To see the other types of publications on this topic, follow the link: Bihamiltonian.

Journal articles on the topic 'Bihamiltonian'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 48 journal articles for your research on the topic 'Bihamiltonian.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

GUHA, PARTHA. "BIDIFFERENTIAL CALCULI, BICOMPLEX STRUCTURE AND ITS APPLICATION TO BIHAMILTONIAN SYSTEMS." International Journal of Geometric Methods in Modern Physics 03, no. 02 (2006): 209–32. http://dx.doi.org/10.1142/s0219887806001120.

Full text
Abstract:
In this exposition, we study the relationship between the bihamiltonian formalism of completely integrable systems using the bidifferential calculi introduced by Dimakis and Müller-Hoissen in [1] and the bihamiltonian formulation of integrable systems with a finite number of degrees of freedom via the Frölicher–Nijenhuis geometry. This pair of bidifferetial operators are used to construct alternative Lie algebroids as shown by Camacaro and Carinena. We find its connection to Finsler geometry. We also find the dispersionless integrable hierarchies using the bidifferential ideals. Finally, we la
APA, Harvard, Vancouver, ISO, and other styles
2

FIGUEROA-O'FARRILL, JOSÉ M., EDUARDO RAMOS, and JAVIER MAS. "INTEGRABILITY AND BIHAMILTONIAN STRUCTURE OF THE EVEN ORDER SKDV HIERARCHIES." Reviews in Mathematical Physics 03, no. 04 (1991): 479–501. http://dx.doi.org/10.1142/s0129055x91000175.

Full text
Abstract:
We study reductions of the even order SKP hierarchy. We prove that these systems are integrable and bihamiltonian. We derive an infinite set of independent polynomial conservation laws, prove their nontriviality, and derive Lenard relations between them. A further reduction of the simplest such hierarchy is identified with the supersymmetric KdV hierarchy of Manin and Radul. We prove that it inherits all the bihamiltonian and integrability properties from the unreduced hierarchy.
APA, Harvard, Vancouver, ISO, and other styles
3

Odesskii, A. "Bihamiltonian Elliptic Structures." Moscow Mathematical Journal 4, no. 4 (2004): 941–46. http://dx.doi.org/10.17323/1609-4514-2004-4-4-941-946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dinar, Yassir. "Low-dimensional bihamiltonian structures of topological type." Journal of Mathematical Physics 64, no. 3 (2023): 033502. http://dx.doi.org/10.1063/5.0130899.

Full text
Abstract:
We construct local bihamiltonian structures from classical W-algebras associated with non-regular nilpotent elements of regular semisimple type in Lie algebras of types A2 and A3. They form exact Poisson pencils and admit a dispersionless limit, and their leading terms define logarithmic or trivial Dubrovin–Frobenius manifolds. We calculate the corresponding central invariants, which are expected to be constants. In particular, we get Dubrovin–Frobenius manifolds associated with the focused Schrödinger equation and Hurwitz space M0;1,0 and the corresponding bihamiltonian structures of topologi
APA, Harvard, Vancouver, ISO, and other styles
5

Casati, Paolo, Gregorio Falqui, Franco Magri та Marco Pedroni. "Bihamiltonian reductions and ωn-algebras". Journal of Geometry and Physics 26, № 3-4 (1998): 291–310. http://dx.doi.org/10.1016/s0393-0440(97)00060-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ibort, A., F. Magri, and G. Marmo. "Bihamiltonian structures and Stäckel separability." Journal of Geometry and Physics 33, no. 3-4 (2000): 210–28. http://dx.doi.org/10.1016/s0393-0440(99)00051-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carlet, Guido, Hessel Posthuma, and Sergey Shadrin. "Bihamiltonian Cohomology of KdV Brackets." Communications in Mathematical Physics 341, no. 3 (2016): 805–19. http://dx.doi.org/10.1007/s00220-015-2540-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jodeit, Max, and Peter J. Olver. "On the equation grad f = M grad g." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 116, no. 3-4 (1990): 341–58. http://dx.doi.org/10.1017/s0308210500031541.

Full text
Abstract:
SynopsisThe system of differential equations ∇f = M∇g, where M is a given square matrix, arises in many contexts. A complete solution to this problem in the case when M is a constant matrix is presented here. Applications to continuum mechanics and biHamiltonian systems are indicated.
APA, Harvard, Vancouver, ISO, and other styles
9

Casati, Paolo, and Giovanni Ortenzi. "Bihamiltonian Equations on Polynomial Virasoro Algebras." Journal of Nonlinear Mathematical Physics 13, no. 3 (2006): 352–64. http://dx.doi.org/10.2991/jnmp.2006.13.3.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marmo, G., A. Simoni, and F. Ventriglia. "BiHamiltonian quantum systems and Weyl quantization." Reports on Mathematical Physics 48, no. 1-2 (2001): 149–57. http://dx.doi.org/10.1016/s0034-4877(01)80074-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gelfand, Israel M., and Ilya Zakharevich. "Webs, Veronese curves, and bihamiltonian systems." Journal of Functional Analysis 99, no. 1 (1991): 150–78. http://dx.doi.org/10.1016/0022-1236(91)90057-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Liu, Si-Qi, Zhe Wang, and Youjin Zhang. "Super tau-covers of bihamiltonian integrable hierarchies." Journal of Geometry and Physics 170 (December 2021): 104351. http://dx.doi.org/10.1016/j.geomphys.2021.104351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Turiel, Francisco. "Classification of (1,1) tensor fields and bihamiltonian structures." Banach Center Publications 33, no. 1 (1996): 449–58. http://dx.doi.org/10.4064/-33-1-449-458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, Si-Qi, and Youjin Zhang. "Deformations of semisimple bihamiltonian structures of hydrodynamic type." Journal of Geometry and Physics 54, no. 4 (2005): 427–53. http://dx.doi.org/10.1016/j.geomphys.2004.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Izosimov, Anton. "Stability in bihamiltonian systems and multidimensional rigid body." Journal of Geometry and Physics 62, no. 12 (2012): 2414–23. http://dx.doi.org/10.1016/j.geomphys.2012.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Abellanas, L., and A. Galindo. "A Harry Dym class of bihamiltonian evolution equations." Physics Letters A 107, no. 4 (1985): 159–60. http://dx.doi.org/10.1016/0375-9601(85)90831-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

MOROSI, CARLO, and LIVIO PIZZOCCHERO. "ON THE BIHAMILTONIAN INTERPRETATION OF THE LAX FORMALISM." Reviews in Mathematical Physics 07, no. 03 (1995): 389–430. http://dx.doi.org/10.1142/s0129055x95000177.

Full text
Abstract:
We propose a general framework for constructing systematically the Lax formulation of the soliton equations using the bi-Hamiltonian formalism. The method is applied to several examples, both classical and supersymmetric.
APA, Harvard, Vancouver, ISO, and other styles
18

Rastelli, Giovanni, and Manuele Santoprete. "Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures." Journal of Geometric Mechanics 7, no. 4 (2015): 483–515. http://dx.doi.org/10.3934/jgm.2015.7.483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xue, Ting, and Youjin Zhang. "Bihamiltonian Systems of Hydrodynamic Type and Reciprocal Transformations." Letters in Mathematical Physics 75, no. 1 (2006): 79–92. http://dx.doi.org/10.1007/s11005-005-0031-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hua, Zheng, and Alexander Polishchuk. "Elliptic bihamiltonian structures from relative shifted Poisson structures." Journal of Topology 16, no. 4 (2023): 1389–422. http://dx.doi.org/10.1112/topo.12315.

Full text
Abstract:
AbstractIn this paper, generalizing our previous construction, we equip the relative moduli stack of complexes over a Calabi–Yau fibration (possibly with singular fibers) with a shifted Poisson structure. Applying this construction to the anticanonical linear systems on surfaces, we get examples of compatible Poisson brackets on projective spaces extending Feigin–Odesskii Poisson brackets. Computing explicitly the corresponding compatible brackets coming from Hirzebruch surfaces, we recover the brackets defined by Odesskii–Wolf.
APA, Harvard, Vancouver, ISO, and other styles
21

Falqui, Gregorio, Franco Magri, and Marco Pedroni. "Bihamiltonian Geometry and Separation of Variables for Toda Lattices." Journal of Nonlinear Mathematical Physics 8, sup1 (2001): 118–27. http://dx.doi.org/10.2991/jnmp.2001.8.s.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

FALQUI, Gregorio, Franco MAGRI, and Marco PEDRONI. "Bihamiltonian Geometry and Separation of Variables for Toda Lattices." Journal of Non-linear Mathematical Physics 8, Supplement (2001): 118. http://dx.doi.org/10.2991/jnmp.2001.8.supplement.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Si-Qi, and Youjin Zhang. "Bihamiltonian Cohomologies and Integrable Hierarchies I: A Special Case." Communications in Mathematical Physics 324, no. 3 (2013): 897–935. http://dx.doi.org/10.1007/s00220-013-1822-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dubrovin, Boris, Si-Qi Liu, and Youjin Zhang. "Bihamiltonian Cohomologies and Integrable Hierarchies II: The Tau Structures." Communications in Mathematical Physics 361, no. 2 (2018): 467–524. http://dx.doi.org/10.1007/s00220-018-3176-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Marshall, I. D. "The Kowalevski Top: its r-Matrix Interpretation and Bihamiltonian Formulation." Communications in Mathematical Physics 191, no. 3 (1998): 723–34. http://dx.doi.org/10.1007/s002200050285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Falqui, Gregorio, Franco Magri, and Marco Pedroni. "Bihamiltonian Geometry, Darboux Coverings,¶and Linearization of the KP Hierarchy." Communications in Mathematical Physics 197, no. 2 (1998): 303–24. http://dx.doi.org/10.1007/s002200050452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Figueroa-O'Farrill, JoséM, Javier Mas, and Eduardo Ramos. "Bihamiltonian structure of the KP hierarchy and the WKP algebra." Physics Letters B 266, no. 3-4 (1991): 298–302. http://dx.doi.org/10.1016/0370-2693(91)91043-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

ZHANG, Ling, and Dafeng ZUO. "The super-bihamiltonian reduction on C∞(1, OSP(1|2))." Acta Mathematica Scientia 34, no. 2 (2014): 537–45. http://dx.doi.org/10.1016/s0252-9602(14)60026-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mikhailov, Andrei. "Bihamiltonian structure of the classical superstring in $AdS_5 × S^5$." Advances in Theoretical and Mathematical Physics 14, no. 6 (2010): 1585–620. http://dx.doi.org/10.4310/atmp.2010.v14.n6.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zakharevich, Ilya. "Kronecker webs, bihamiltonian structures, and the method of argument translation." Transformation Groups 6, no. 3 (2001): 267–300. http://dx.doi.org/10.1007/bf01263093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dubrovin, Boris, and Youjin Zhang. "Bihamiltonian Hierarchies in 2D Topological Field Theory At One-Loop Approximation." Communications in Mathematical Physics 198, no. 2 (1998): 311–61. http://dx.doi.org/10.1007/s002200050480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dubrovin, Boris, Si-Qi Liu, and Youjin Zhang. "Frobenius manifolds and central invariants for the Drinfeld–Sokolov bihamiltonian structures." Advances in Mathematics 219, no. 3 (2008): 780–837. http://dx.doi.org/10.1016/j.aim.2008.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wu, Chao-Zhong, and Dingdian Xu. "Bihamiltonian structure of the two-component Kadomtsev–Petviashvili hierarchy of type B." Journal of Mathematical Physics 51, no. 6 (2010): 063504. http://dx.doi.org/10.1063/1.3431971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Youjin. "Deformations of the Bihamiltonian Structures on the Loop Space of Frobenius Manifolds." Journal of Nonlinear Mathematical Physics 9, sup1 (2002): 243–57. http://dx.doi.org/10.2991/jnmp.2002.9.s1.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Khesin, B., A. Levin, and M. Olshanetsky. "Bihamiltonian Structures and Quadratic Algebras in Hydrodynamics and on Non-Commutative Torus." Communications in Mathematical Physics 250, no. 3 (2004): 581–612. http://dx.doi.org/10.1007/s00220-004-1150-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dinar, Yassir Ibrahim. "W-algebras and the equivalence of bihamiltonian, Drinfeld–Sokolov and Dirac reductions." Journal of Geometry and Physics 84 (October 2014): 30–42. http://dx.doi.org/10.1016/j.geomphys.2014.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Barakat, Aliaa. "On the moduli space of deformations of bihamiltonian hierarchies of hydrodynamic type." Advances in Mathematics 219, no. 2 (2008): 604–32. http://dx.doi.org/10.1016/j.aim.2008.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Morosi, Carlo, and Livio Pizzocchero. "On the biHamiltonian structure of the supersymmetric KdV hierarchies. A Lie superalgebraic approach." Communications in Mathematical Physics 158, no. 2 (1993): 267–88. http://dx.doi.org/10.1007/bf02108075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Casati, Paolo, and Marco Pedroni. "Drinfeld-Sokolov reduction on a simple lie algebra from the bihamiltonian point of view." Letters in Mathematical Physics 25, no. 2 (1992): 89–101. http://dx.doi.org/10.1007/bf00398305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Popowicz, Z. "Odd bihamiltonian structure of new supersymmetric N=2,4 Korteweg de Vries equation and odd SUSY Virasoro-like algebra." Physics Letters B 459, no. 1-3 (1999): 150–58. http://dx.doi.org/10.1016/s0370-2693(99)00633-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Aratyn, H., J. F. Gomes, and A. H. Zimerman. "On negative flows of the AKNS hierarchy and a class of deformations of a bihamiltonian structure of hydrodynamic type." Journal of Physics A: Mathematical and General 39, no. 5 (2006): 1099–114. http://dx.doi.org/10.1088/0305-4470/39/5/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Brouzet, Robert, Pierre Molino, and Francisco Javier Turiel. "Géométrie des systémes bihamiltoniens." Indagationes Mathematicae 4, no. 3 (1993): 269–96. http://dx.doi.org/10.1016/0019-3577(93)90002-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

RIGAL, M. "Systèmes bihamiltoniens en dimension impaire." Annales Scientifiques de l’École Normale Supérieure 31, no. 3 (1998): 345–59. http://dx.doi.org/10.1016/s0012-9593(98)80138-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gershun, V. D. "Bihamiltonity as the origin of T-duality of the closed string model." Nuclear Physics B - Proceedings Supplements 102-103 (September 2001): 71–76. http://dx.doi.org/10.1016/s0920-5632(01)01538-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Si-Qi, Zhe Wang, and Youjin Zhang. "Variational Bihamiltonian Cohomologies and Integrable Hierarchies I: Foundations." Communications in Mathematical Physics, February 18, 2023. http://dx.doi.org/10.1007/s00220-023-04658-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Buryak, Alexandr, Paolo Rossi, and Sergey Shadrin. "Towards a bihamiltonian structure for the double ramification hierarchy." Letters in Mathematical Physics 111, no. 1 (2021). http://dx.doi.org/10.1007/s11005-020-01341-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Si-Qi, Zhe Wang, and Youjin Zhang. "Variational Bihamiltonian Cohomologies and Integrable Hierarchies II: Virasoro Symmetries." Communications in Mathematical Physics, July 18, 2022. http://dx.doi.org/10.1007/s00220-022-04433-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Si-Qi, Zhe Wang, and Youjin Zhang. "Variational Bihamiltonian Cohomologies and Integrable Hierarchies III: Linear Reciprocal Transformations." Communications in Mathematical Physics, August 11, 2023. http://dx.doi.org/10.1007/s00220-023-04817-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!