Academic literature on the topic 'Biginelli reactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biginelli reactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biginelli reactions"

1

Heravi, Majid M., and Vahideh Zadsirjan. "Recent Advances in Biginelli-type Reactions." Current Organic Chemistry 24, no. 12 (September 22, 2020): 1331–66. http://dx.doi.org/10.2174/1385272824999200616111228.

Full text
Abstract:
The effective and high yielding synthesis of poly-functionalized pyrimidines, using multicomponent reactions (MCRs), is imperative in organic and medicinal chemistry. The classic Biginelli reaction is a typically one-pot three-component cyclocondensation reaction involving an aldehyde, a β-ketoester and urea, resulting in the construction of multi-functionalized 3,4-dihydropyrimidin-2(1H)-ones (DHPMs). In recent years, other active methylene compounds, various derivatives of urea and diversely substituted aldehydes have also been used, resulting in the preparation of a new series of various novel dihydropyrimidinones via the Biginelli-Type Reactions (BTRs) or modified Biginelli reactions (MBRs). In this review, we try to underscore the recent advances in BTRs or MBRs.
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Zeyu, Bo Wang, and Lei Tao. "Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction." Molecules 27, no. 22 (November 15, 2022): 7886. http://dx.doi.org/10.3390/molecules27227886.

Full text
Abstract:
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
APA, Harvard, Vancouver, ISO, and other styles
3

Tahmasbi, Marzieh, Nadiya Koukabi, and Ozra Armandpour. "Sono and nano: A perfect synergy for eco-compatible Biginelli reaction." Heterocyclic Communications 28, no. 1 (January 1, 2022): 1–10. http://dx.doi.org/10.1515/hc-2022-0003.

Full text
Abstract:
Abstract In this study, we evaluated the performance of nano-γ-Fe2O3–SO3H catalyst in the Biginelli reaction and synthesized 3,4-dihydropyrimidine-2-(1H)-ones. This reaction was carried out under solvent-free and ultrasonic irradiation conditions and belonged to one-pot multicomponent reactions (MCRs) with an adopted aromatic aldehyde, ethyl acetoacetate, and urea as starting materials for the beginning of the reaction. The synthesized materials were efficient in synthesizing 3,4-dihydropyrimidine-2-(1H)-ones via the Biginelli reaction under reaction conditions. Thus, the advantages of using nano-γ-Fe2O3–SO3H in the Biginelli reaction are short reaction time, high efficiency, green method, solvent free, and cost-effective. Furthermore, nano-γ-Fe2O3–SO3H as a heterogeneous catalyst can be recycled five times without significantly reducing catalytic activity.
APA, Harvard, Vancouver, ISO, and other styles
4

Krishna, Thalishetti, Eppakayala Laxminarayana, and Dipak Kalita. "FeF3 as a green catalyst for the synthesis of dihydropyrimidines via Biginelli reaction." European Journal of Chemistry 11, no. 3 (September 30, 2020): 206–12. http://dx.doi.org/10.5155/eurjchem.11.3.206-212.1992.

Full text
Abstract:
A facile and highly efficient FeF3-catalyzed method has been developed for the direct synthesis of functionalized dihydropyrimidines from readily available starting materials via Biginelli reaction. These reactions proceed at low-catalyst loadings with high functional group tolerance under mild conditions. This method provides efficient reusability of the catalyst and good to excellent yields of the products, making the protocol more attractive, economical, and environmentally benign. FeF3 is an attractive catalyst for the Biginelli reaction because of its high acidity, thermal stability and water tolerance.
APA, Harvard, Vancouver, ISO, and other styles
5

Safari, Javad, Soheila Gandomi-Ravandi, and Samira Ashiri. "Organosilane sulfonated graphene oxide in the Biginelli and Biginelli-like reactions." New Journal of Chemistry 40, no. 1 (2016): 512–20. http://dx.doi.org/10.1039/c5nj01741f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sánchez-Sancho, Francisco, Marcos Escolano, Daniel Gaviña, Aurelio G. Csáky, María Sánchez-Roselló, Santiago Díaz-Oltra, and Carlos del Pozo. "Synthesis of 3,4-Dihydropyrimidin(thio)one Containing Scaffold: Biginelli-like Reactions." Pharmaceuticals 15, no. 8 (July 30, 2022): 948. http://dx.doi.org/10.3390/ph15080948.

Full text
Abstract:
The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised. The first one involves the modification of the conventional components of the Biginelli reaction and the second one refers to the postmodification of the Biginelli products. Both strategies have been extensively revised in this manuscript. Regarding the first one, initially, the modification of one of the components was covered. Although examples of modifications of the three of them were described, by far the modification of the keto ester counterpart was the most popular approach, and a wide variety of different enolizable carbonylic compounds were used; moreover, changes in two or the three components were also described, broadening the substitution of the final dihydropyrimidines. Together with these modifications, the use of Biginelli adducts as a starting point for further modification was also a very useful strategy to decorate the final heterocyclic structure.
APA, Harvard, Vancouver, ISO, and other styles
7

Boukis, Andreas C., Baptiste Monney, and Michael A. R. Meier. "Synthesis of structurally diverse 3,4-dihydropyrimidin-2(1H)-ones via sequential Biginelli and Passerini reactions." Beilstein Journal of Organic Chemistry 13 (January 9, 2017): 54–62. http://dx.doi.org/10.3762/bjoc.13.7.

Full text
Abstract:
The Biginelli reaction was combined with the Passerini reaction for the first time in a sequential multicomponent tandem reaction approach. After evaluation of all possible linker components and a suitable solvent system, highly functionalized dihydropyrimidone–α-acyloxycarboxamide compounds were obtained in good to excellent yields. In a first reaction step, different 3,4-dihydropyrimidin-2(1H)-one acids were synthesized, isolated and fully characterized. These products were subsequently used in a Passerini reaction utilizing a dichloromethane/dimethyl sulfoxide solvent mixture. By variation of the components in both multicomponent reactions, a large number of structurally diverse compounds could be synthesized. In addition, a one-pot Biginelli–Passerini tandem reaction was demonstrated. All products were carefully characterized via 1D and 2D NMR as well as IR and HRMS.
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Xiaoyun, Jianxin Guo, Cui Wang, Rui Zhang, and Victor Borovkov. "Stereoselective Biginelli-like reaction catalyzed by a chiral phosphoric acid bearing two hydroxy groups." Beilstein Journal of Organic Chemistry 16 (July 31, 2020): 1875–80. http://dx.doi.org/10.3762/bjoc.16.155.

Full text
Abstract:
To develop new efficient stereoselective catalysts for Biginelli-like reactions, a chiral phosphoric acid bearing two hydroxy groups derived from ʟ-tartaric acid was successfully synthesized via highly regioselective transformations of enantiopure 1,1,4,4-tetraphenylbutanetetraol. The obtained catalyst effectively catalyzed Biginelli-like reactions with moderate to good enantioselectivities. Control experiments indicated that the presence of the two hydroxy groups were indispensable for achieving a high enantioselectivity.
APA, Harvard, Vancouver, ISO, and other styles
9

Khaskel, Anamika, Pranjit Barman, Subir Kumar Maiti, and Utpal Jana. "Nebivolol nanoparticles: a first catalytic use in Biginelli and Biginelli-like reactions." Canadian Journal of Chemistry 96, no. 12 (December 2018): 1021–25. http://dx.doi.org/10.1139/cjc-2017-0621.

Full text
Abstract:
Herein, we report the catalytic activity of nebivolol nanoparticles a novel organocatalyst for the synthesis of DHPMs and DHPM-5-carboxamides. The nanoparticles are confirmed by DSC, TEM, AFM, and IR spectroscopy. The catalyst can be readily recovered and reused for the next four runs without any significant impact on the yields of the products. The products are fully characterized by FTIR, 1H NMR, 13C NMR, and distortionless enhanced polarization transfer (DEPT) NMR. The methodology adopted here offers several advantages such as solvent-free reaction, low loading of catalyst, short reaction times, and quantifiable yields.
APA, Harvard, Vancouver, ISO, and other styles
10

Dallinger, Doris, A. Stadler, and C. O. Kappe. "Solid- and solution-phase synthesis of bioactive dihydropyrimidines." Pure and Applied Chemistry 76, no. 5 (January 1, 2004): 1017–24. http://dx.doi.org/10.1351/pac200476051017.

Full text
Abstract:
With the emergence of high-throughput screening in the pharmaceutical industry over a decade ago, synthetic chemists were faced with the challenge of preparing large collections of molecules to satisfy the demand for new screening compounds. The unique exploratory power of multicomponent reactions such as the Biginelli three-component reaction was soon recognized to be extremely valuable to produce compound libraries in a time- and cost-effective manner. The present review summarizes synthetic advances from our laboratories for the construction of Biginelli libraries via solution-and solid-phase strategies that are amenable to a high-throughput or combinatorial format.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biginelli reactions"

1

Nin, Brauer Martin Claudio [Verfasser], Ludger [Akademischer Betreuer] Wessjohann, and Thomas J. J. [Akademischer Betreuer] Müller. "New post condensation reactions of Biginelli three and Ugi four component products / Martin Claudio Nin Brauer. Betreuer: Ludger Wessjohann ; Thomas J. J. Müller." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2015. http://d-nb.info/1079217614/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fan, Weigang. "Utilisation du HMF en réactions multicomposantes : Accès rapide vers de nouvelles cibles en chimie fine." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI022/document.

Full text
Abstract:
L’utilisation de matières premières renouvelables pour la production de produits chimiques est un enjeu majeur de l’industrie chimique. Elle vise à répondre aux contraintes environnementales et économiques de disponibilité des ressources fossiles et de limitation de l’empreinte carbone des produits chimiques. Il existe une famille de molécules fonctionnelles directement issues de la biomasse dénommées « molécules plateforme ». Parmi elles, le 5-hydroxyméthylfurfural (HMF), porteur d’une fonction aldéhyde, un motif furanique et un groupe CH2OH, est particulièrement intéressante. Cependant, sa stabilité modérée, notamment en conditions acides, est une forte limitation de sa chimie et son utilisation vers des cibles en chimie fine reste un défi. Les réactions multi-composantes conduisent à des architectures élaborées à partir de briques simples de manière économe en temps et nombre d’étapes. Beaucoup de ces réactions concernent la fonction aldéhyde, ce qui rend intéressant de les appliquer au 5-HMF. Ceci est l’objet de cette thèse, qui porte sur deux réactions en particulier, Biginelli et Kabachnik-Fields. La réaction de Biginelli est la condensation d’un aldéhyde, un composé dicarbonylé et une urée conduisant à des dihydropyrimidinones (DHPMs). Etant acido-catalysée, il a été nécessaire d’optimiser les conditions pour l’appliquer au HMF. Les meilleures conditions (réaction sans solvant, ZnCl2) ont permis d’atteindre une large variété de nouvelles DHPMs dans des rendements convenables à très bons. La réaction de Kabachnik-Fields est la condensation d’un aldéhyde avec une amine et un dialkyl phosphate, conduisant à des a-aminophosphonates. Les conditions optimales trouvées pour son application au 5-HMF sont l’utilisation d’iode comme catalyseur dans le solvant biosourcé 2-MeTHF à température ambiante ou modérément élevée. Une série de nouveaux a-aminophosphonates comportant le motif HMF a été préparé. Le groupe hydroxyméthyle issu du HMF persiste dans le produit, offrant de nombreuses possibilités de dérivation et démontrant son utilité comparativement à la chimie du furfural
Recently, the production of chemicals, either bulk or fine chemicals, from renewable biomass has attracted growing interests due to the dwindling reserve of fossil resources and the increasing awareness of environmental concerns. Some chemicals with a structure able to generate a number of derivatives, and able to be directly produced from biomass, are referred to as bio-based “platform chemicals”, and constitute the bridge between biomass and down-stream chemicals. Among these chemicals, 5-hydroxymethylfurfural (HMF), bearing an aldehyde group, a hydroxymethyl group, and a furan moiety, is the most popular one. However, its limited stability obstructs its applications in organic synthesis. Thus, developing mild and efficient synthetic routes towards existing or novel fine chemicals from HMF is still a challenging task. Multicomponent reactions (MCRs) are powerful synthetic tools allowing the straightforward formation of elaborated molecules from simple starting materials in a time- and step-saving manner. Among MCRs, many involve the aldehyde as one of the reactive components, making HMF as a potential interesting substrate in such strategies. This thesis aims at exploring the use of HMF in MCRs to provide novel fine chemicals, focusing on two reactions, namely the Biginelli and Kabachnik-Fields reactions. The Biginelli reaction is a condensation of an aldehyde, a dicarbonyl compound and urea. Although it is an old reaction, it is still showing thriving vitality, as many of its products, namely dihydropyrimidinones, exhibit various biological properties. We have investigated the reaction by choosing proper conditions to adapt to HMF, notably with respect to acidic conditions. The best conditions found for the reaction are the use of ZnCl2 as a mild Lewis acid catalyst without any solvent, giving access to new dihydropyrimidinones in modest to good yields. The Kabachnik-Fields reaction is a one-pot condensation of aldehydes, amines and dialkyl phosphites, and is considered as the most efficient and convenient approach to a-aminophosphonates. For the specific case of HMF, we could establish that the best conditions were the use of iodine as a catalyst in the bio-based solvent 2-MeTHF and room or moderately elevated temperature. Using these optimized conditions, a wide range of HMF-based a-aminophosphonates were prepared in modest to excellent yields. The hydroxymethyl group persisting in HMF-based a-aminophosphonates offers the possibilities of further modification and derivatization, illustrating the benefit of HMF as compared to furfural, for accessing a wider scope of chemical structures
APA, Harvard, Vancouver, ISO, and other styles
3

Nascimento, Letícia Gomes do. "Catalisadores heterogêneos aplicados à reação de Biginelli." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7110.

Full text
Abstract:
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-04-07T20:19:45Z No. of bitstreams: 2 Dissertação - Letícia Gomes do Nascimento - 2017.pdf: 6868423 bytes, checksum: 7a54ea8b28095c4c81126f3998e87c13 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-10T11:16:14Z (GMT) No. of bitstreams: 2 Dissertação - Letícia Gomes do Nascimento - 2017.pdf: 6868423 bytes, checksum: 7a54ea8b28095c4c81126f3998e87c13 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-04-10T11:16:14Z (GMT). No. of bitstreams: 2 Dissertação - Letícia Gomes do Nascimento - 2017.pdf: 6868423 bytes, checksum: 7a54ea8b28095c4c81126f3998e87c13 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The Biginelli reaction involves the cyclocondensation of three reagents in the presence of an acid catalyst to obtain dihydropyrimidinones (DHPMs).This compound and its analogues are widely known to possess various pharmacological properties, such as antibacterial, antiinflammatory, antifungal, antiviral, anticancer and antihypertensive. This reaction is usually carried out via homogeneous catalysis, which presents, however, some difficulties, such as regeneration of the catalyst and difficult separation of the final product, thus becoming an obstacle for industrial use. In the present work, it was proposed the use of two classes of heterogeneous catalysts, which are: metal oxides and acid carbons in order to achieve attractive characteristics in the Biginelli reaction, as a reduction of reaction time and increase in yield. The acidic carbons were prepared by carbonization by impregnation of agroindustrial residues with sulfuric acid at a temperature of 200 °C in the mass ratio of 1:10 (precursor: H2SO4) for 6 h. The pure HY-340 and Nb2O5 were both tested and chemically treated with a solution of 30% sulfuric acid. The catalysts were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric (TG), differential thermal analysis (DTA), textural adsorption/desorption analysis of N2 at -196 °C and desorption of ammonia at programmed temperature (DTP-NH3), scanning electron microscopy (SEM) and X-ray Dispersive Energy Spectrometry (EDS). The contents of C, N, O and S present on the surface of the coals were quantified by Elementary Analysis (CHNS-O). Exploratory catalytic tests were carried out to define the best experimental conditions of solvent, temperature, molar ratio and amount of catalyst. The results obtained allowed to establish the best experimental conditions for the realization of the Biginelli reaction. Thus, the following parameters were adopted to evaluate the performance of the different catalysts. These are: 5% catalyst content (by mass), molar ratio of 1 Benzaldehyde: 1,5 Methyl acetoacetate: 1,5 Urea, without solvent and temperature of 130 °C. The best catalyst was Nb2O5 treated with sulfuric acid, whereby a yield of 94% of dihydropyrimidinones (DHPMs).
A reação de Biginelli envolve a ciclocondensação de três reagentes na presença de um catalisador ácido para a obtenção de Dihidropirimidinonas (DHPMs). Este composto e seus derivados são amplamente conhecidos por possuir diversas propriedades farmacológicas e terapêuticas. Esta reação é geralmente realizada via catálise homogênea, que apresentam, no entanto, algumas dificuldades, como regeneração do catalisador e difícil separação do produto final, tornando-se dessa forma um obstáculo para utilização industrial. O presente trabalho teve como objetivo geral avaliar diferentes catalisadores ácidos heterogêneos na produção de dihidropirimidinonas, como óxidos de nióbio sulfonados e carvões sulfonados produzidos a partir de resíduos agroindustriais (casca de arroz e bagaço de tomate). Os carvões ácidos foram preparados por carbonização, por meio da impregnação de resíduos agroindustriais com ácido sulfúrico a uma temperatura de 200 °C na proporção mássica de 1:10 (precursor: H2SO4), por 6 h. Testou-se, também, o ácido nióbico (HY-340) e Nb2O5 ambos puros e tratados quimicamente com uma solução de 30% de ácido sulfúrico. Os catalisadores foram caracterizados por Difração de Raios X (DRX), Espectroscopia no Infravermelho (IV), Termogravimetria (TG), Análise Térmica Diferencial (DTA), Análise Textural por Adsorção/Dessorção de N2 a -196 °C, Dessorção de Amônia a Temperatura Programada (DTP-NH3), Microscopia Eletrônica de Varredura (MEV) e Espectrometria de Energia Dispersiva de Raios X (EDS). Os teores de C, N, O e S presentes na superfície dos carvões foram quantificados por Análise Elementar (CHNS-O). Foram realizados testes catalíticos exploratórios para definir melhores condições experimentais de solvente, temperatura, razão molar e quantidade de catalisador. Os resultados obtidos permitiram estabelecer as melhores condições experimentais para a realização da reação de Biginelli. Desse modo, adotaram-se os seguintes parâmetros para avaliar o desempenho dos diferentes catalisadores. São estes: teor de 5% de catalisador (em massa), razão molar de 1 Benzaldeído: 1,5 Acetoacetato de metila: 1,5 Ureia, sem solvente e temperatura de 130 °C. O melhor catalisador foi o Nb2O5 tratado com ácido sulfúrico, em que obteve-se um rendimento de 94% de dihidropirimidinonas (DHPMs).
APA, Harvard, Vancouver, ISO, and other styles
4

Gonçalves, Itamar Luís. "Síntese de 3,4-diidropirimidin-2(1H)-tionas N-1 aril substituídas com potencial de atividade antitumoral." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/159522.

Full text
Abstract:
Introdução: A partir da descoberta da reação de Biginelli, diidropirimidinonas/tionas funcionalizadas têm se destacado como protótipos no desenvolvimento de fármacos, considerando diferentes alvos. O primeiro representante deste grupo de moléculas, com ação inibitória sobre a divisão celular, foi o monastrol, o qual é caracterizado como um inibidor alostérico da cinesina mitótica 5 (Eg5). Este mecanismo de ação representa um alvo promissor para a terapia antineoplásica, considerando que a Eg5 é uma proteína motora envolvida no movimento dos microtúbulos durante a divisão celular. Recentes investigações mostraram que a inserção de um anel aromático no N-1 do núcleo diidrotiopirimidínico seria capaz de otimizar a interação do ligante com a Eg5. Objetivos: Nesse sentido, a presente pesquisa teve por objetivo obter diidropirimidin-2-tionas N-1 aril substituídas, e avaliar seu potencial antiproliferativo em células de glioma. Métodos: Foi sintetizada uma quimioteca de 26 diidropirimidin-2-tionas N-aril substituídas, através da reação de Biginelli promovida por cloreto de trimetilsilano, utilizando uma série de ariltioureias previamente obtidas. A partir da análise do docking destes compostos com a Eg5, foram selecionados 4 deles para avaliação da atividade citotóxica em linhagem celular de glioma, utilizando o ensaio MTS. Resultados: Os derivados do monastrol substituídos em N-1 com 4NO2-Ar (LaSOM 301) e 4OMe-Ar (LaSOM 309) foram mais ativos que o monastrol na linhagem celular investigada. Enquanto o monastrol apresentou valor de IC50 superior à 100 μM, os compostos LaSOM 301 e LaSOM 309 apresentaram valores de IC50 de respectivamente 54,69 ± 4,92 μM e 57,74 ± 2,78 μM. Adicionalmente, o composto LaSOM 308, embora isento da hidroxila em meta, presente no monastrol, e N-1 substituído com 4OMe-Ar apresentou valor de IC50 inferior ao monastrol (78,26 ± 4,18 μM). Conclusões: As condições reacionais utilizadas, permitiram a funcionalização do N-1 de diidropirimidin- 2-tionas com diferentes substituintes. A inserção de um anel aromático substituído no N-1, do núcleo diidrotiopirimidínico consistiu em uma modificação estrutural capaz de gerar compostos com atividade antineoplásica, superior ao monastrol.
Introduction: Since the Biginelli reaction discovery, functionalized dihydropyrimidinones/ thiones have been emerged as prototypes for drug design in different targets. Monastrol was the first representative molecule of this group with inhibitory effect on cell division, which produces kinesin-5 (Eg5) inhibition. This action of mechanism is a promising target for anticancer therapy, whereas the motor protein Eg5 is involved in microtubule movement during the cell division. Recent results showed that the aromatic ring at N-1 position of dihydrothiopyrimidinic core would be able to optimize the interaction of the ligand with the Eg5. Objectives: In this context, this study aimed to obtain dihydropyrimidin-2-thiones N-1 aryl substituted, and to evaluate their antiproliferative activity on glioma cells. Methods: A chemical library of 26 dihydropyrimidin-2-thiones N-1 aryl substituted were synthetized employing the Biginelli reaction promoted by trimethylchlorosilane. Considering the results of docking analysis of these compounds with Eg5, four of them were selected for cytotoxic activity assessment on glioma cells, employing MTS assay. Results: The monastrol derivatives N-1 substituted with 4NO2-Ph (LaSOM 301) and 4OMe-Ph (LaSOM 309) showed higher activity than monastrol, in cell line studied. While monastrol showed IC50 value higher than 100 μM, LaSOM 301 and LaSOM 309 compounds showed IC50 values of 54.69 ± 4.92 μM and 57.74 ± 2.78 μM, respectively. Nevertheless, the LaSOM 309 compound, without hydroxyl group present in monastrol, and with N-1 4OMe-Ph substituted also showed IC50 value lower than monastrol (78.26 ± 4.18 μM). Conclusions: Reactional conditions employed in these research, allowed the N-1 functionalization of dihydropyrimidin-2-thiones, with several substituents. The insertion of a substituted aromatic ring at N-1 position, of dihydrothiopyrimidinic core, was a structural change able to generate compounds with antineoplasic activity, higher than monastrol.
APA, Harvard, Vancouver, ISO, and other styles
5

Stucchi, M. "MULTICOMPONENT APPROACHES TO THE SYNTHESIS OF SMALL BIOACTIVE MOLECULES." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/330951.

Full text
Abstract:
In this PhD thesis, we exploited the potentialities of four different multicomponent reactions (MCRs), namely Ugi four-component reaction (U-4CR), N-split Ugi reaction (N-split U-4CR), van Leusen three-component reaction (vl-3CR) and Biginelli reaction (Bg-3CR), developing five different approaches to the synthesis of small bioactive molecules. In particular, we successfully applied the build/couple/pair strategy obtaining a small library of ketopiperazine-based minimalist peptidomimetics, by means of diastereoselective U-4CR/post-cyclization sequences, employing optically pure amino acid-derived α-amino aldehydes and α-isocyanoacetates as starting materials. Computer-assisted NMR NOE analysis allowed us to determine the configuration of the newly formed stereocenters, while molecular dynamics simulation and biological evaluation clearly underlined the potentiality of selected compounds to interfere with protein-protein interactions (PPIs). We also focused our attention on another class of peptide-like compounds, namely diamine-based peptidomimetics, by carefully optimizing the N-split U-4CR conditions for the introduction of N-protected amino acids and α-isocyanoacetates components, in a stereoconservative way. This methodology largely simplifies the synthesis of such compounds, opening the way to the use of more complex secondary diamines, able to induce well-defined secondary structures in the related peptidomimetic and hopefully targeting novel PPIs. Furthermore, by combining the same N-split U-4CR with common transformations, a library of dopamine receptor agonists was rapidly obtained, with biological activities in the nanomolar range. Although the desired D2/D3 selectivity was not achieved, structure-activity relationship (SAR) and docking studies allowed us to understand the key pharmacophoric elements in these novel structures, leading the way to the design of improved molecular scaffolds. By employing the vL-3CR in an iterative way, we designed a novel C2-C5’ linked polyimidazole-based minimalist framework, able to mimic the i, i+1, i+2 and i+3 amino acid residues of a β-strand motif. Its conformational behaviour was investigated through solution-phase NMR and molecular dynamics studies, allowing to demonstrate its ability to mimic a poly-alanine β-strand. Finally, we explored the possibility to combine MCRs with organocatalysis, developing the first BINOL-derived phosphoric acid catalysed Biginelli-like reaction on a ketone. In particular, employing N-substituted isatins as carbonyl substrates, we achieved the synthesis of a small library of biologically relevant enantioenriched spiro[indoline-pyrimidine]-diones derivatives. The assignment of the configuration at the new oxindole C-3 stereocenter was assessed through quantum-mechanical methods and NMR spectroscopy, while computational studies on the reaction transition state allowed us to explain the enantioselectivity and the stereochemical outcome.
APA, Harvard, Vancouver, ISO, and other styles
6

Tai, Ju-Ni, and 戴如妮. "Syntheses and Structures of Tungsten(0) Complexes of Tris(2-pyridylmethyl)amine and The Catalytic Applications to Biginelli Condensation Reactions." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/67203679673023153147.

Full text
Abstract:
碩士
國立中正大學
化學所
96
We have successfully synthesized the organotungsten Lewis acid, [N(CH2-2-py)3W(CO)(NO)2](BF4)2 (3) in quantitative yield by treating W(CH3CN)3(CO)3 with N(CH2-2-py)3 (tpa) in the presence of 2 equiv. of NOBF4 in CH3CN at 0 oC for 90 minutes. The complex 3 is very moisture- and air-stable. Its crystalline solid form can be stored in air for months and its solution can also stay unchanged for at least 48 hours without detectable decomposition. In addition, complex 3 has a relatively high water-solubility of 37 g/L and possesses strong Lewis acidity upon loss of the CO ligand. The Lewis acidity of [N(CH2-2-py)3W(CO)(NO)2]2+ measured by 1H NMR method falls between those found for AlCl3 and BF3. But the complex [N(CH2-2-py)3W(CO)(NO)2]2+ exhibits very different structures in solid state and in solution. The crystal structure of 3 shows the tpa ligand in its h4-coordination mode bound to the W center. While in solution state, tpa has various coordination possibilities (h3- or h4-interconversion) as suggested by its 1H NMR spectral data. Because the lability of CO ligand, the resulting 16-e species (the real active catalyst) could be further stabilized by the formation of the 4th W-N bonding via a fast h3-to-h4 interconversion. The three-component Biginelli condensation reaction is one of the most widely applied method for the synthesis of 3,4-dihydropyridine-2(1H)-one (DHPMs). This one pot reaction involves the condensation of ethyl acetoacete, aldehyde and urea in the presence of a variety of acidic condensing agents. In this dissertation a series of Biginelli condensation reactions were catalyzed by a novel organotungten Lewis acid [N(CH2-2-py)3W(CO)(NO)2](BF4)2 (3). With the employment of as little as 0.6 mol% of catalyst 3, the condensation reactions were efficiently proceeded in molecular solvent systems such as DMF or in a thermally stable room temperature ionic liquid, BmimPF6 (1-butyl-3-methylimidazolium hexafluorophosphate). We have also investigated the congregating effect of this Lewis acid under microwave irradiation conditions. In all cases, a dramatic reaction rate-enhancement from hours to minutes was observed under microwave irradiation conditions as compared to those found by using thermal heating method. In addition, it has been demonstrated that catalyst 3 can be selective and as effective towards organic base functionality.
APA, Harvard, Vancouver, ISO, and other styles
7

Almeida, Mário Rui Dias. "Synthesis of 5-aryl-imidazo [2,1-b] thiazole compounds possibly RAF kinase inhibitors." Master's thesis, 2014. http://hdl.handle.net/10451/38753.

Full text
Abstract:
Trabalho Final de Mestrado Integrado, Ciências Farmacêuticas, Universidade de Lisboa, Faculdade de Farmácia, 2014
Malignant melanoma is the most aggressive type of skin cancer because of its high tendency to metastasize. In fact, the mortality rate from malignant melanoma has risen about 2% annually since 1960. Malignant melanoma occupies the 19th place as the most common cancer worldwide. In Portugal, according to the Portuguese League Against Cancer are nearly 700 new cases of melanoma annually and the incidence rate reaches 6-8 cases per 100000 individuals. These data are similar to South European countries, namely, Spain and Italy. There are several options of treatments for malignant melanoma and the right choice depends of several aspects, being the most important one, the actual stage of the cancer. The understanding of carcinogenesis’ mechanisms at the molecular level has led to the opportunity of development new therapeutic approaches. Recently, some pyrimidinyl substituted imidazo[2,1-b]thiazole derivatives were reported as RAF kinases inhibitors. Therefore, these compounds provide a broad and novel opportunity to treat melanoma, which should be further investigated. The obtained compounds, showing promising proprieties, will be further investigated to evaluate its pharmacokinetic and toxicokinetic proprieties in biological assays performed in several melanoma cultured cells.
O melanoma maligno é o tipo de cancro de pele mais grave devido à sua alta tendência para metastizar. Desde 1960, a sua taxa de mortalidade tem aumentado cerca de 2% anualmente. O melanoma maligno ocupa o 19º lugar entre os cancros mais comuns a nível mundial. Em Portugal, de acordo com a Liga Portuguesa Contra o Cancro existem cerca de 700 novos casos de melanoma por ano e a taxa de incidência de melanoma é de 6-8 casos por 100000 pessoas, bastante similar aos países do Sul da Europa, nomeadamente Espanha e Itália. Existem várias opções terapêuticas para o melanoma maligno, no entanto, a escolha mais adequada depende de vários fatores, sendo o mais importante, o estadio do cancro. A compreensão dos mecanismos de carcinogénese, numa perspetiva molecular, permitiu o desenvolvimento de novas opções terapêuticas. Recentemente, alguns derivados imidazo[2,1-b]tiazólicos com grupos pirimidínicos substituídos foram descritos como inibidores das quinases RAF. Consequentemente, estes compostos permitem uma inovadora modalidade de tratamento do melanoma que deve ser explorada. Os compostos sintetizados neste trabalho, caso sejam realmente promissores, serão investigados mais aprofundadamente, para avaliar as suas propriedades farmacocinéticas e toxicodinâmicas em ensaios biológicos realizados em diversas linhas celulares de melanoma.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biginelli reactions"

1

Li, Jie Jack. "Biginelli reaction." In Name Reactions, 50–51. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03979-4_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Jie Jack. "Biginelli Reaction." In Name Reactions, 38–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50865-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jie Jack. "Biginelli pyrimidone synthesis." In Name Reactions, 34–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05336-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kappe, C. Oliver. "The Biginelli Reaction." In Multicomponent Reactions, 95–120. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605118.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Jie Jack. "Biginelli pyrimidone synthesis." In Name Reactions, 31–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04835-1_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marqués-López, Eugenia, and Raquel P. Herrera. "Biginelli Multicomponent Reactions." In Multicomponent Reactions, 306–30. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118863992.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Jie Jack. "Biginelli pyrimidone synthesis." In Name Reactions, 42–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01053-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tao, Lei, Chongyu Zhu, Yen Wei, and Yuan Zhao. "Biginelli Multicomponent Reactions in Polymer Science." In Multi-Component and Sequential Reactions in Polymer Synthesis, 43–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/12_2014_301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jain, S., S. R. Jetti, N. Babu G., T. Kadre, and A. Jaiswal. "Cation Exchange Resin (Amberlyst® 15 DRY): An Efficient, Environment Friendly and Recyclable Heterogeneous Catalyst for the Biginelli Reaction." In Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives, 279–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23394-4_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fátima, Ângelo de, Bruna Silva Terra, Leonardo da Silva Neto, and Taniris Cafiero Braga. "Organocatalyzed Biginelli Reactions." In Green Synthetic Approaches for Biologically Relevant Heterocycles, 317–37. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-800070-0.00012-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biginelli reactions"

1

Alvim, Haline G. O., Tatiani B. de Lima, Heibbe C. B. Oliveira, Fabio C. Gozzo, Julio L. Macedo, Patricia V. Abdelnur, Wender A. Silva, and Brenno A. D. Neto. "On the Biginelli Reaction under Homogeneous Catalysis." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013915111341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

*, Thalita Corrêa C. de Oliveira, and Andrea Luzia F. de Souza. "Biginelli reaction using lemon juice as catalyst under microwave irradiation." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_20139160752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lima, Carolina G. S., Sandrina I. R. M. Silva, Edson R. Leite, Ricardo S. Schwab, Arlene G. Corrêa, and Márcio W. Paixão. "Ferrite-Nb2O5 Nanocatalyst: An Efficient Magnetically Recoverable Catalyst for Biginelli Reaction." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013915105815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Xiaoyun, Jianxin Guo, Rui Zhang, Zhongyou Yin, and Victor Borovkov. "Asymmetric Biginelli-like reaction catalyzed by chiral TADDOL-derived phosphoric acid bearing two hydroxyl groups." In The 23rd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2019. http://dx.doi.org/10.3390/ecsoc-23-06647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agarwal, Shikha, Dinesh Kr Agarwal, Priyanka Kalal, and Divyani Gandhi. "A comparative study: Greener vs conventional synthesis of 4H-pyrimido[2,1-b]benzothiazoles via Biginelli reaction." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramos, Luciana M., Rafael G. da Silva, and Brenno A. D. Neto. "Biginelli reaction in ionic liquids: synthesis and application of a novel iron catalyst with dual activation." In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0114-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dekamin, Mohammad, M. Reza Naimi-Jamal, and Narges Ghadaksaz. "A Facile Biginelli Reaction on Grinding Using Nano-Ordered MCM-41-SO3H as an Efficient Solid Acid Catalyst." In The 15th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2011. http://dx.doi.org/10.3390/ecsoc-15-00772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Movassagh, Barahman, Akbar Mobaraki, and Babak Karimi. "A novel water-tolerant organosulfonic acid-functionalized silica-coated magnetic nanoparticles as a hydrophobic, recyclable and magnetically separable catalyst for the solvent-free Biginelli reaction." In The 17th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2013. http://dx.doi.org/10.3390/ecsoc-17-a009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kolosov, Maksim, Victor Dotsenko, and Valeriy Orlov. "Synthesis of new 4,7-dihydropyrazolo[1,5-a]pyrimidines and 4,5,6,7,8,9-hexahydropyrazolo[5,1-b]quinazolines through the non-catalyzed Biginelli reaction." In The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-a042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography