO2 a décidé d’investir massivement dans la production décarbonée d’hydrogène comme vecteur d’énergie pour des applications de mobilités ou stationnaires[1]. Sur le million de tonnes d’hydrogène produit en France, 96 % est produit par vaporeformage d’hydrocarbures. La stratégie Française vise à développer la filière hydrogène en investissant dans l’installation d’électrolyseurs. De plus les dernières découvertes d’énormes gisements d’hydrogène naturel (46 millions de tonnes d’hydrogène en Lorraine) crée l’enthousiasme et agrandi le champ des perspectives. [2]. Une autre filière de production d’hydrogène décarboné dont on parle le moins est la filière biologique qui présente un grand potentiel de diversifications des voies de productions. L’hydrogène issu de ces filières pose le problème de sa qualité pour une application dans la mobilité ou le stationnaire dans des systèmes de pile à combustible.L’objet de ces travaux de thèse est de définir des stratégies pour l’utilisation du bio hydrogène ou hydrogène naturel par la technologie de pile à combustible à membrane échangeuse de protons (PEMFC) et en passant par les étapes de production de l’hydrogène jusqu’à sa conversion électrochimique.La première partie a consisté à étudier l’impact des impuretés ou diluants (N2, Ar, He, CH4, CO2) contenus dans l’hydrogène issu des filières biologique et natif dans une demi-cellule (cellule de diffusion de gaz, GDE). Ensuite cette étude a été étendue à une mono cellule de pile à combustible à membrane échangeuse de protons. Enfin un réacteur biologique à échelle du laboratoire a permis de produire de l’hydrogène à partir de sources organiques par photo fermentation (PF) qui a ensuite été testé en GDE. Plusieurs techniques de caractérisations électrochimiques et physicochimiques comme la voltammétrie cyclique, la chrono amperommétrie, la mesure de surface électro-active par CO stripping, la microscopie électronique à balayage et à transmission, la chromatographie ionique etc…ont permis d’évaluer les performances de la PEMFC alimenté par du bio hydrogène ainsi que son impact sur les éléments d’une pile à combustible.Les résultats de l’activité des électrodes pour la réaction d’oxydation de l’hydrogène en GDE ont mis évidence des effets de limitations par le transport de matières pour l’ensemble mélange, avec des comportements particuliers observés pour le mélange à l’azote, et les mélanges au méthane et au dioxyde de carbone qui en plus de la dilution ont un effet d’empoisonnement au monoxyde de carbone de l’électrode.Ensuite, les tests en mono cellule alimenté par les mélanges H2/Ar, H2/N2 et H2/CO2 à 30 et 40 % volumique en H2 pour une application stationnaire ont révélé des pertes de performances plus importantes pour le mélange au dioxyde carbone, les mélanges à l’argon et à l’azote ont des performances quasiment équivalentes. Ces pertes de performances sont dues à des pertes de surfaces électro actives.Enfin la production de bio hydrogène par PF a montré que le choix de la biomasse, le prétraitement et la souche bactérienne influençaient la qualité du biogaz produit et les performances électrochimiques obtenues à partir de ce dernier sans étapes de purification.Références[1] « Présentation de la stratégie nationale pour le développement de l’hydrogène décarboné en France ». Consulté le: 11 janvier 2024. [En ligne]. Disponible sur: https://www.economie.gouv.fr/presentation-strategie-nationale-developpement-hydrogene-decarbone-france[2] « Le plus gros gisement d’hydrogène naturel du monde vient d’être découvert en France », SudOuest.fr. Consulté le: 11 janvier 2024. [En ligne]. Disponible sur: https://www.sudouest.fr/economie/energie/le-plus-gros-gisement-d-hydrogene-naturel-du-monde-vient-d-etre-decouvert-en-france-17826239.php
With the aim of decarbonizing its energy mix and lowering its CO2 emissions, France has decided to invest massively in the decarbonized production of hydrogen as an energy carrier for mobility and stationary applications [1]. Of the one million ton of hydrogen produced in France, 96% is produced by steam reforming of hydrocarbons. France's strategy is to develop the hydrogen sector by investing in the installation of electrolyzers. What's more, the latest discoveries of huge deposits of natural hydrogen (46 million tons of hydrogen in Lorraine) are creating enthusiasm and expanding the field of prospects. [2]. Another decarbonated hydrogen production sector that is less talked about is the biological sector, which offers great potential for diversifying production routes. Hydrogen from these sources raises the question of its quality for use in mobility or stationary fuel cell systems.The aim of this thesis is to define strategies for the use of bio-hydrogen or natural hydrogen using proton exchange membrane fuel cell (PEMFC) technology, from hydrogen production to electrochemical conversion.The first part consisted in studying the impact of impurities or diluents (N2, Ar, He, CH4, CO2) contained in hydrogen from biological and native processes in a half-cell (gas diffusion electrode, GDE). This study was then extended to a single-cell proton exchange membrane fuel cell. Finally, a laboratory-scale biological reactor was used to produce hydrogen from organic sources by photo fermentation (PF), which was then tested in a GDE. Several electrochemical and physicochemical characterization techniques, such as cyclic voltammetry, chrono amperometry, CO stripping for electroactive surface measurement, scanning and transmission electron microscopy, ion chromatography, etc., were used to assess the performance of the PEMFC fed by bio-hydrogen, and its impact on fuel cell components.The results of the electrode activity for the hydrogen oxidation reaction in GDE revealed mass-transport limitation effects for the mixtures, with a particular behavior observed for the nitrogen mixture, and the methane and carbon dioxide mixtures, which in addition to dilution have a carbon monoxide poisoning effect on the electrode.Next, single-cell tests using H2/Ar, H2/N2 and H2/CO2 mixtures at 30 and 40% H2 by volume for stationary applications revealed greater performance losses for the carbon dioxide mixture, while the argon and nitrogen mixtures performed almost equally well. These performance losses are due to electroactive surface losses.Finally, the production of biohydrogen by PF showed that the choice of biomass, pre-treatment and bacterial strain influenced the quality of the biogas produced and the electrochemical performances obtained from it without purification steps.References[1] « Présentation de la stratégie nationale pour le développement de l’hydrogène décarboné en France ». Consulté le: 11 janvier 2024. [En ligne]. Disponible sur: https://www.economie.gouv.fr/presentation-strategie-nationale-developpement-hydrogene-decarbone-france[2] « Le plus gros gisement d’hydrogène naturel du monde vient d’être découvert en France », SudOuest.fr. Consulté le: 11 janvier 2024. [En ligne]. Disponible sur: https://www.sudouest.fr/economie/energie/le-plus-gros-gisement-d-hydrogene-naturel-du-monde-vient-d-etre-decouvert-en-france-17826239.php
APA, Harvard, Vancouver, ISO, and other styles
3

Hartunians, Jordan. "High temperature H2 bio-production in Thermococcales models : setting up bases optimized high pressure solutions." Thesis, Brest, 2020. http://www.theses.fr/2020BRES0033.

Full text
Abstract:
L’H2, vecteur d’énergie prometteur, peut être synthétisé par les Thermococcales. La haute pression (HP) influencerait le métabolisme associé, mais n’a pas été envisagée en pratique. Après criblage d’isolats pour dégradations de substrats et productions d’H2, T. barophilus MPT, croissant préférentiellement à 40 MPa, a été choisi comme modèle, et sa fermentation a été décrite dans un contexte appliqué. Des méthodes HP ont été optimisées pour étudier l’H2. Un bioréacteur de 400mL de culture continue a été amélioré, maintenant des fluides corrosifs à HP hydrostatique (jusqu’à 120 MPa) et gazeuse (jusqu’à 40 MPa) jusqu’à 150 °C. Il a permis de mesurer la production d’H2 de notre souche à HP gazeuse. Un tube compressible pour culture discontinue à phase gaz étanche a été inventé, et a servi à mesurer la production d’H2 de T. barophilus en HP hydrostatique. Le métabolisme HP de la souche a été étudié grâce à des délétions préalables de gènes clés (mbh, mbs, co-mbh, shI, shII). Les rôles des enzymes liées ont été précisés via des mesures de croissances, produits (H2, H2S, acétate) et expressions génétiques des mutants, à 0,1 et 40 MPa. La tolérance à l’H2 de T. barophilus a été augmentée par évolution adaptative en laboratoire.« Evol », la souche fille acclimatée durant 76 générations à une saturation d’H2, a crû dans 10% d’H2, contrairement à la souche mère. Pour comprendre ces adaptations, les produits (H2, H2S, acétate), transcriptomes et génomes des deux souches ont été comparés. Avec 119 mutations génomiques, le métabolisme de l’H2 a été modifié dans le variant. Ce projet souligne l’intérêt du caractère piézophile des Thermococcales dans la bio-production d’H2 et permet de proposer des stratégies d’H2 et permet de proposer des stratégies d’optimisation
H2, a promising energetic vector, can be synthesized by Thermococcales. High pressure (HP) could influence the associated metabolism, but was not practically considered. After having screened isolates for assets in substrate degradation and H2 yields, T. barophilus MPT, growing optimally at 40 MPa, was chosen as a model and its metabolism was characterized in an applied context. Methods for HP culture were optimized for H2 studies. Our HP bioreactor for continuous culture underwent major improvements. This 400 mL container, able to maintain corrosive fluids at hydrostatic (up to 120 MPa) and gas (up to 40 MPa) pressures, at up to 150 °C, served to assess H2 production of our strain at high gas pressure. We also created a compressible device for discontinuous leak-free gas-phase incubations, allowing to measure T. barophilus HP H2 production (hydrostatic). HP adaptations of T. barophilus were observed thanks to previous deletions of key genes (mbh, mbs, co-mbh, shI, shII).We refined the roles of each concerned enzyme by assessing growths, end-products (H2, H2S, acetate), and gene expressions of the mutants, at 0.1 and 40 MPa. Additionally, we enhanced H2 tolerance in our model by adaptive laboratory evolution. “Evol”, the ensuing strain acclimatized to H2-saturating conditions for 76 generations, grew in 10% H2, contrarily to the parent strain. To understand such adaptation, we compared both strains’ end-products (H2, H2S, acetate), transcriptomes, and genomes.119 mutations were detected and the H2 metabolism was changed in the new variant. This work underlines the interest of Thermococcales’ piezophily for H2 bio-production and permits to propose optimization strategies
APA, Harvard, Vancouver, ISO, and other styles
4

Busselez, Rémi. "Propriétés de fluides vitrifiables bio protecteurs nanoconfinés." Rennes 1, 2008. http://www.theses.fr/2008REN1S057.

Full text
Abstract:
Il a été prouvé que le confinement à des échelles nanométriques de liquides moléculaires simples modifie considérablement leur structure et leurs propriétés dynamiques et thermophysiques. Un nombre important d'études consacrées aux liquides moléculaires formateurs de verres dans des géométries confinées ont permis de mettre en évidence des effets complexes conjugués de basse dimmensionnalité, de taille finie et de surface. La compréhension de la dynamique des liquides simples à l'interface ou confinés doit être étendue à des liquides plus complexes intéréssants différents secteurs technologiques et biologiques. Un de ces secteurs est la bioprotection. Cependant, un niveau supérieur de complexité est attendu dans les fluides bioprotecteurs confinés, qui sont des mélanges de liquides moléculaires vitrifiables formant des liaisons hydrogènes fortes et sélectives. Nous avons réalisé une étude structurale et dynamique de la solution bioprotectrice de réference glycérol-tréhalose confinée dans des nanopores unidirectionnels de silicium. Des expériences de RMN du solide et de diffusion de neutrons ont été combinées avec des simulations de dynamique moléculaire. Elles révèlent des effets antagonistes entre la concentration en tréhalose et le nanoconfinement sur la structure et la dynamique rapide (nanoseconde) et vitreuse
It was shown that confinement on a nanometric scale considerably modifies the structure, the thermodynamical and dynamical properties of simple molecular liquids. A large number of studies devoted to pure molecular glass formers in restricted geometries have revealed a complex entanglement of low dimensionality, finite size and surface effects. The current understanding of the dynamics of interfacial or confined liquids must be extended to more complex fluids, in order to be relevant to different domains of technological or biological interest. One of these concerns biopreservation. Indeed, a new level of complexity is awaited for confined bioprotectant solutions, which are multi-component systems with strong and selective H-bond interactions. We have performed a structural and dynamical investigation of the archetype glycerol-trehalose bioprotectant solution confined in silicon unidirectional nanopores. Neutron scattering and solid state NMR experiments have been combined to molecular dynamic simulations. They unambiguously reveal antagonist effects of trehalose concentration and nanoconfinement on the structure and molecular dynamics from the nanosecond time scale to the glassy arrest
APA, Harvard, Vancouver, ISO, and other styles
5

Metayé, Romain. "Vers une photoproduction de l'hydrogène par des catalyseurs immobilisés bio-inspirés." Palaiseau, Ecole polytechnique, 2010. http://www.theses.fr/2010EPXX0074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sahyouni, Farah Al. "Impact Thermo-Hydro-Bio-Chemio-Mécanique du stockage géologique souterrain de H₂." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0297.

Full text
Abstract:
L'hydrogène issu de l'électrolyse de l'eau est considéré au stockage géologique à grande échelle pour combler l'intermittence des énergies renouvelables. Il peut être stocké soit dans des cavernes saline, soit dans des roches poreuses (les aquifères salins et les réservoirs de pétrole et de gaz épuisés). Cette thèse propose une évaluation du risque de fuite de gaz dans le cas de cavités salines et du risque d'altération biogéochimique du stock dans le cas de roches réservoirs poreuses. Le sel est un matériau polycristallin à très faible perméabilité intrinsèque dans les zones non perturbées (environ 10-21 m2). Sa capacité d'étanchéité est due aux spécificités du comportement mécanique du sel et de l'écoulement du gaz dans de tels réservoirs non conventionnels (effet Klinkenberg). Le chargement déviatorique sous faible confinement (1MPa) induit une augmentation de la perméabilité aux gaz à partir du seuil de dilatance due à la microfissuration. Ainsi, comprendre la relation complexe entre l'évolution de la perméabilité et les sollicitations mécaniques et thermiques est important pour comprendre tout risque de fuite. Ainsi, nous avons réalisé une série d'expérience sur un sel analogue (sel MDPA). La porosité du sel étudié est très faible (~1%) et sa perméabilité initiale varie de 4.5 d'ordres de grandeur. L'effet Klinkenberg n'est observé que pour les échantillons les moins endommagés. Le couplage poroélastique est presque négligeable. Le chargement déviatorique sous faible pression de confinement (1MPa) induit une augmentation de la perméabilité aux gaz à partir du seuil de dilatance due à la microfissuration. La mesure des vitesses des ondes ultrasonores lors de la compression uniaxiale montre une fermeture irréversible des microfissures préexistantes et l'ouverture de microfissures axiales perpendiculaires et parallèles à la direction de la contrainte permettant une détermination précise du seuil de dilatance. Sous une pression de confinement plus élevée (5 MPa), le matériau devient entièrement plastique, ce qui élimine l'effet d'endommagement. Sous chargement hydrostatique, la perméabilité au gaz diminue en raison d'auto-cicatrisation. Tous ces résultats montrent que le stockage souterrain de l'hydrogène dans le sel est la solution la plus sûre. Dans le cas des roches poreuses, l'injection d'hydrogène peut induire des réactions géochimiques entre les fluides et les minéraux et une consommation du stock d'hydrogène catalysée par des micro-organismes tolérant les conditions extrêmes des aquifères et réservoirs ultra-salins. Pour étudier ces phénomènes, nous avons développé un nouveau dispositif expérimental pour simuler cette activité dans des conditions (T=35°C, PH2=50bar, Pconfinement=200bar). Le gaz sortant est échantillonné automatiquement avec une vanne HP-BP et sa concentration est mesurée par le micro-chromatographe pour quantifier tout changement. Nous avons choisi de travailler avec le grès de Vosges où nous incubons la bactérie Shewanella putrefaciens qui réduit le fer en présence d’hydrogène. Son métabolisme et performance en tant que bactérie hydrogénotrophe ont d'abord été testés en batch sur une roche en poudre. Les résultats ont montré que ce type de bactéries peut réduire le fer présent en utilisant d'abord ses sources endogènes d'électrons puis l'hydrogène, préférentiellement, l'hydrogène dissous. En conditions triaxiales, l'activité bactérienne ne semble pas avoir d'impact significatif, quelles que soient la concentration initiale en hydrogène (70% ou 5%) et la fréquence d'échantillonnage. De nombreuses hypothèses sont proposées pour expliquer les différences observées entre les conditions en batch et triaxiales : l'hydrogène dissous dans les eaux résiduelles, la faible surface d'échange pour les réactions biogéochimiques dans le cas des carottes solides, la lenteur de la cinétique. Malgré les incertitudes liées à l'expérimentation, nos résultats préliminaires suggèrent que le stockage souterrain [...]
Hydrogen produced from water electrolysis appears to be the best candidate for large- scale geological storage to cover the intermittency of renewable energy. It can be stored either in salt caverns or in porous rocks like saline aquifers and depleted oil and gas reservoirs. This thesis proposes an evaluation of the risk of gas leakage in the case of salt cavities and the risk of biogeochemical alteration of the gas stock in the case of porous reservoir rocks. Rock salt is a polycrystalline material with very low intrinsic permeability in undisturbed zones (around 10-21m2). It sealing capacity is due to the specific features of salt mechanical behavior and gas flow in such unconventional reservoirs (Klinkenberg effect). Deviatoric loading under low confining pressure (1MPa) induces a moderate increase in gas permeability from the dilatancy threshold due to microcracking disturbing the impermeability. So, understanding the complex relationship between permeability evolution and the mechanical and thermal solicitations is important to survey any possible risk of leakage. So, we performed a complete set of laboratory experiments on a rock salt specimen (MDPA in the East region of France). The porosity of the studied rock salt is very low (~1%) and the initial permeability varies over 4.5 orders of magnitude. Klinkenberg effect is only observed for the less damaged samples. The poroelastic coupling is almost negligible. Deviatoric loading under low confining pressure (1MPa) induces a moderate increase in gas permeability from the dilatancy threshold due to microcracking. Measurement of ultrasonic wave velocities during uniaxial compression showed an almost irreversible closure of pre-existing microcracks and the opening of axial microcracks that are perpendicular and parallel to the stress direction allowing a precise determination of the dilatancy threshold. Under higher confining pressure (5MPa), the material becomes fully plastic which practically eliminates damage. Under hydrostatic loading, gas permeability decreases because of the self-healing process. All these results give strong confidence in that underground hydrogen storage in salt caverns is the safest solution. In the case of porous reservoir rocks, hydrogen injection can induce geochemical redox reactions between the fluids and minerals and unwanted consumption of hydrogen stock catalyzed by microorganisms tolerating extreme conditions of deep saline aquifers and reservoirs.To study these phenomena, we developed a new experimental device to simulate the biochemical activity under extreme conditions (T=35°C, PH2=50bar, Pconfinement=200bar). The outflowing gas was automatically sampled with a HP-LP valve and the concentration was measured with a micro-gas chromatograph to quantify any change due to hydrogen bio-consumption. We chose to work on the Vosges sandstone where we incubate the Shewanella putrefaciens bacteria that reduce iron in the presence of hydrogen to produce energy. Its metabolism and performance as hydrogenotrophic bacteria were first tested in batch conditions on a rock powder. Results showed that this type of bacteria can reduce the iron present in the medium using endogenous sources of electrons first then hydrogen in the medium but preferentially dissolved hydrogen. Under triaxial conditions, the bacterial activity doesn’t seem to have a significant impact, whatever the initial hydrogen concentration (70% or 5%) and the sampling frequency (one or three days). Many hypotheses are proposed to explain the observed differences between batch and triaxial conditions: the scarcity of dissolved hydrogen in residual water, the low exchange surface for biogeochemical reactions in the case of solid core samples, the slow kinetic of hydrogen consumption by S. Despite the remaining uncertainties related to our experiments, our preliminary results suggest that the underground storage of pure hydrogen in porous reservoir rocks is not severely threatened by [...]
APA, Harvard, Vancouver, ISO, and other styles
7

Arapova, Marina. "Synthesis and properties of the Ni-based catalysts for the valorization of ethanol and glycerol via steam reforming reaction for hydrogen production." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF031/document.

Full text
Abstract:
Les trois familles catalytiques à base de perovskites contenant du Ni: massives [[LnFe1-x-yNiyMxO3-δ] (Ln=La, Pr; B=Co, Mn, Ru), sur support [mLnNi0.9Ru0.1О3/nMg-γ-Al2O3] (Ln = La, Pr) et structuré [mLaNi0.9Ru0.1О3/nMg-γ-Al2O3/mousses structurées] ont été synthétisés, caractérisés et testés dans les réactions de vaporeformage de l'éthanol et de glycérol. Les effets de la composition chimique et de la méthode de synthèse sur les propriétés structurelles et texturales, ainsi que sur la réductibilité des échantillons initiaux ont été évalués. L'utilisation préférentielle de Pr, Ni et Ru dans la composition de catalyseur a été démontrée pour toutes les familles. Le rôle essentiel de la modification du support γ-Al2O3 avec ≥ 10%mass de Mg introduit par imprégnation humide pour le catalyseur supporté a également été prouvé. Des catalyseurs de la composition optimale fournissant une activité élevée dans le vaporeformage de l'éthanol et du glycérol à T = 650 °C ont été trouvés: le meilleur catalyseur massif à base du précurseur PrFe0.6Ni0.3Ru0.1O3 fournit une activité élevée pendant au moins 7 h, grâce à la facilité de leur réduction et les propriétés d'oxydoréduction de l'oxyde de praséodyme formé. Les catalyseurs sur support 10-20% PrNi0.9Ru0.1O3/10-15%Mg-γ-Al2O3 fournissent le meilleur rendement en hydrogène (~ 90%) et la stabilité pendant ~ 20 heures. Le catalyseur structuré optimisé à base de la plaquette Ni-Al métallique fournit le rendement stable en hydrogène 80-87% dans l’oxy-vaporeformage d'éthanol dans les mélanges concentrés (concentration d'éthanol de 30%) dans un réacteur pilote pendant 40 heures. Les résultats obtenus rendent ces systèmes catalytiques structurés très prometteurs à utiliser dans les générateurs électrochimiques à base de piles à combustible avec l'utilisation de ressources renouvelables peu coûteuses comme bio-huile
The three catalytic families based on Ni-containing perovskites: massive [LnFe1-x-yNiyMxO3-δ] (Ln=La, Pr; B=Co, Mn, Ru), supported [mLnNi0.9Ru0.1О3/nMg-γ-Al2O3] (Ln = La, Pr) and structured [mLaNi0.9Ru0.1О3/nMg-γ-Al2O3/structured foams] were synthesized, characterized and tested in the reactions of the ethanol and glycerol steam reforming. The effects of the chemical composition and synthesis method on the structural and textural properties, as well as on reducibility of initial samples were evaluated. The preferred use of Pr, Ni and Ru in the catalyst composition was shown for all families. The essential role of the effective γ-Al2O3 support modification with the ≥10 % wt. of Mg introduced by wetness impregnation for the supported catalyst was also proved. Catalysts of the optimal composition providing a high activity in steam reforming of both ethanol and glycerol at T= 650 °С were found: the best massive catalyst based on the PrFe0.6Ni0.3Ru0.1O3 precursor provides high activity for at least 7 hours, which is explained by the ease of their reduction and the oxidation-reduction properties of the praseodymium oxide formed. Supported 10-20% PrNi0.9Ru0.1O3/10-15%Mg-γ-Al2O3 provide the greatest yield of hydrogen (~ 90%) and stability for ~ 20 hours. Structured catalyst based on the metal Ni-Al platelet provides the yield of hydrogen 80-87% in oxy-steam and steam reforming of ethanol in the concentrated mixtures (ethanol concentration of 30%) in a pilot reactor for 40 hours. The results obtained make these structured catalytic systems very promising to use in electrochemical generators based on fuel cells with the use of inexpensive renewable resource – bio-oil
APA, Harvard, Vancouver, ISO, and other styles
8

Hendrickx, Johann. "Développement méthodologique pour l'étude des phénomènes d'interaction protéine-glucide." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT1023.

Full text
Abstract:
Un ensemble de méthodes permettant d'étudier in silico des interactions protéine-glucide, primordiales dans de nombreux processus biologiques, sont proposées dans cette étude. En s'appuyant sur des informations fournies par la bio-cristallographie, il est devenu possible d'étudier à grande échelle les modalités d'interaction existantes entre ces deux entités moléculaires. Une étude statistique complète fut donc réalisée afin de déterminer aussi bien les tendances générales que les cas extrêmes observés dans les complexes protéine glucide. Les caractéristiques des interactions protéine glucide sont ainsi décrites, en particulier les liaisons hydrogène (LH) et le rôle des molécules d'eau. Un programme d'identification des LH et de reconstitution de leur(s) réseau(x) hypothétique(s) a été développé. Il comprend entre autres l'ajout putatif des hydrogènes, dans le cas où ils sont absents de la structure, notamment sur les groupes hydroxyles et les molécules d'eau. Une stratégie originale pour positionner de manière putative des molécules d'eau sur les sites de reconnaissance protéiques est également décrite. Cette stratégie a pour prétention de permettre le développement d'un protocole d'amarragemoléculaire protéine-glucide, les glucides et les molécules d'eau partageant sensiblement le même réseau de LH. Suite aux nombreuses anomalies décelées dans la PDB au niveau des glucides, une méthode d'identification et de vérification des structures 3D des glucides est également décrite. Elle a permis de limiter les bruits statistiques de cette étude. Environ 280 monosaccharides sous forme furanique et pyranique ont ainsi été référencés. La flexibilité intrinsèque des glucides a également amené à une étude approfondie de la conformation des glucides observée dans les structurescristallographiques
A set of methods to study in silico protein carbohydrate interactions, which are essential in many biological processes, are proposed in this study. Based on crystallographic data, it has become possible to study on a large scale the existing interaction modalities between the two molecular entities. A complete statistical study has thus been carried out to determine both the general trends and extreme cases observed in protein-carbohydrate complexes. The characteristics of protein-carbohydrate interactions are thus reported, in particular hydrogen bonds (HB) and the role of water molecules. A program to identify the HBs and reconstitute their hypothetical network(s) is being developed. This includes, in particular, the putative addition of hydrogens, if they are absent from the structure, especially on hydroxyl groups and water molecules. An original strategy for putatively positioning water molecules at protein recognition sites is also described. This strategy aims to allow the development of a protein-carbohydrate molecular docking protocol, as carbohydrates and water molecules share essentially the same HB network. As a result of the many carbohydrate anomalies detected in PDB, a method for identifying and verifying 3D carbohydrate structures has also been developed. It allowed to reduce the statistical noise in this study. About 280 monosaccharides in furanic and pyranic form were thus referenced. The intrinsic flexibility of carbohydrates also led to an in-depth study of the carbohydrate conformations observed in crystallographic structures
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Yu Qian Michelle. "Etude de procédés de conversion de biomasse en eau supercritique pour l'obtention d'hydrogène. : Application au glucose, glycérol et bio-glycérol." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0007/document.

Full text
Abstract:
Des nouveaux procédés éco-efficients basés sur une meilleure utilisation des ressources renouvelables sont nécessaires pour assurer la continuité du développement énergétique. La thèse étudie le procédé de gazéification en eau supercritique (T>374°C et P>22,1 MPa) de la biomasse très humide pour l’obtention de l’hydrogène, molécule ayant un potentiel énergétique très intéressant à valoriser avec un impact environnemental très favorable. L’étude porte sur l’application du procédé à la biomasse modèle (solutions de glucose, glycérol et leur mélange) ainsi qu’au bioglycérol, résidu de la fabrication du biodiesel. Les propriétés du solvant et les mécanismes prépondérants développés par l’eau en phase souset supercritique peuvent être contrôlés par les paramètres opératoires imposés au processus : température, pression, concentration en molécules organiques et catalyseur alcalin, temps de réaction... Les études paramétriques des systèmes réactionnels ont été menées dans des réacteurs batch à deux échelles différentes, les phases résultantes étant caractérisées par des protocoles analytiques élaborés et validés dans le cadre de l’étude. Le suivi du milieu réactionnel en batch lors de son déplacement vers l’état supercritique a mis en évidence une conversion avancée des molécules organiques et une identification de certains intermédiaires générés. Parmi les paramètres étudiés, la température et le temps de réaction influent le plus le rendement à l’obtention d’hydrogène en présence de catalyseur (K2CO3) dans les réacteurs batch, rendements de 1,5 et 2 mol d’H2 respectivement par mol de glycérol et de glucose introduites. Les gaz obtenus contiennent des proportions variables d’hydrocarbures légers et du CO2. Environ 75% du carbone est converti en phase gaz et liquide (sous forme de carbone organique et inorganique), le restant étant déposé sous forme solide ou huileuse. L’analyse du solide généré (plus de 90% de C) laisse apparaître différentes phases, y compris la formation de nanoparticules sphériques. Enfin, la gazéification en réacteur continu du glycérol préchauffé a montré de meilleurs rendements en hydrogène que le procédé batch, pendant que celle du bioglycérol demande une évolution du procédé à cause de la précipitation en phase supercritique des sels contenus dans le réactant. En conclusion, la gazéification en eau supercritique de la biomasse peut être considérée comme une alternative intéressante à d’autres procédés physico-chimiques de production de l’hydrogène. L’amélioration du procédé sera possible par son intensification menée en parallèle avec l’utilisation de matériaux plus performants et le contrôle de la salinité de la phase réactante
Supercritical water (T > 374 ° C and P > 22.1 MPa) gasification of wet biomass for hydrogen production is investigated. This process converts a renewable resource into a gas, which is mainly composed of hydrogen and hydrocarbons with interesting energy potential, and which can be separated at high pressure. In addition, the greenhouse gas effect of the process is zero or negative. Model biomasses (glucose, glycerol and their mixture) and bio-glycerol, residue from bio-diesel production, have been gasified by different processes: two-scale batch reactors (5 mL and 500 mL) and a continuous gasification system. Supercritical water acts as a reactive solvent, its properties can be adjusted by the choice of the experimental (P, T) couple. The operating parameters, e.g. temperature, pressure, concentration of biomass and alkaline catalysts, reaction time… allow favoring certain reaction mechanisms. In order to characterize the processes, specific analytical protocols have been developed and validated. The intermediates, formed during the heating time in the batch reactors, have been identified. Among the investigated operating parameters, temperature and reaction time have the greatest influence on the hydrogen production in batch reactors. In the presence of catalyst (K2CO3), H2 yields of 1.5 mol/mol glucose and 2 mol/mol glycerol have been respectively observed. The obtained gas contains different proportions of light hydrocarbons and CO2. About 75% of the carbon is converted into gas and liquid (in form of organic and inorganic carbon). The conversion leads also to a solid or oily residue. In the generated solid phase (composed over 90% of C), spherical nanoparticles are observed via electronic microscopy. The hydrogen production from glycerol is improved in the continuous process compared to batch reactors, however, bio-glycerol supercritical water gasification requests process improvement due to the precipitation of the salt contained in the reactant. In conclusion, supercritical water gasification of biomass can be considered as an promising alternative process for hydrogen production. The process should be improved by more performing equipments and by the control of the salinity content of the crude biomass
APA, Harvard, Vancouver, ISO, and other styles
10

Eskandari, Azin. "A preliminary theoretical and experimental study of a photo-electrochemical cell for solar hydrogen production." Thesis, Université Clermont Auvergne‎ (2017-2020), 2019. http://www.theses.fr/2019CLFAC104.

Full text
Abstract:
Afin de relever le défi énergétique et climatique du 21ième siècle qui s’annonce, une solution consiste, pour valoriser la ressource solaire, à mettre au point des procédés de production de vecteurs énergétiques stockables par photosynthèse artificielle permettant la synthèse de carburants solaires, en particulier l’hydrogène. La compréhension de ses procédés et l’obtention de performances cinétiques et énergétiques élevées nécessitent le développement de modèles de connaissance génériques, robustes et prédictifs considérant le transfert de rayonnement comme processus physique contrôlant le procédé à plusieurs échelles mais aussi les différents autres phénomènes intervenant dans la structure ou la réification du modèle.Dans le cadre de ce travail de doctorat, le procédé photo-réactif au cœur de l’étude était la cellule photo-électrochimique. D’un fonctionnement plus complexe que le simple photoréacteur, avec une photo-anode et une (photo)cathode, la cellule photo-électrochimique dissocie spatialement les étapes d’oxydation et de réduction. En se basant à la fois sur la littérature existante (essentiellement dans le domaine de l’électrochimie) et en déployant les outils développés par l’équipe de recherche sur le transfert de rayonnement et la formulation du couplage thermocinétique, il a été possible d’établir des indicateurs de performance des cellules photo-électrochimiques.En parallèle de l’établissement de ce modèle, une démarche expérimentale a été entreprise en se basant tout d’abord sur une cellule commerciale de type Grätzel (DS-PEC) indiquant les tendances générales de tels convertisseurs de l’énergie des photons avec en particulier une chute de l’efficacité énergétique en fonction de la densité incidente de flux de photons. Un dispositif expérimental modulable (Minucell) a aussi été développé et validé afin de caractériser des photo-anodes de différentes compositions comme des électrodes de TiO2 imprégnées de chromophore pour un fonctionnement en cellule de Grätzel ou bien des électrodes d’hématite Fe2O3 (SC-PEC) où le semiconducteur joue à la fois les fonctions d’absorption des photons et de conduction des porteurs de charges. Surtout, le dispositif Minucell a permis de tester, caractériser et modéliser le comportement d’une cellule photo-électrochimique de type bio-inspiré pour la production d’H2 utilisant à la photo-anode un catalyseur moléculaire Ru-RuCat (développé par ICMMO Orsay/CEA Saclay) et à la cathode un catalyseur CoTAA (développé par LCEMCA Brest). Minucell a été utilisé pour caractériser chaque élément constitutif d’une cellule photo-électrochimique puis la cellule dans son ensemble, confirmant les tendances et observations obtenues sur les efficacités énergétiques.Ce travail préliminaire ouvre de très nombreuses perspectives de recherche, il pose des bases communes entre électrochimie et génie des systèmes photo-réactifs et donne des pistes quant à la conception et l’optimisation cinétique et énergétique des cellules photo-électrochimiques pour la production d’hydrogène et de carburants solaires
In order to meet the energy and climate challenge of the coming 21st century, one solution consists of developing processes for producing storable energy carriers by artificial photosynthesis to synthesize solar fuels, in particular hydrogen, in order to valorize the solar resource. The understanding of these processes and the achievement of high kinetic and energetic performances require the development of generic, robust and predictive knowledge models considering radiative transfer as a physical process controlling the process at several scales but also including the various other phenomena involved in the structure or reification of the model.In this PhD work, the photo-reactive process at the heart of the study was the photo-electrochemical cell. More complex than the simple photoreactor, with a photo-anode and a (photo)cathode, the photo-electrochemical cell spatially dissociates the oxidation and reduction steps. Based both on the existing literature (mainly in the field of electrochemistry) and by deploying the tools developed by the research team on radiative transfer and thermokinetic coupling formulation, it was possible to establish performance indicators of photo-electrochemical cells.In parallel to the establishment of this model, an experimental approach was undertaken based first on a commercial Grätzel-type cell (DS-PEC) indicating the general trends of such photon energy converters with in particular a drop in energy efficiency as a function of the incident photon flux density. A modular experimental device (Minucell) has also been developed and validated in order to characterize photo-anodes of different compositions such as chromophore impregnated TiO2 electrodes for operation in Grätzel cells or Fe2O3 hematite electrodes (SC-PEC) where the semiconductor plays both the functions of photon absorption and charge carrier conduction. Above all, the Minucell device allowed to test, characterize and model the behavior of a bio-inspired photo-electrochemical cell for H2 production using at the photo-anode a Ru-RuCat molecular catalyst (developed by ICMMO Orsay/CEA Saclay) and at the cathode a CoTAA catalyst (developed by LCEMCA Brest). Minucell was used to characterize each constituent element of a photo-electrochemical cell and then the cell as a whole confirming the trends and observations obtained on energy efficiencies.This preliminary work opens up a wide range of research prospects, lays common ground between electrochemistry and photo-reactive systems engineering, and provides insights into the design and kinetic and energy optimization of photo-electrochemical cells for the production of hydrogen and solar fuels
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bio hydrogène"

1

Shukla, Pratyoosh, and M. V. K. Karthik. Computational Approaches in Chlamydomonas reinhardtii for Effectual Bio-hydrogen Production. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2383-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

International, Conference on Bio-Oxidative Medicine (1st 1989 Dallas/Ft Worth Tex ). Proceedings of the First International Conference on Bio-Oxidative Medicine: February 17-19, 1989, Dallas/Ft. Worth, Texas. [Dallas/Ft. Worth, Tex.] (P.O. Box 61767, Dallas/Ft. Worth 75261): [IBOM Foundation, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maréchal, Yves. The hydrogen bond and the water molecule: The physics and chemistry of water, aqueous, and bio-media. Amsterdam: Elsevier, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Anqi. Zui jia yang sheng bao jian pin: Jian xing shi wu. Xianggang: Wan li ji gou, Yin shi tian di chu ban she, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koppelaar, Rembrandt, and Willem Middelkoop. The Tesla Revolution. NL Amsterdam: Amsterdam University Press, 2017. http://dx.doi.org/10.5117/9789462982062.

Full text
Abstract:
Though oil prices have been on a downward trajectory in recent months, that doesn't obscure the fact that fossil fuels are finite, and we will eventually have to grapple with the end of their dominance. At the same time, however, skepticism about the alternatives remains: we've never quite achieved the promised 'too cheap to meter' power of the future, be it nuclear, solar, or wind. And hydrogen and bio-based fuels are thus far a disappointment. So what does the future of energy look like? The Tesla Revolution has the answers. In clear, unsensational style, Willem Middelkoop and Rembrandt Koppelaar offer a layman's tour of the energy landscape, now and to come. They show how rapid technological advances in batteries and solar technologies are already driving large-scale transformations in power supply, while economic and geopolitical changes, combined with a growing political awareness that there are alternatives to fossil fuels will combine in the coming years to bring an energy revolution ever closer. Within in our lifetimes, the authors argue, we will see changes that will reshape economics, the balance of political power, and even the most mundane aspects of our daily lives. Determinedly forward-looking and optimistic, though never straying from hard facts, The Tesla Revolution paints a striking picture of our global energy future.
APA, Harvard, Vancouver, ISO, and other styles
6

Shukla, Pratyoosh, and M. V. K. Karthik. Computational Approaches in Chlamydomonas Reinhardtii for Effectual Bio-Hydrogen Production. Springer (India) Private Limited, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shukla, Pratyoosh, and M. V. K. Karthik. Computational Approaches in Chlamydomonas reinhardtii for Effectual Bio-hydrogen Production. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oxygen healing therapies: For optimum health & vitality : bio-oxidative therapies for treating immune disorders, candida, cancer, heart, skin, circulatory & other modern diseases. Rochester, Vt: Healing Arts Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oxygen healing therapies: For optimum health and vitality : bio-oxidative therapies for treating immune disorders--candida, cancer, heart, skin, circulatory & other modern diseases. Rochester, Vt: Healing Arts Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marechal, Yves. Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio-Media. Elsevier Science & Technology Books, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bio hydrogène"

1

Hornung, Andreas. "Bio-Hydrogen from Biomass." In Transformation of Biomass, 217–25. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118693643.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramli, Yusrin, Guoqing Guan, and Antonius Indarto. "Application of Hydrogen in Bio-Oil Hydrotreating." In Hydrogen Applications and Technologies, 341–68. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003382560-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bizkarra, K., V. L. Barrio, P. L. Arias, and J. F. Cambra. "Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil." In Hydrogen Production Technologies, 305–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119283676.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Velázquez-Sánchez, Hugo Iván, Pablo Antonio López-Pérez, María Isabel Neria-González, and Ricardo Aguilar-López. "Enhancement of Bio-Hydrogen Production Technologies by Sulphate-Reducing Bacteria." In Hydrogen Production Technologies, 385–406. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119283676.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salam, Md Abdus, Md Tauhidul Islam, and Nasrin Papri. "Blue/Bio-Hydrogen and Carbon Capture." In Sustainable Carbon Capture, 245–65. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003162780-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ho, Ming-Hsun, Shentan Chen, Roger Rousseau, Michel Dupuis, R. Morris Bullock, and Simone Raugei. "Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production." In ACS Symposium Series, 89–111. Washington, DC: American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1133.ch006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Razu, Mamudul Hasan, Farzana Hossain, and Mala Khan. "Advancement of Bio-hydrogen Production from Microalgae." In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, 423–62. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2264-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yadav, Asheesh Kumar, Sanak Ray, Pratiksha Srivastava, and Naresh Kumar. "6 Solar Bio-Hydrogen Production: An Overview." In Solar Fuel Generation, 121–40. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370538-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pal, Dan Bahadur, and Amit Kumar Tiwari. "Hydrogen Production by Utilizing Bio-Processing Techniques." In Clean Energy Production Technologies, 169–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1862-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zerfu, Tefera Kassahun, Fiston Iradukunda, Mulualem Admas Alemu, Makusalani Ole Kawanara, Ila Jogesh Ramala Sarkar, and Sanjay Kumar. "Bio-Hydrogen Production Using Agricultural Biowaste Materials." In Clean Energy Production Technologies, 151–80. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0526-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bio hydrogène"

1

Li, Yong-Feng, Nan-Qi Ren, Li-Jie Hu, Guo-Xiang Zheng, and Maryam Zadsar. "Fermentative Biohydrogen Production by Mixed and Pure Bacterial Culture: Designing of Processes and Engineering Control." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76100.

Full text
Abstract:
In this paper the research about applied bio-hydrogen production engineering is introduced. The advantages, disadvantages and characteristics of bio-hydrogen production systems and some technical issues on anaerobic fermentative bio-hydrogen producing systems will be discussed and focused on the schematic processing, designing strategies and engineering control of fermentation parameters and also the technical means to increase the evolved hydrogen and hydrogen evolution rate. The technology of bio-hydrogen production based on ethanol-type fermentative theory has been established. The mixed continuous culture and pure batch culture processes were proposed for hydrogen production.
APA, Harvard, Vancouver, ISO, and other styles
2

Strobel, G., B. Hagemann, and L. Ganzer. "History Matching of Bio-reactive Transport in an Underground Hydrogen Storage Field Case." In EAGE/DGMK Joint Workshop on Underground Storage of Hydrogen. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dhulipala, Prasad D. K., Jagrut K. Jani, Melanie R. Wyatt, Scott E. Lehrer, Zhegwei Liu, Jeremy Leidensdorf, and Soma Chakraborty. "Bio-Molecular Non-Corrosive Hydrogen Sulfide Scavenger." In SPE International Oilfield Corrosion Conference and Exhibition. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/190908-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nikolaev, Denis Sergeevich, Nazika Moeininia, Holger Ott, and Hagen Bueltemeier. "Investigation of Underground Bio-Methanation Using Bio-Reactive Transport Modeling." In SPE Russian Petroleum Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/206617-ms.

Full text
Abstract:
Abstract Underground bio-methanation is a promising technology for large-scale renewable energy storage. Additionally, it enables the recycling of CO2 via the generation of "renewable methane" in porous reservoirs using in-situ microbes as bio-catalysts. Potential candidate reservoirs are depleted gas fields or even abandoned gas storages, providing enormous storage capacity to balance seasonal energy supply and demand fluctuations. This paper discusses the underlying bio-methanation process as part of the ongoing research project "Bio-UGS – Biological conversion of carbon dioxide and hydrogen to methane," funded by the German Federal Ministry of Education and Research (BMBF). First, the hydrodynamic processes are assessed, and a review of the related microbial processes is provided. Then, based on exemplary field-scale simulations, the bio-reactive transport process and its consequences for operation are evaluated. The hydrogen conversion process was investigated by numerical simulations on field scale. For this, a two-phase multi-component bio-reactive transport model was implemented by (Hagemann 2018) in the open-source DuMux (Flemisch et al. 2011) simulation toolkit for porous media flow. The underlying processes include the transport of reactants and products, consumption of specific components, and the related growth and decay of the microbial population, resulting in a bio-reactive transport model. The microbial kinetic parameters of methanogenic reactions are taken from the available literature. The simulation study covers different scenarios on conceptional field-scale models, studying the impact of well placement, injection rates, and gas compositions. Due to a significant sensitivity of the simulation results to the bio-conversion kinetics, the field-specific conversion rates must be obtained. Thus, the Bio-UGS project is accompanied by laboratory experiments out of the frame of this paper. Other parameters are rather a matter of design; in the present case of depleted gas fields, those parameters are coupled and can be chosen to convert fully hydrogen and carbon dioxide to methane. Especially the well spacing can be considered the main design parameter in the likely case of a given injection rate and gas composition. This study extends the application of the previously developed code from a homogeneous-2D to the heterogeneous-3D case. The simulations mimic the co-injection of carbon dioxide and hydrogen from a 40 MW electrolysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Ren, Nanqi, Yongfeng Li, Maryam Zadsar, Lijie Hu, and Jianzheng Li. "Biological Hydrogen Production In China: Past, Present and Future." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76101.

Full text
Abstract:
As a new clean energy source and important material, the use and demand of hydrogen are increasing-rapidly. So that bio-hydrogen producing technology moves toward cutting down the operation costs in recent years. Biohydrogen production capacity improvement and cost reduction are two key points for industrialization of the process. Biohydrogen production has been studied in China for over 20 years in both photosynthetic hydrogen production and fermentative processes fields. The anaerobic process of fermentative hydrogen production has been developing in China since 1990s. The isolation and identification of high efficient bio-hydrogen production anaerobic bacteria is an important foundation of fermentative bio-hydrogen production process by anaerobic digestion of organic wastewater. The paper focuses on: (1) Fermentative biohydrogen production system, (2) Laboratory experiments and pilot scale tests for continued hydrogen production, (3) Fermentation types and their engineering control, (4) isolation, culture media and characterization of anaerobes, (5) Applications of pure bacteria, (6) Fundamental researches including ecology, genetics and improvements, (7) Development of two-phase anaerobic process of H2-producing and methanogenic phases as, and (8) the integrated processes with bioengineering and wastewater treatments. Recently, the first pilot factory has been costructedin Harbin, China by hydrogen production rate of more than 1200m3/d which located in northeast of China. In photosynthetic hydrogen production filed, study is focused on the fundamentals, engineering application and microbiology. Detailed discussion comes later.
APA, Harvard, Vancouver, ISO, and other styles
6

MousaviMirkalaei, Seyed Mousa, and Faraj Zarei. "Numerical Simulation for Hydrogen Storage and Bio-Methanation." In SPE EuropEC - Europe Energy Conference featured at the 84th EAGE Annual Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214395-ms.

Full text
Abstract:
Abstract The potential applications of hydrogen as an energy vector as a part of the solution to decarbonize emissions from use of natural gas and transportation is the subject of much research. Hydrogen storage in the geological subsurface helps to mitigate the effects of fluctuating energy production from renewable energy sources. Nevertheless, there is little comprehensive work on full scale simulation of all the processes associated with the injection, storage and re-producing of hydrogen. Physical phenomena involved in this process include mixing of hydrogen with native components in the reservoir and potentially cushion gas, ga, relative permeability hysteresis, solubility of various gases into the aqueous phase; effect of hydrogen impurity (e.g., CO2, H2S, CH4) and bio-methanation in the presence bacteria. Numerical simulation can be used for dynamic numerical modelling of the storage when all these complex processes are in action. Solubility of hydrogen can be modelled using a solubility table, Henry's correlation, or K-values table. The effect of other gases on the geochemistry of the rock and fluid can be studied in detail using chemical and geochemical reaction concepts. The activity of bacteria in an underground hydrogen storage field may result in synthetic methane production. Such reactions can be modelled based on bacterial activity levels using Arrhenius type reactions. The level of biomass activity depends on salinity, temperature and bacterial types and availability of nutrients. A sub-sector from a North Sea reservoir is used to simulate these processes described and predictions of individual injection/production at various cycles are created. Issues regarding improved monitoring and design of laboratory experiments for future field operations are highlighted. This study shows how simulation can be instrumental in understanding and designing underground hydrogen storage projects, providing predictions of storage volumes, produced gas quality and quantity under various scenarios. The paper also describes the reaction parameters, upscaling, and tuning techniques required for simulation at full field scale.
APA, Harvard, Vancouver, ISO, and other styles
7

Narnaware, Sunil L., Swati Narnaware, and Pramod Mahalle. "Bio-Hydrogen Production Through Gasification of Agro-residues." In 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS). IEEE, 2022. http://dx.doi.org/10.1109/icetems56252.2022.10093642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ciocci, R. C., I. Abu-Mahfouz, and S. S. E. H. Elnashaie. "Analysis to Develop Hydrogen Production From Bio-Oils." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43225.

Full text
Abstract:
The United States economy’s dependence on fossil fuels has historical significance but lacks vision for a long-lasting fuel consumption policy. Political complications, economic instabilities, supply shortages, and continued pollution contributions pose significant obstacles to continued reliance on oil. Alternative technologies based on renewable resources offer much more promise for a sustainable approach to meeting global energy needs. Recent research and applications have established hydrogen as a viable clean fuel source. Those applications, including fuel cells, have shown promise for the eventual migration from a fossil-fuel economy to one based on renewable energy sources. Air pollution, specifically contributions to greenhouse gases, is a major environmental hazard due to the use of fossil fuel-related hydrocarbons for fuel and industrial applications. An alternative, hydrogen, offers significant advantages as an ultra-clean fuel of the future when it is burned directly or processed through fuel cells. Currently, the main process for hydrogen production is catalytic steam reforming of natural gas. This process is relatively inefficient and does not allow the use of a wide range of feedstock materials including renewable sources. The objective of impending research is to develop this new, ultra-clean and efficient process, which converts a wide range of hydrocarbons, including renewable bio-oils, into pure hydrogen suitable for fuel cells and which also converts CO2 emission into syngas. The main impact is clearly on air pollution and global warming through the minimization of greenhouse gas emission and the economical production of pure hydrogen to foster the hydrogen economy. This new process will achieve considerable increase in hydrogen productivity and considerable decrease in the energy consumed to produce it. The technology will center on a circulating fluidized bed (CFB) that will separate hydrogen from bio-oils in an efficient process that greatly reduces polluting hydrocarbons compared to traditional fossil fuel processing. Early studies will include the mathematical modeling of computational fluid dynamics to identify process parameters. Eventually, a pilot plant will be used to verify/modify the mathematical model, for a wide range of conditions and renewable feedstocks. Testing the pilot plant will lead to the development of reliable design equations suitable for replication, build, and tight control of this novel process.
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmad, Murni, Laveena Chugani, Cheng Seong Khor, and Suzana Yusup. "Simulation of Pyrolytic Bio-Oil Upgrading Into Hydrogen." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KAMIMURA, HIROSHI. "THEORY OF PROTON-INDUCED SUPERIONIC CONDUCTION IN HYDROGEN-BONDED SYSTEMS." In Quantum Bio-Informatics II - From Quantum Information to Bio-Informatics. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814273756_0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bio hydrogène"

1

Shihwu Sung. Bio-hydrogen production from renewable organic wastes. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/828223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spain, Jim C., Graham Pumphrey, and John R. Spear. Bio-Prospecting for Improved Hydrogen-Producing Organisms. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada567106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Posewitz, Matthew C. Renewable Bio-Solar Hydrogen Production: The Second Generation (Part C). Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada614265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bryant, Donald A. Renewable Bio-Solar Hydrogen Production: The Second Generation (Part B). Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada623185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Selloni, Annabella, Roberto Car, and Morrel H. Cohen. Theoretical Research Program on Bio-inspired Inorganic Hydrogen Generating Catalysts and Electrodes. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1128550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peters, John. Renewable Bio-Solar Hydrogen Production From Robust Oxygenic Phototrophs: The Second Generation. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada613759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dayton, David. Improved Hydrogen Utilization and Carbon Recovery for Higher Efficiency Thermochemical Bio-oil Pathways. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1798873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pellenbarg, Robert E., and Kia Cephas. Water Solubility of BIS (2-Ethylhexyl) Hydrogen Phosphite. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada234561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghirardi, Maria L. Renewable Bio Hydrogen Production: Cooperative Research and Development Final Report, CRADA Number CRD-17-660. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1457674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miscall, Joel, Earl Christensen, Jessica Olstad, Steve Deutch, and Jack Ferrell III. Determination of Carbon, Hydrogen, Nitrogen, and Oxygen in Bio-Oils. Laboratory Analytical Procedure (LAP), Issue Date: October 7, 2021. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1825869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography