Academic literature on the topic 'Bihamiltonian'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bihamiltonian.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bihamiltonian"

1

GUHA, PARTHA. "BIDIFFERENTIAL CALCULI, BICOMPLEX STRUCTURE AND ITS APPLICATION TO BIHAMILTONIAN SYSTEMS." International Journal of Geometric Methods in Modern Physics 03, no. 02 (March 2006): 209–32. http://dx.doi.org/10.1142/s0219887806001120.

Full text
Abstract:
In this exposition, we study the relationship between the bihamiltonian formalism of completely integrable systems using the bidifferential calculi introduced by Dimakis and Müller-Hoissen in [1] and the bihamiltonian formulation of integrable systems with a finite number of degrees of freedom via the Frölicher–Nijenhuis geometry. This pair of bidifferetial operators are used to construct alternative Lie algebroids as shown by Camacaro and Carinena. We find its connection to Finsler geometry. We also find the dispersionless integrable hierarchies using the bidifferential ideals. Finally, we lay out its connection to Gelfand–Zakharevich bihamiltonian geometry.
APA, Harvard, Vancouver, ISO, and other styles
2

Odesskii, A. "Bihamiltonian Elliptic Structures." Moscow Mathematical Journal 4, no. 4 (2004): 941–46. http://dx.doi.org/10.17323/1609-4514-2004-4-4-941-946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

FIGUEROA-O'FARRILL, JOSÉ M., EDUARDO RAMOS, and JAVIER MAS. "INTEGRABILITY AND BIHAMILTONIAN STRUCTURE OF THE EVEN ORDER SKDV HIERARCHIES." Reviews in Mathematical Physics 03, no. 04 (December 1991): 479–501. http://dx.doi.org/10.1142/s0129055x91000175.

Full text
Abstract:
We study reductions of the even order SKP hierarchy. We prove that these systems are integrable and bihamiltonian. We derive an infinite set of independent polynomial conservation laws, prove their nontriviality, and derive Lenard relations between them. A further reduction of the simplest such hierarchy is identified with the supersymmetric KdV hierarchy of Manin and Radul. We prove that it inherits all the bihamiltonian and integrability properties from the unreduced hierarchy.
APA, Harvard, Vancouver, ISO, and other styles
4

Casati, Paolo, Gregorio Falqui, Franco Magri, and Marco Pedroni. "Bihamiltonian reductions and ωn-algebras." Journal of Geometry and Physics 26, no. 3-4 (July 1998): 291–310. http://dx.doi.org/10.1016/s0393-0440(97)00060-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ibort, A., F. Magri, and G. Marmo. "Bihamiltonian structures and Stäckel separability." Journal of Geometry and Physics 33, no. 3-4 (April 2000): 210–28. http://dx.doi.org/10.1016/s0393-0440(99)00051-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carlet, Guido, Hessel Posthuma, and Sergey Shadrin. "Bihamiltonian Cohomology of KdV Brackets." Communications in Mathematical Physics 341, no. 3 (January 2, 2016): 805–19. http://dx.doi.org/10.1007/s00220-015-2540-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Casati, Paolo, and Giovanni Ortenzi. "Bihamiltonian Equations on Polynomial Virasoro Algebras." Journal of Nonlinear Mathematical Physics 13, no. 3 (January 2006): 352–64. http://dx.doi.org/10.2991/jnmp.2006.13.3.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marmo, G., A. Simoni, and F. Ventriglia. "BiHamiltonian quantum systems and Weyl quantization." Reports on Mathematical Physics 48, no. 1-2 (August 2001): 149–57. http://dx.doi.org/10.1016/s0034-4877(01)80074-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gelfand, Israel M., and Ilya Zakharevich. "Webs, Veronese curves, and bihamiltonian systems." Journal of Functional Analysis 99, no. 1 (July 1991): 150–78. http://dx.doi.org/10.1016/0022-1236(91)90057-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jodeit, Max, and Peter J. Olver. "On the equation grad f = M grad g." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 116, no. 3-4 (1990): 341–58. http://dx.doi.org/10.1017/s0308210500031541.

Full text
Abstract:
SynopsisThe system of differential equations ∇f = M∇g, where M is a given square matrix, arises in many contexts. A complete solution to this problem in the case when M is a constant matrix is presented here. Applications to continuum mechanics and biHamiltonian systems are indicated.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bihamiltonian"

1

Izosimov, Anton. "Singularities of bihamiltonian systems and the multidimensional rigid body." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9966.

Full text
Abstract:
Two Poisson brackets are called compatible if any linear combination of these brackets is a Poisson bracket again. The set of non-zero linear combinations of two compatible Poisson brackets is called a Poisson pencil. A system is called bihamiltonian (with respect to a given pencil) if it is hamiltonian with respect to any bracket of the pencil. The property of being bihamiltonian is closely related to integrability. On the one hand, many integrable systems known from physics and geometry possess a bihamiltonian structure. On the other hand, if we have a bihamiltonian system, then the Casimir functions of the brackets of the pencil are commuting integrals of the system. We consider the situation when these integrals are enough for complete integrability. As it was shown by Bolsinov and Oshemkov, many properties of the system in this case can be deduced from the properties of the Poisson pencil itself, without explicit analysis of the integrals. Developing these ideas, we introduce a notion of linearization of a Poisson pencil. In terms of linearization, we give a criterion for non-degeneracy of a singular point and describe its type. These results are applied to solve the stability problem for a free multidimensional rigid body.
APA, Harvard, Vancouver, ISO, and other styles
2

Rigal, Marie-Hélène. "Géométrie globale des systèmes bihamiltoniens en dimension impaire." Montpellier 2, 1996. http://www.theses.fr/1996MON20003.

Full text
Abstract:
Suivant la definition donnee par i. Gelfand et i. Zakharevitch gz, on etudie les systemes bihamiltoniens reguliers definis sur des varietes de dimension impaire 2n + 1. A un tel systeme est naturellement associe un feuilletage a de codimension n + 1, appele ame du systeme bihamiltonien. Il possede une structure transverse de tissu de veronese gz et ses feuilles sont munies d'une structure affine canonique. L'objet de la these est la description de la variete m, feuilletee par a, lorsqu'elle est fermee. Ce travail se divise en deux parties. La premiere est consacree a l'etude des feuilletages transversalement de veronese en toutes dimension et codimension et permet en particulier d'etablir que l'ame d'un systeme bihamiltonien admet un parallelisme transverse adapte a sa structure transverse et que le hamiltonien h est basique pour a. Dans la deuxieme partie, ce resultat essentiel conduit a une description assez precise, d'une part, des systemes bihamiltoniens sur les 5-varietes fermees, d'autre part, des tissus de veronese sur les 3-varietes fermees, apres en avoir effectue une etude locale prealable
APA, Harvard, Vancouver, ISO, and other styles
3

MEHDI, MOHAMAD. "Existence de lois de conservation et de systemes bihamiltoniens." Toulouse 3, 1991. http://www.theses.fr/1991TOU30049.

Full text
Abstract:
Une loi de conservation sur une variete differentiable m par rapport a un champ d'endomorphisme h de tm, est une 1-forme scalaire tel que d=0 et d(h*)=0h* etant le transpose de h. Les lois de conservations ont ete introduites par lax dans l'etude de l'integrabilite des systemes differentiels et systemes bihamiltoniens. On sait en effet, d'apres les travaux de magri que le cadre geometrique des systemes completement integrables est une variete munie d'un couple de tenseurs de poisson compatibles (p,q). Les systemes completement integrables sont les champs hamiltoniens definis par les deux structures i. E. Les champs x du type x=pdh=qdk h, k deux fonctions sur m. Si par exemple p est inversible cette condition equivaut a p##1qdk=dh, ce qui signifie que dk est une loi de conservation par rapport au champ d'endomorphismes h=p##1q. Ainsi la recherche des champs completement integrables equivaut (modulo certaines conditions sur les tenseurs de poisson) a la recherche des lois de conservations. Le but de ce travail est double: 1) etudier quand un couple de tenseur de poisson compatible donne lieu, par passage au quotient a un certain feuilletage associe a un operateur de recursion h; 2) etudier l'integrabilite formelle de l'operateur differentiel qui donne les lois de conservations associees a h. Le premier probleme a ete pose par magri. On trouve une condition algebrique portant sur p et q qui assure l'existence de l'operateur h. Le deuxieme probleme a ete etudie par osborn qui a obtenu des resultats tres partiels et incomplets, sans doute a cause de la grande complexite technique du probleme. On donne la solution dans le cas general a l'aide de la theorie de spencer-goldschmidt
APA, Harvard, Vancouver, ISO, and other styles
4

Viviani, Emanuele. "Bihamiltonian structures on compact hermitian symmetric spaces." Doctoral thesis, 2022. http://hdl.handle.net/2158/1268162.

Full text
Abstract:
In this thesis, we discuss a new approach to the problem of the diagonalization of the Nijenhuis tensor on compact hermitian symmetric spaces. Our attention is more focused on the hamiltonian forms rather than on the eigenvalues of the Nijenhuis tensor. This is motivated by the fact that the eigenvalues of N are only continuous functions and their derivatives have singularities. We describe these hamiltonian forms in terms of polynomials invariant with respect to a chain of subalgebra.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bihamiltonian"

1

Duplij, Steven, Joshua Feinberg, Moshe Moshe, Soon-Tae Hong, Omer Faruk Dayi, Omer Faruk Dayi, Francois Gieres, et al. "Bihamiltonian Reduction and SKdVs." In Concise Encyclopedia of Supersymmetry, 58–60. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morales, J. J., and R. Ramirez. "Bihamiltonian Systems and Lax Representation." In Hamiltonian Mechanics, 253–59. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-0964-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Olver, Peter J. "Canonical Forms for Bihamiltonian Systems." In Integrable Systems, 239–49. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0315-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Casati, Paolo, Franco Magri, and Marco Pedroni. "Bihamiltonian Manifolds And Sato’s Equations." In Integrable Systems, 251–72. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0315-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Casati, Paolo, Franco Magri, and Marco Pedroni. "The Bihamiltonian Approach to Integrable Systems." In Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, 101–10. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2050-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Olver, P. J. "Canonical Forms for Compatible BiHamiltonian Systems." In Solitons and Chaos, 171–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84570-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kosmann-Schwarzbach, Y. "Generalized Symmetries, Recursion Operators and Bihamiltonian Systems." In Partially Intergrable Evolution Equations in Physics, 479–89. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-009-0591-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gelfand, Israel M., and Ilya Zakharevich. "On the Local Geometry of a Bihamiltonian Structure." In The Gelfand Mathematical Seminars, 1990–1992, 51–112. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0345-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Si-Qi. "Lecture Notes on Bihamiltonian Structures and Their Central Invariants." In B-Model Gromov-Witten Theory, 573–625. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94220-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zubelli, Jorge. "The bispectral problem, rational solutions of the master symmetry flows, and bihamiltonian systems." In The Bispectral Problem, 139–55. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/crmp/014/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography