Academic literature on the topic 'Big text data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Big text data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Big text data"
N.J., Anjala. "Algorithmic Assessment of Text based Data Classification in Big Data Sets." Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (March 31, 2020): 1231–34. http://dx.doi.org/10.5373/jardcs/v12sp4/20201598.
Full textHassani, Hossein, Christina Beneki, Stephan Unger, Maedeh Taj Mazinani, and Mohammad Reza Yeganegi. "Text Mining in Big Data Analytics." Big Data and Cognitive Computing 4, no. 1 (January 16, 2020): 1. http://dx.doi.org/10.3390/bdcc4010001.
Full textKodabagi, M. M., Deepa Sarashetti, and Vilas Naik. "A Text Information Retrieval Technique for Big Data Using Map Reduce." Bonfring International Journal of Software Engineering and Soft Computing 6, Special Issue (October 31, 2016): 22–26. http://dx.doi.org/10.9756/bijsesc.8236.
Full textCourtney, Kyle, Rachael Samberg, and Timothy Vollmer. "Big data gets big help: Law and policy literacies for text data mining." College & Research Libraries News 81, no. 4 (April 9, 2020): 193. http://dx.doi.org/10.5860/crln.81.4.193.
Full textRajagopal, D., and K. Thilakavalli. "Efficient Text Mining Prototype for Big Data." International Journal of Data Mining And Emerging Technologies 5, no. 1 (2015): 38. http://dx.doi.org/10.5958/2249-3220.2015.00007.5.
Full textIqbal, Waheed, Waqas Ilyas Malik, Faisal Bukhari, Khaled Mohamad Almustafa, and Zubiar Nawaz. "Big Data Full-Text Search Index Minimization Using Text Summarization." Information Technology and Control 50, no. 2 (June 17, 2021): 375–89. http://dx.doi.org/10.5755/j01.itc.50.2.25470.
Full textToon, Elizabeth, Carsten Timmermann, and Michael Worboys. "Text-Mining and the History of Medicine: Big Data, Big Questions?" Medical History 60, no. 2 (March 14, 2016): 294–96. http://dx.doi.org/10.1017/mdh.2016.18.
Full textLepper, Marcel. "Big Data, Global Villages." Philological Encounters 1, no. 1-4 (January 26, 2016): 131–62. http://dx.doi.org/10.1163/24519197-00000006.
Full textKhan, Zaheer, and Tim Vorley. "Big data text analytics: an enabler of knowledge management." Journal of Knowledge Management 21, no. 1 (February 13, 2017): 18–34. http://dx.doi.org/10.1108/jkm-06-2015-0238.
Full textKagan, Pavel. "Big data sets in construction." E3S Web of Conferences 110 (2019): 02007. http://dx.doi.org/10.1051/e3sconf/201911002007.
Full textDissertations / Theses on the topic "Big text data"
Šoltýs, Matej. "Big Data v technológiách IBM." Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-193914.
Full textLeis, Machín Angela 1974. "Studying depression through big data analytics on Twitter." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671365.
Full textNhlabano, Valentine Velaphi. "Fast Data Analysis Methods For Social Media Data." Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/72546.
Full textDissertation (MSc)--University of Pretoria, 2019.
National Research Foundation (NRF) - Scarce skills
Computer Science
MSc
Unrestricted
Bischof, Jonathan Michael. "Interpretable and Scalable Bayesian Models for Advertising and Text." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11400.
Full textStatistics
Abrantes, Filipe André Catarino. "Processos e ferramentas de análise de Big Data : a análise de sentimento no twitter." Master's thesis, Instituto Superior de Economia e Gestão, 2017. http://hdl.handle.net/10400.5/15802.
Full textCom o aumento exponencial na produção de dados a nível mundial, torna-se crucial encontrar processos e ferramentas que permitam analisar este grande volume de dados (comumente denominado de Big Data), principalmente os não estruturados como é o caso dos dados produzidos em formato de texto. As empresas, hoje, tentam extrair valor destes dados, muitos deles gerados por clientes ou potenciais clientes, que lhes podem conferir vantagem competitiva. A dificuldade subsiste na forma como se analisa dados não estruturados, nomeadamente, os dados produzidos através das redes digitais, que são uma das grandes fontes de informação das organizações. Neste trabalho será enquadrada a problemática da estruturação e análise de Big Data, são apresentadas as diferentes abordagens para a resolução deste problema e testada uma das abordagens num bloco de dados selecionado. Optou-se pela abordagem de análise de sentimento, através de técnica de text mining, utilizando a linguagem R e texto partilhado na rede Twitter, relativo a quatro gigantes tecnológicas: Amazon, Apple, Google e Microsoft. Conclui-se, após o desenvolvimento e experimento do protótipo realizado neste projeto, que é possível efetuar análise de sentimento de tweets utilizando a ferramenta R, permitindo extrair informação de valor a partir de grandes blocos de dados.
Due to the exponential increase of global data, it becomes crucial to find processes and tools that make it possible to analyse this large volume (usually known as Big Data) of unstructured data, especially, the text format data. Nowadays, companies are trying to extract value from these data, mostly generated by customers or potential customers, which can assure a competitive leverage. The main difficulty is how to analyse unstructured data, in particular, data generated through digital networks, which are one of the biggest sources of information for organizations. During this project, the problem of Big Data structuring and analysis will be framed, will be presented the different approaches to solve this issue and one of the approaches will be tested in a selected data block. It was selected the sentiment analysis approach, using text mining technique, R language and text shared in Twitter, related to four technology giants: Amazon, Apple, Google and Microsoft. In conclusion, after the development and experimentation of the prototype carried out in this project, that it is possible to perform tweets sentiment analysis using the tool R, allowing to extract valuable information from large blocks of data.
info:eu-repo/semantics/publishedVersion
Hill, Geoffrey. "Sensemaking in Big Data: Conceptual and Empirical Approaches to Actionable Knowledge Generation from Unstructured Text Streams." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1433597354.
Full textChennen, Kirsley. "Maladies rares et "Big Data" : solutions bioinformatiques vers une analyse guidée par les connaissances : applications aux ciliopathies." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ076/document.
Full textOver the last decade, biomedical research and medical practice have been revolutionized by the post-genomic era and the emergence of Big Data in biology. The field of rare diseases, are characterized by scarcity from the patient to the domain knowledge. Nevertheless, rare diseases represent a real interest as the fundamental knowledge accumulated as well as the developed therapeutic solutions can also benefit to common underlying disorders. This thesis focuses on the development of new bioinformatics solutions, integrating Big Data and Big Data associated approaches to improve the study of rare diseases. In particular, my work resulted in (i) the creation of PubAthena, a tool for the recommendation of relevant literature updates, (ii) the development of a tool for the analysis of exome datasets, VarScrut, which combines multi-level knowledge to improve the resolution rate
Soen, Kelvin, and Bo Yin. "Customer Behaviour Analysis of E-commerce : What information can we get from customers' reviews through big data analysis." Thesis, KTH, Entreprenörskap och Innovation, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254194.
Full textEntrepreneurship & Innovation Management
Lindén, Johannes. "Huvudtitel: Understand and Utilise Unformatted Text Documents by Natural Language Processing algorithms." Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-31043.
Full textSavalli, Antonino. "Tecniche analitiche per “Open Data”." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17476/.
Full textBooks on the topic "Big text data"
Jo, Taeho. Text Mining: Concepts, Implementation, and Big Data Challenge (Studies in Big Data). Springer, 2018.
Find full textJo, Taeho. Text Mining: Concepts, Implementation, and Big Data Challenge. Springer, 2019.
Find full textStruhl, Steven. Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence. Kogan Page, 2016.
Find full textPractical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence. Kogan Page, 2015.
Find full textZaydman, Mikhail. Tweeting About Mental Health: Big Data Text Analysis of Twitter for Public Policy. RAND Corporation, 2017. http://dx.doi.org/10.7249/rgsd391.
Full textDeep Text: Using Text Analytics to Conquer Information Overload, Get Real Value from Social Media, and Add Bigger Text to Big Data. Information Today Inc, 2016.
Find full textBrayne, Sarah. Predict and Surveil. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190684099.001.0001.
Full textJockers, Matthew L. Theme. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0008.
Full textMorin, Jean-Frédéric, Christian Olsson, and Ece Özlem Atikcan, eds. Research Methods in the Social Sciences: An A-Z of key concepts. Oxford University Press, 2021. http://dx.doi.org/10.1093/hepl/9780198850298.001.0001.
Full textJockers, Matthew L. Revolution. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0001.
Full textBook chapters on the topic "Big text data"
Ye, Zhonglin, Haixing Zhao, Ke Zhang, Yu Zhu, and Yuzhi Xiao. "Text-Associated Max-Margin DeepWalk." In Big Data, 301–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2922-7_21.
Full textJo, Taeho. "Text Summarization." In Studies in Big Data, 271–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_13.
Full textJo, Taeho. "Text Segmentation." In Studies in Big Data, 295–317. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_14.
Full textJo, Taeho. "Text Indexing." In Studies in Big Data, 19–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_2.
Full textJo, Taeho. "Text Encoding." In Studies in Big Data, 41–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_3.
Full textJo, Taeho. "Text Association." In Studies in Big Data, 59–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_4.
Full textAswin, T. S., Rahul Ignatius, and Mathangi Ramachandran. "Integration of Text Classification Model with Speech to Text System." In Big Data Analytics, 103–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72413-3_7.
Full textJo, Taeho. "Text Clustering: Approaches." In Studies in Big Data, 203–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_10.
Full textJo, Taeho. "Text Clustering: Implementation." In Studies in Big Data, 225–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_11.
Full textJo, Taeho. "Text Clustering: Evaluation." In Studies in Big Data, 249–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_12.
Full textConference papers on the topic "Big text data"
Lee, Song-Eun, Kang-Min Kim, Woo-Jong Ryu, Jemin Park, and SangKeun Lee. "From Text Classification to Keyphrase Extraction for Short Text." In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006409.
Full textBuchler, Marco, Greta Franzini, Emily Franzini, and Maria Moritz. "Scaling historical text re-use." In 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014. http://dx.doi.org/10.1109/bigdata.2014.7004449.
Full textBlanke, Tobias, and Jon Wilson. "Identifying epochs in text archives." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258172.
Full textRichardet, Renaud, Jean-Cedric Chappelier, Shreejoy Tripathy, and Sean Hill. "Agile text mining with Sherlok." In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363910.
Full textVandierendonck, Hans, Karen Murphy, Mahwish Arif, and Dimitrios S. Nikolopoulos. "HPTA: High-performance text analytics." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840632.
Full textGe, Lihao, and Teng-Sheng Moh. "Improving text classification with word embedding." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258123.
Full textLulli, Alessandro, Thibault Debatty, Matteo Dell'Amico, Pietro Michiardi, and Laura Ricci. "Scalable k-NN based text clustering." In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363845.
Full textSong, Xiaoli, XiaoTong Wang, and Xiaohua Hu. "Semantic pattern mining for text mining." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840600.
Full textBingmann, Timo, Simon Gog, and Florian Kurpicz. "Scalable Construction of Text Indexes with Thrill." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622171.
Full textAlzhrani, Khudran, Ethan M. Rudd, C. Edward Chow, and Terrance E. Boult. "Automated big security text pruning and classification." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7841028.
Full textReports on the topic "Big text data"
Currie, Janet, Henrik Kleven, and Esmée Zwiers. Technology and Big Data Are Changing Economics: Mining Text to Track Methods. Cambridge, MA: National Bureau of Economic Research, January 2020. http://dx.doi.org/10.3386/w26715.
Full textDoucet, Rachel A., Deyan M. Dontchev, Javon S. Burden, and Thomas L. Skoff. Big Data Analytics Test Bed. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada589903.
Full textCerdeira, Pablo, Marcus Mentzingen de Mendonça, and Urszula Gabriela Lagowska. Políticas públicas orientadas por dados: Os caminhos possíveis para governos locais. Edited by Mauricio Bouskela, Marcelo Facchina, and Hallel Elnir. Inter-American Development Bank, October 2020. http://dx.doi.org/10.18235/0002727.
Full textde Caritat, Patrice, Brent McInnes, and Stephen Rowins. Towards a heavy mineral map of the Australian continent: a feasibility study. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.031.
Full textHolland, Darren, and Nazmina Mahmoudzadeh. Foodborne Disease Estimates for the United Kingdom in 2018. Food Standards Agency, January 2020. http://dx.doi.org/10.46756/sci.fsa.squ824.
Full textTransfer of Air Force technical procurement bid set data to small businesses, using CALS and EDI: Test report. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/46712.
Full text