Academic literature on the topic 'Bifunctional Electrocatalyst'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bifunctional Electrocatalyst.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bifunctional Electrocatalyst"

1

Karuppiah, Chelladurai, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li, and Chun-Chen Yang. "Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis." Catalysts 11, no. 1 (January 7, 2021): 76. http://dx.doi.org/10.3390/catal11010076.

Full text
Abstract:
Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of energy storage/conversion devices. Spinel and perovskite transition metal oxides have been widely explored as efficient bifunctional electrocatalysts to replace the noble metals in fuel cell and metal-air batteries. In this work, we developed a bifunctional catalyst for oxygen reduction and oxygen evolution reaction (ORR/OER) study using the mechanochemical route coupling of cobalt oxide nano/microspheres and carbon black particles incorporated lanthanum manganite perovskite (LaMnO3@C-Co3O4) composite. It was synthesized through a simple and less-time consuming solid-state ball-milling method. The synthesized LaMnO3@C-Co3O4 composite was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction spectroscopy, and micro-Raman spectroscopy techniques. The electrocatalysis results showed excellent electrochemical activity towards ORR/OER kinetics using LaMnO3@C-Co3O4 catalyst, as compared with Pt/C, bare LaMnO3@C, and LaMnO3@C-RuO2 catalysts. The observed results suggested that the newly developed LaMnO3@C-Co3O4 electrocatalyst can be used as a potential candidate for air-cathodes in fuel cell and metal-air batteries.
APA, Harvard, Vancouver, ISO, and other styles
2

Karuppiah, Chelladurai, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li, and Chun-Chen Yang. "Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis." Catalysts 11, no. 1 (January 7, 2021): 76. http://dx.doi.org/10.3390/catal11010076.

Full text
Abstract:
Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of energy storage/conversion devices. Spinel and perovskite transition metal oxides have been widely explored as efficient bifunctional electrocatalysts to replace the noble metals in fuel cell and metal-air batteries. In this work, we developed a bifunctional catalyst for oxygen reduction and oxygen evolution reaction (ORR/OER) study using the mechanochemical route coupling of cobalt oxide nano/microspheres and carbon black particles incorporated lanthanum manganite perovskite (LaMnO3@C-Co3O4) composite. It was synthesized through a simple and less-time consuming solid-state ball-milling method. The synthesized LaMnO3@C-Co3O4 composite was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction spectroscopy, and micro-Raman spectroscopy techniques. The electrocatalysis results showed excellent electrochemical activity towards ORR/OER kinetics using LaMnO3@C-Co3O4 catalyst, as compared with Pt/C, bare LaMnO3@C, and LaMnO3@C-RuO2 catalysts. The observed results suggested that the newly developed LaMnO3@C-Co3O4 electrocatalyst can be used as a potential candidate for air-cathodes in fuel cell and metal-air batteries.
APA, Harvard, Vancouver, ISO, and other styles
3

Madan, Chetna, and Aditi Halder. "Nonprecious Multi-Principal Metal Systems As the Air Electrode for a Solid-State Rechargeable Zinc-Air Battery." ECS Meeting Abstracts MA2022-02, no. 64 (October 9, 2022): 2327. http://dx.doi.org/10.1149/ma2022-02642327mtgabs.

Full text
Abstract:
Zinc-air battery technology is gaining recognition as a promising energy storage device to be used in portable electronics and electric vehicles. Despite possessing high theoretical energy density, environmental and operational safety, and easy accessibility of zinc reservoirs, the successful commercialization of zinc-air batteries suffers due to the poor oxygen electrocatalysis kinetics at the air cathode. The kinetically inept oxygen reduction and oxygen evolution reactions at the cathode lead to a large overpotential barrier and poor charge-discharge cyclic performance of the rechargeable zinc-air battery. This work demonstrates designing a multi-principal metal bifunctional electrocatalyst that is directly deposited on conductive, porous, and flexible substrates to eliminate the necessity of polymeric binders. The flexible bifunctional oxygen electrocatalyst used for the cathode of solid-state ZAB is assembled with gel polymer electrolyte and zinc anode giving excellent charge-discharge cyclic stability and constant discharge voltage (close to 1.65 V). These multi-principal metal electrocatalysts constituting quasi-equimolar concentration, provide numerous combinations of surface functionality, multiple adsorption sites, and electronic environments thus enabling better optimization of the catalytic performance.
APA, Harvard, Vancouver, ISO, and other styles
4

Gaolatlhe, Lesego, Augustus Kelechi Lebechi, Aderemi Bashiru Haruna, Thapelo Prince Mofokeng, Patrick Vaati Mwonga, and Kenneth Ikechukwu Ozoemena. "High Entropy Spinel Oxide As a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery." ECS Meeting Abstracts MA2022-02, no. 7 (October 9, 2022): 2419. http://dx.doi.org/10.1149/ma2022-0272419mtgabs.

Full text
Abstract:
Rechargeable zinc-air battery (RZAB) represents one of the ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, environmentally benign, and excellent potential for affordable applications in resource-limited countries, ranging from residential and industrial electricity supply, transport (e.g., electric vehicles) to mobile and consumer electronics markets. RZABs possess high theoretical specific energy density of 1086 Wh/kg, which is 5 times greater than that of the conventional lithium-ion battery (LIB). The key challenge that conspires against the widespread commercialization of RZAB is the sluggish oxygen reaction kinetics that impedes reversibility of the system. Thus, it has become quite critical to develop low-cost and high-performance bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) [1,2]. High entropy materials (HEMs) have emerged as electrocatalysts for ORR and OER. HEMs contain five or more metals in equal proportions. Their unique conformational entropy and physico-chemical properties (including lattice distortion, synergistic effects amongst the different metals, and rich defect chemistries) promise to improve the kinetics of ORR / OER and electrochemical cycling stability. In this work, the high entropy spinel oxide, (CoCuFeMnNi)3O4 supported on conductive carbon has been synthesized and characterised using XRD, XPS, HRTEM, SEM and others. Preliminary electrochemistry shows improved ORR/OER kinetics. This presentation will discuss the performance of the initial lab-based RZAB using this electrocatalyst. References AB Haruna and KI Ozoemena, Manganese-based bifunctional electrocatalysts for zinc-air batteries, Opin. Electrochem. 2020, 21, 219-224 AK Ipadeola, AB Haruna, L Gaolatlhe, AK Lebechi, J Meng, QQ Pang, K Eid, AM Abdullah, and KI Ozoemena, Efforts at Enhancing Bifunctional Electrocatalysis and Related Events for Rechargeable Zinc-Air Batteries; ChemElectroChem 2021, 8, 3998-4018
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Tian, Bikun Zhang, Qiong Peng, Jian Zhou, and Zhimei Sun. "Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts." Journal of Materials Chemistry A 9, no. 1 (2021): 433–41. http://dx.doi.org/10.1039/d0ta08630d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qin, Xupeng, Oluwafunmilola Ola, Jianyong Zhao, Zanhe Yang, Santosh K. Tiwari, Nannan Wang, and Yanqiu Zhu. "Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction." Nanomaterials 12, no. 11 (May 25, 2022): 1806. http://dx.doi.org/10.3390/nano12111806.

Full text
Abstract:
Hydrogen is regarded as a key renewable energy source to meet future energy demands. Moreover, graphene and its derivatives have many advantages, including high electronic conductivity, controllable morphology, and eco-friendliness, etc., which show great promise for electrocatalytic splitting of water to produce hydrogen. This review article highlights recent advances in the synthesis and the applications of graphene-based supported electrocatalysts in hydrogen evolution reaction (HER). Herein, powder-based and self-supporting three-dimensional (3D) electrocatalysts with doped or undoped heteroatom graphene are highlighted. Quantum dot catalysts such as carbon quantum dots, graphene quantum dots, and fullerenes are also included. Different strategies to tune and improve the structural properties and performance of HER electrocatalysts by defect engineering through synthetic approaches are discussed. The relationship between each graphene-based HER electrocatalyst is highlighted. Apart from HER electrocatalysis, the latest advances in water electrolysis by bifunctional oxygen evolution reaction (OER) and HER performed by multi-doped graphene-based electrocatalysts are also considered. This comprehensive review identifies rational strategies to direct the design and synthesis of high-performance graphene-based electrocatalysts for green and sustainable applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Harish, McKenzie Marley Hines, Shatadru Chakravarty, and Manashi Nath. "Multi-Walled Carbon Nanotube Supported Manganese Selenide As Highly Active Bifunctional OER and ORR Electrocatalyst." ECS Meeting Abstracts MA2022-01, no. 34 (July 7, 2022): 1376. http://dx.doi.org/10.1149/ma2022-01341376mtgabs.

Full text
Abstract:
Transition metal selenides have attracted intensive interest as cost-effective electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) because of the continuous thrust in sustainable energy conversion. In this article a Mn-based bifunctional electrocatalyst, MnSe has been identified which shows efficient OER and ORR activity in alkaline medium. The catalytic activity could be further enhanced by using multiwalled carbon nanotubes (MWCNT) asadditives which increases the charge transfer and electronic conductivity of the catalyst composite. This MnSe@MWCNT catalyst composite exhibits a very low overpotential of 210 mV at 50 mA cm-2 when deposited on Ni foam, which outperforms state-of-the-art RuO2 as well as other oxide and Mn-based electrocatalysts. Furthermore, the composite’s facile OER kinetics was evidenced by its small Tafel slope of 54.76 mV dec–1 and low charge transfer resistance, indicating quick transport of the reactant species. The MnSe@MWCNT also exhibited efficient electrocatalytic activity for ORR with a Eonset of 0.94 V, which is among the best reported till date for chalcogenide based ORR electrocatalysts. More importantly, this MnSe-based ORR electrocatalyst exhibits high degree of methanol tolerance, showing no degradation of catalyst performance in presence of copious quantities of methanol, thereby out-performing state-of-the-art Pt electrocatalyst. The catalyst compositie also exhibited exceptional functional and compositional stability for OER and ORR after prolonged period of continuous operation in alkaline medium. The surface Raman analysis after OER revealed the retention of manganese selenide surface with evidence of Mn-oxo coordination confirming the formation of mixed anionic (oxy)selenide as the active surface for OER. Such efficient bifunctional OER and ORR activity makes this MnSe based catalyst attractive for overall electrolysis in regenerative as well as direct methanol fuel cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Jeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, Daehyeon Ko, HyukSu Han, Nuri Oh, Sunghwan Yeo, Chisung Ahn, and Sungwook Mhin. "CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions." Nanomaterials 12, no. 6 (March 16, 2022): 983. http://dx.doi.org/10.3390/nano12060983.

Full text
Abstract:
Exploring bifunctional electrocatalysts to lower the activation energy barriers for sluggish electrochemical reactions for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of great importance in achieving lower energy consumption and higher conversion efficiency for future energy conversion and storage system. Despite the excellent performance of precious metal-based electrocatalysts for OER and ORR, their high cost and scarcity hamper their large-scale industrial application. As alternatives to precious metal-based electrocatalysts, the development of earth-abundant and efficient catalysts with excellent electrocatalytic performance in both the OER and the ORR is urgently required. Herein, we report a core–shell CoFeS2@CoS2 heterostructure entangled with carbon nanotubes as an efficient bifunctional electrocatalyst for both the OER and the ORR. The CoFeS2@CoS2 nanocubes entangled with carbon nanotubes show superior electrochemical performance for both the OER and the ORR: a potential of 1.5 V (vs. RHE) at a current density of 10 mA cm−2 for the OER in alkaline medium and an onset potential of 0.976 V for the ORR. This work suggests a processing methodology for the development of the core–shell heterostructures with enhanced bifunctional performance for both the OER and the ORR.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Chengcheng, Ziheng Zheng, Zian Chen, Xinlei Luo, Bingxue Hou, Mortaza Gholizadeh, Xiang Gao, Xincan Fan, and Zanxiong Tan. "Enhancement on PrBa0.5Sr0.5Co1.5Fe0.5O5 Electrocatalyst Performance in the Application of Zn-Air Battery." Catalysts 12, no. 7 (July 20, 2022): 800. http://dx.doi.org/10.3390/catal12070800.

Full text
Abstract:
Due to the insufficient stability and expensive price of commercial precious metal catalysts like Pt/C and IrO2, it is critical to study efficiently, stable oxygen reduction reaction as well as oxygen evolution reaction (ORR/OER) electrocatalysts of rechargeable Zn-air batteries. PrBa0.5Sr0.5Co1.5Fe0.5O5 (PBSCF) double perovskite was adopted due to its flexible electronic structure as well as higher electro catalytic activity. In this study, PBSCF was prepared by the citrate-EDTA method and the optimized amount of PBSCF-Pt/C composite was used as a potential ORR/OER bifunctional electrocatalyst in 0.1 M KOH. The optimized composite exhibited excellent OER intrinsic activity with an onset potential of 1.6 V and Tafel slope of 76 mV/dec under O2-saturated 0.1 M KOH. It also exhibited relatively competitive ORR activity with an onset potential of 0.9 V and half-wave potential of 0.78 V. Additionally, Zn–air battery with PBSCF composite catalyst showed relatively good stability. All these results illustrate that PBSCF-Pt/C composite is a promising bifunctional electrocatalyst for rechargeable Zn-air batteries.
APA, Harvard, Vancouver, ISO, and other styles
10

Liang, Yunxia, Qiaojuan Gong, Xiaoling Sun, Nengneng Xu, Pengni Gong, and Jinli Qiao. "Fabrication of CoMN2O4 loaded nitrogen-doped graphene as bifunctional electrocatalyst for rechargeable zinc-air batteries." Functional Materials Letters 13, no. 08 (November 2020): 2051046. http://dx.doi.org/10.1142/s1793604720510467.

Full text
Abstract:
Designing durable and low-cost electrocatalysts for zinc-air batteries is critical, which plays an essential role in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this paper, the CoMn2O4/N-RGO bifunctional electrocatalyst was synthesized by a facile hydrothermal method. The electrocatalytic performance was tested toward ORR and OER under alkaline condition (0.1[Formula: see text]M KOH). The XRD, SEM and other characterization analyses were used to investigate the physicochemical properties of materials. The results showed that the electrochemical activity of CoMn2O4/N-RGO showed high power density (354[Formula: see text]mW[Formula: see text]cm[Formula: see text], small charge/discharge voltage drop (0.70[Formula: see text]V) and excellent stability cycle (200[Formula: see text]h), which are superior to the noble metal Pt/C+IrO2 electrocatalyst (the voltage drop: 0.60[Formula: see text]V at initial and 0.85[Formula: see text]V after 13[Formula: see text]h). This work provided a new method for developing the bifunctional material in zinc-air batteries.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bifunctional Electrocatalyst"

1

Miyahara, Yuto. "Studies on Bifunctional Oxygen Electrocatalysts with Perovskite Structures." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Zhiyuan Verfasser], Rüdiger-A. [Akademischer Betreuer] [Eichel, and Marcel [Akademischer Betreuer] Liauw. "Oxygen reduction reaction and oxygen evolution reaction mechanisms investigation of the non-noble bifunctional electrocatalysts in alkaline electrolyte / Zhiyuan Wang ; Rüdiger-Albert Eichel, Marcel Liauw." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1169915191/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhiyuan [Verfasser], Rüdiger-A. [Akademischer Betreuer] Eichel, and Marcel [Akademischer Betreuer] Liauw. "Oxygen reduction reaction and oxygen evolution reaction mechanisms investigation of the non-noble bifunctional electrocatalysts in alkaline electrolyte / Zhiyuan Wang ; Rüdiger-Albert Eichel, Marcel Liauw." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1169915191/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sultana, Ummul Khair. "Electrochemical synthesis of water splitting nanomaterials." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/126972/1/Ummul%20Khair_Sultana_Thesis.pdf.

Full text
Abstract:
This project was a step forward in electrochemically synthesizing nanomaterials for the water splitting reaction which directly produces hydrogen and oxygen. The thesis investigated the performances of newly developed nanomaterials for the energetically demanding water splitting reaction. In order to understand the reaction mechanism, thorough materials characterization was carried out to identify structure-activity relationships. This study also answers some fundamental questions such as "bifunctionality" in the field of water electrolysis. It also presents the modification of a readily available and cheap material, stainless steel, into an efficient water splitting catalyst that operates under industrial conditions.
APA, Harvard, Vancouver, ISO, and other styles
5

Nandan, Ravi. "Rational Designing of Bifunctional Electrocatalysts for Electrochemical Energy Conversion and Storage Devices." Thesis, 2017. https://etd.iisc.ac.in/handle/2005/4302.

Full text
Abstract:
Depleting fossil fuels, increasing environmental concerned and looming energy crisis motivates researcher around the globe to explore some of the possible eco-friendly energy alternative resources. Among various available selections, electrochemical energy conversion and storage devices have the potential to serve the portable electronics to automobile sectors. In this regard, direct alkaline methanol fuel cell (DAMFC) is very promising. The efficiency of DAMFC mainly depends upon methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) that take place at anode and cathode of the device, respectively. However, both the reactions are complex and sluggish in nature due to multiple electron transfer involvement and various intermediate species formation during the course of reactions and require catalysts to drive these reactions at desire rates. Pt is known as the best mono metallic catalysts for both MOR and ORR, however, it suffers from catalytic poising and various degradation pathways like dissolution, leaching, agglomeration, Ostwald ripening, etc. Therefore, it is of enormous importance to enhance the operational stability of Pt based electro catalysts by alloying it with other available system or to design Pt-free electrocatalysts without trading off between the activity and stability. Metal-air battery is an energy storage device, relies on ORR and oxygen evolution reaction (OER) which requires efficient and robust electrocatalysts. The literature survey suggests that the combined over-potentials of ORR and OER cause a loss of ~ 70 % in the efficiency of metal-air batteries. Moreover, the commercially available state-of-the-art electro catalysts like Pt-C (for ORR) and RuO2/IrO2 (for OER), in addition to their high cost, are known for their mono-functionality only, and so metal-air battery system requires two kind of electrocatalysts to perform ORR/OER during discharging/charging. Therefore, it is of immense importance to develop commercially viable, robust and bifunctional electrocatalysts to serve the metal-air battery system. The present thesis presents the rational designing of bifunctional, robust and commercially viable electrocatalysts for electrochemical energy conversion and storage devices like DAMFC, metal-air batteries, water electrolyser and their practical realizations.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yulong. "Carbon-based Bifunctional Electrocatalysts for Metal-air Battery Applications." Thesis, 2013. http://hdl.handle.net/10012/7531.

Full text
Abstract:
The ever-increasing energy consumption and the environmental issues from the excessive rely on fossil fuels have triggered intensive research on the next generation power sources. Metal-air batteries, as one of the most promising technologies emerged, have attracted enormous attention due to its low cost, environmental benignity and high energy density. Among all types of metal-air batteries, Zn-air batteries in particular have tremendous potential for use as alternative energy storage primarily by the low-cost, abundance, low equilibrium potential, environmental benignity, a flat discharge voltage and a longer shell life. However, there are still issues in pertinent to the anode, electrolyte and cathode that remain to be overcome. In particular, the electrocatalyst at the cathode of a metal-air battery which catalyzes the electrochemistry reactions during charge and discharge of the cell plays the most crucial role for the successful commercialization of the metal-air technology. A series of studies from the carbon nanofibres to spinel cobalt oxide and perovskite lanthanum nickelate was conducted to explore the ORR/OER catalytic properties of those materials which lead to further investigations of the non-precious metal oxide/carbon hybrids as bifunctional catalysts. Introducing ORR active species such as nitrogen, sulfur, boron and phosphorus into high surface area carbon has been an effective strategy to fabricate high catalytic activity ORR electrocatalyst. Carbon nanofibre is an abundant, low cost and conductive material that has tremendous potential as ORR catalyst, especially via KOH activation and nitrogen-doping post-treatments. These two post-treatment methods serve as simplistic methodologies to enhance the carbon surface area and ORR catalytic activity of the pristine carbon nanofibres, respectively. The activated and nitrogen-doped carbon nanofibres demonstrated 26% of improved half-wave potential and 17% of increased limiting current density as a comparison to the pristine carbon nanofibre via RDE testing in alkaline electrolyte. To realize the catalytic activity of activated and nitrogen-doped carbon nanofibres in a more practical condition, they are further evaluated in Zn-air batteries. Polarization curves retrieved from Zn-air cell testing showed 75% higher voltage obtained by activated and nitrogen-doped carbon nanofibres than pristine carbon nanofibres at 70mAcm-2 current density. Structured oxides such as spinels and perovskites have been widely reported as ORR and OER catalyst in metal-air batteries. It is widely known that the properties of nanostructures are closely pertinent to their morphologies. The initial performance and durability of cubic Co3O4 synthesized from Feng et al and LaNiO3 from modified sol-gel method are tested in RDE system. After the durability testing, the ORR onset potential and limiting current density of cubic Co3O4 has decreased by 50% and 25%, respectively, whereas the OER limiting current density dropped significantly from ~15mAcm2 to almost zero current density. LaNiO3 with different particle sizes synthesized from modified sol-gel method was prepared and evaluated in RDE system. A particle size related performance can be clearly seen from the RDE results. The ORR limiting current of the lanthanum nickelate with smaller particle size (LNO-1) is higher than that of lanthanum nickelate with larger particle size (LNO-0) by 40% and the OER limiting current of LNO-1 is almost tripled that of LNO-0. With the previous experience on carbon material and structured oxides, two hybrid bifunctional catalysts were prepared and their performance was evaluated. cCo3O4/ExNG was made by physically mixing of cCo3O4 with ExNG with 1to 1 ratio. The hybrid showed enhanced bifunctional catalytic activities compared to each of its individual performance. Based on the voltammetry results, a significant positive shift (+0.16V) in ORR half-wave potential and tripled limiting current were observed in the case of the hybrid compared to the pure cobalt oxide. By combing cCo3O4 and ExNG, the OER limiting current of the hybrid exceeds that of cCo3O4 by ca. 33% and four-fold that of the ExNG. The kinetic current density at -0.4V for cCo3O4/ExNG is 15.9 mAcm-2 which is roughly 4 times the kinetic current density of the ExNG (3.8 mAcm-2) and over 10 times greater than that of cCo3O4 (1.1 mAcm-2). Electrochemical impedance spectroscopy showed that the charge transfer resistance of the hybrid is ca. one third of cCo3O4 and roughly only one half of ExNG which suggests a more efficient electrocatalysis of the hybrid on the air electrode than the other two. Mixing structured oxides with carbon material provides a simple method of fabricating bifunctional catalysts, however the interactions between those two materials are quite limited. In-situ synthesis of cCo3O4/MWCNT hybrid by chemically attaching cCo3O4to the acid-functionalized MWCNT is able to provide strong interactions between its components. Through RDE testing, the ORR activity of cCo3O4/MWCNT outperformed its individual component showing the highest onset potential (-0.15V) and current density (-2.91 mAcm-2 at -0.4V) with ~4 electron transfer pathway. Moreover, the MWCNT and cCo3O4 suffered from significant OER degradation after cycling (92% and 94%, respectively) whereas the hybrid material demonstrated an outstanding stability with only 15% of performance decrease, which is also far more superior to the physical mixture (30% higher current density). Among all the catalyst studied, cCo3O4/MWCNT has the highest performance and durability. The excellent performance of the hybrid warrants further in-depth research of non-precious metal oxide/carbon hybrids and the information presented in this thesis will create afoundation for future investigation towards high performance and durability bifunctional electrocatalysts for metal-air battery applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Chuah, Xui-Fang, and 蔡慧芳. "Anodization derived Ni-Fe Oxides/Ni Foam Composites as Cost-Effective Stable High Efficiency Bifunctional Electrocatalysts for Electrolytic Water Splitting." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/pn5673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chien-JuiLo and 羅建睿. "Fabrication of Co-based metal-organic frameworks/ N-doped reduced graphene oxide nanocomposites as bifunctional electrocatalysts for Zn-air batteries." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/cxkg4p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chala, Soressa Abera, and Soressa. "Developing Advanced Bifunctional Oxygen Electrocatalysts Using Ni-based Layered Double Hydroxide: Investigating the Active Phases and Mechanisms for Oxygen Evolution and Reduction Reaction." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/fbd6tj.

Full text
Abstract:
博士
國立臺灣科技大學
化學工程系
107
Developing advanced nanomaterials and catalytically active materials is a substantial area of research to meet the growing global energy demand, given the central role that electrocatalytic reactions play in green sustainable energy generation, storage and conversion. However, development of catalytically active, operationally stable and inexpensive materials for the bifunctional oxygen evolution (OER) and reduction reaction (ORR) is one of the grand challenges in renewable energy storage and conversion technologies such as metal-air batteries and fuel cells due to the sluggish reaction kinetics of OER and ORR even when noble metal catalysts such as platinum with carbon support (Pt/C for ORR), ruthenium oxide (RuO2), and iridium oxide (IrO2) toward OER are applied. Consequently, a critical feature is to develop robust materials that have outstanding catalytic activity, cost-effective and promising durability for the more difficult ORR/OER process. Currently, transition metal hydroxides/oxides and Ni-based layered double hydroxides (LDHs) electrocatalysts are an interesting alternative to the novel metal-based electrodes in alkaline solutions due to their low cost, abundance, proven ability to catalyze the OER/ORR and operationally stable in high pH values of the electrolytes. To accelerate the development of Ni-based LDHs electrocatalysts with improved catalytic activities for the OER/ORR, it is essential to increase the understanding of the mechanisms, active sites at a fundamental level, and surface properties at relevant potentials during the OER and ORR operation and remains of great importance to the design of new electrocatalysts. This dissertation aims to develop endurable, inexpensive, and efficient bifunctional electrocatalysts for the OER and ORR operated under alkaline conditions at room temperature; investigate the mechanisms, active sites, and surface properties during the OER process using in situ spectro-electrochemical techniques. Accordingly, new classes of Ni-based LDHs electrocatalysts (NiRu-LDHs and NiMn-LDHs nanosheets) were developed and integrated with conductive supports (silver nanoparticles (Ag NPs) and silver nanowires (Ag NWs)) using decoration action and core-shelling strategies as efficient bifunctional electrocatalysts for OER and ORR. This approaches will have great benefits to design highly active and stable bifunctional electrocatalysts for the next-generation reversible oxygen electrodes involve the combination of less-expensive single-function OER and ORR electrocatalysts into one hybrid system. The first approach (Chapter 4) investigated in this dissertation “Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with conductive silver nanoparticles for oxygen evolution and reduction reaction”. This work focuses on the development of new electrocatalyst; NiRu-LDHs decorated with Ag NPs (Ag NP/NiRu-LDHs) as efficient and stable bifunctional electrocatalyst toward the OER and ORR and intended to distinguish the site activity and site population associated to the overall catalytic activity. The higher ORR activity of Ag NP/NiRu-LDHs was mainly attributed to the increased Ag site activity and accessible Ag site populations. The increased Ag site activity is extensively contributed from the charge polarization occurring on the Ag sites responsible for weakening the adsorption of OH on the Ag sites and the presence of LDHs helps to remove the adsorbed OH from the surface of Ag. Furthermore, the decoration strategy enhances the dispersion of Ag and considerably increased the accessible site populations. These strong synergetic effects between Ag and LDHs significantly enhanced the catalytic activity of the ORR. Interestingly, engineering multiple vacancies (metal and oxygen vacancies) which causes the structural disorder and defects through the introduction of Ru and decorating NiRu-LDHs nanosheets with conductive Ag NPs (improve the intrinsically poor conductivity of LDHs) tunes the intrinsic properties of the Ni sites which in turn enhances the OER site activity and site populations. The strong synergetic effects of silver nanoparticles and metal LDHs engineer the active site activity and populations on both Ag and Ni in the bifunctional electrocatalysts for ORR and OER, respectively. The as-prepared Ag NP/NiRu-LDH shows substantially marvelous catalytic activity toward both OER and ORR features with low onset overpotential of 0.21 V and -0.27 V, respectively, with 0.76 V overvoltage difference between OER and ORR with excellent durability, demonstrating the preeminent bifunctional electrocatalyst reported to date. This work provides a new strategy to improve the intrinsic properties of LDHs and engineering multivacancies to enhance the site activity and populations associated with the overall bifunctional activity of the electrocatalysts. The second study (Chapter 5) aims to develop “hierarchical 3D NiMn-layered double hydroxide (NiMn-LDHs) shells grown on conductive silver nanowires (Ag NWs) cores as efficient ORR/OER bifunctional electrocatalysts”. As a result, the hierarchical 3D architectured Ag NW@NiMn-LDHs catalysts exhibit superb OER/ORR activities in alkaline condition. The outstanding bifunctional activities of Ag NW@NiMn-LDHs are essentially attributed to the synergistic contributions from the hierarchical 3D open-pores structure of the LDHs shells, improved electrical conductivity and small thickness of the LDHs shells associated to more accessible site populations. Moreover, the charge transferring effect between Ag cores and metals of LDHs shells, the formation of less coordinated Ni and Mn sites causes defective and distorted sites that strongly tune the intrinsic activity of the site activity and hence attaining enhanced catalytic activities. Thus, Ag NW@NiMn-LDH hybrids exhibit 0.75 V overvoltage difference between ORR and OER with excellent durability for 30 h, demonstrating the distinguished bifunctional electrocatalyst reported to date. Thus, the concept of the hierarchical 3D architecture of Ag NW@NiMn-LDHs considerably advances comprehensive research towards water electrolysis and oxygen electrocatalyst. The third approach (chapter 6) of this dissertation is to investigate the mechanisms, probe the active sites and surface properties of NiMn-LDHs and β-Ni(OH)2 electrocatalysts during the OER operation using in situ spectro-electrochemical techniques. Ni-based layered double hydroxides (LDHs) materials are highly active and cost-effective electrocatalysts that can be potentially used for efficient water oxidation process and extensively used toward sustainable energy generation. However, the mechanisms at a fundamental level, active phases and the processes occurring on the surface of Ni-based LDHs materials during the OER operation are not clearly known. Accordingly, the evidence from in situ Raman features provide that the Ni(OH)2 phases in both NiMn-LDHs and β-Ni(OH)2 get oxidized to NiOOH species as the electrode voltage increasing and NiOOH intermediate species deprotonated and get charged prior to the real water oxidation, suggesting that the formation of “active oxygen” species and hence acts as a precursors for the OER. We therefore propose that the identity of the “active oxygen” species is nickel superoxidic or peroxidic nature. The in situ XANES spectra provides the evidence that the Ni K-edge significantly shifted to higher energy upon the electrode potential increased, suggesting the redox transition of Ni(OH)2 in NiMn-LDHs to NiOOH upon anodization that constitutes the catalytic activity of OER active center. The in situ EXAFS spectra of Ni K-edge indicates that the intensity of both Ni−O (R =1.53 Å) and Ni−M (R =2.73 Å) coordination spheres gradually decreases as the applied electrode potentials increase prior to the OER whereas the formation of new peaks at 1.44 Å and 2.42 Å corresponding to the coordination sphere of Ni−O and Ni−M, suggesting the formation of new phases existing in different environment due to the redox transition of Ni(OH)2 to NiOOH occurs. The intensity of these peaks substantially increased as the voltage of electrode increased. However, the intensity and peak positions of Mn K-edge collected at different potentials are almost similar and remain unchanged, suggesting no transformation of Mn sites during the OER process. We therefore conclude that Ni constitutes the active center and evidently the active site for the OER whereas the introduction of Mn atom promotes synergistically the OER activity. We also present a systematic studies of guest anion effect on the number of active sites and site activity of NiMn-LDHs and Ni(OH)2 catalysts during the OER process using electrochemical, in situ spectro-electrochemical techniques and in situ XRD measurements, which in turn used to probe the active sites and structural change during the OER process. Evidently, the NiMn-LDHs exhibited incredible OER activity after guest anions (bromide and chloride) introduced and the OER activity gradually increased as the concentration of guest anions increased. These observations suggest that the active site activity originated from the less-stacking and plentiful exposed active edge sites due to the expansion of interlayer spaces of LDHs structure (confirmed by the in situ XRD measurement) promotes the OER activity. Unlike NiMn-LDHs, both the redox transition of Ni(OH)2/NiOOH and the OER activity of β-Ni(OH)2 catalyst is significantly affected after guest anions introduced and suppressed to higher overpotential. These results suggest that since β-Ni(OH)2 is structurally close-packed, the guest anions have only one possibility to interact with Ni(OH)2 and that is attacking the Ni sites which certainly accounts for the declined OER activity. In general, integrating LDHs with conductive Ag NPs and Ag NWs through decoration and core-shelling strategies engineers multiple vacancies which cause the structural disorder and defects essentially enhances bifunctional properties of the hybrids, conductivity, stability during OER and ORR operation. The discussed in situ spectro-electrochemical characterization of NiMn-LDHs catalysts with high OER activity demonstrates that the Ni sites constitute the active center and the presence of Mn atom promotes synergistically the OER activity. Although the recent studies are limited to investigate the active sites and surface properties of LDHs for oxygen electrocatalysis, these considerations are also anticipated to extend to other LDHs catalysts and electrochemical reactions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bifunctional Electrocatalyst"

1

Joseph, Singer, and United States. National Aeronautics and Space Administration., eds. A study of NAxPtO as an O electrode bifunctional electrocatalyst. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oxygen electrode bifunctional electrocatalyst NiCoO spinel. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

National Aeronautics and Space Administration (NASA) Staff. Oxygen Electrode Bifunctional Electrocatalyst Nico2o4 Spinel. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

National Aeronautics and Space Administration (NASA) Staff. Study of Na(x)Pt3O4 As an O2 Electrode Bifunctional Electrocatalyst. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Jiujun, Yan-Jie Wang, Rusheng Yuan, Anna Ignaszak, and David P. Wilkinson. Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Jiujun, Yan-Jie Wang, Rusheng Yuan, Anna Ignaszak, and David P. Wilkinson. Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Jiujun, Yan-Jie Wang, Rusheng Yuan, Anna Ignaszak, and David P. Wilkinson. Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries. CRC Press, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jiujun, Yan-Jie Wang, Rusheng Yuan, Anna Ignaszak, and David P. Wilkinson. Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Jiujun, Yan-Jie Wang, Rusheng Yuan, Anna Ignaszak, and David P. Wilkinson. Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bifunctional Electrocatalyst"

1

Yang, Yang. "Bifunctional Electrocatalysts for Overall Water Splitting." In Electrochemical Transformation of Renewable Compounds, 4–37. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429326783-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yan-Jie, Rusheng Yuan, Anna Ignaszak, David P. Wilkinson, and Jiujun Zhang. "Description of Bifunctional Electrocatalysts for Metal-Air Batteries." In Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries, 1–9. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170727-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yan-Jie, Rusheng Yuan, Anna Ignaszak, David P. Wilkinson, and Jiujun Zhang. "Carbon-Based Bifunctional Composite Electrocatalysts for Metal-Air Batteries." In Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries, 33–111. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170727-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Yan-Jie, Rusheng Yuan, Anna Ignaszak, David P. Wilkinson, and Jiujun Zhang. "Noncarbon-Based Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries." In Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries, 157–82. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170727-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yan-Jie, Rusheng Yuan, Anna Ignaszak, David P. Wilkinson, and Jiujun Zhang. "Reaction Mechanisms of Bifunctional Composite Electrocatalysts of Metal-Air Batteries." In Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries, 11–31. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170727-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Yan-Jie, Rusheng Yuan, Anna Ignaszak, David P. Wilkinson, and Jiujun Zhang. "Doped-Carbon Composited Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries." In Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries, 113–55. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170727-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yan-Jie, Rusheng Yuan, Anna Ignaszak, David P. Wilkinson, and Jiujun Zhang. "Performance Comparison and Optimization of Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries." In Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries, 183–218. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170727-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sadhasivam, T., and Ho-Young Jung. "Nanostructured bifunctional electrocatalyst support materials for unitized regenerative fuel cells." In Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, 69–103. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-819552-9.00003-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, D.-J., and Y. Y. J. Tong. "The Bifunctional Electrocatalysis of Carbon Monoxide Oxidation Reaction." In Encyclopedia of Interfacial Chemistry, 881–97. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-409547-2.13317-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Chunzhen, and Zhongfei Liu. "Bifunctional OER-ORR electrodes for metal-air batteries." In Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-air Batteries, 139–86. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-818496-7.00002-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bifunctional Electrocatalyst"

1

Chen, Guobao, Hongying Yang, Huamin Zhang, and Hexiang Zhong. "MnxIr1−xO2/C used as bifunctional electrocatalyst in alkaline medium." In 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Guobao, Hongying Yang, Huamin Zhang, and Hexiang Zhong. "MnxIr1−xO2/C used as bifunctional electrocatalyst in alkaline medium." In 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Lili, Helin Zhang, Wurigamula He, Qianli Ma, Wensheng Yu, Shuang Gao, Da Xu, Duanduan Yin, and Xiangting Dong. "Hierarchical NiFe layered double hydroxides: a bifunctional electrocatalyst for overall water splitting." In 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2021. http://dx.doi.org/10.1109/3m-nano49087.2021.9599799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mahbub, Muhammad Adib Abdillah, Anggraeni Mulyadewi, Celfi Gustine Adios, and Afriyanti Sumboja. "Sustainable chicken manure-derived carbon as a metal-free bifunctional electrocatalyst in Zn-air battery." In THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIAL AND TECHNOLOGY (ICAMT) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0106289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prabu, M., and S. Shanmugam. "NiCo2O4 - Graphene oxide hybrid as a bifunctional electrocatalyst for air breathing cathode material in metal air batteries." In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

GUO, Yao-fang, Ting LIU, and Ke-ning SUN. "Co3O4 NPs Embedded in N-doped Carbon Fibers as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions." In International Conference on Advanced Material Science and Engineeering (AMSE2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141612_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Wurigamula, Helin Zhang, Lili Wang, Wensheng Yu, Duanduan Yin, and Xiangting Dong. "Ni and WC nanoparticles co-embedded in carbon nanofibers as robust bifunctional electrocatalyst for oxygen and hydrogen evolution reactions." In 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2021. http://dx.doi.org/10.1109/3m-nano49087.2021.9599791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography