Journal articles on the topic 'Bidimensional blood flow imaging'

To see the other types of publications on this topic, follow the link: Bidimensional blood flow imaging.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bidimensional blood flow imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cloutier, Guy, Louis Allard, and Louis-Gilles Durand. "Characterization of Blood Flow Turbulence With Pulsed-Wave and Power Doppler Ultrasound Imaging." Journal of Biomechanical Engineering 118, no. 3 (August 1, 1996): 318–25. http://dx.doi.org/10.1115/1.2796013.

Full text
Abstract:
Blood flow turbulence downstream of a concentric 86 percent area reduction stenosis was characterized using absolute and relative Doppler spectral broadening measurements, relative Doppler velocity fluctuation, and Doppler backscattered power. Bidi-mensional mappings of each Doppler index were obtained using a 10 MHz pulsed-wave Doppler system. Calf red cells suspended in a saline solution were used to scatter ultrasound and were circulated in an in vitro steady flow loop model. Results showed that the absolute spectral broadening was not a good index of turbulence because it was strongly affected by the deceleration of the jet and by the shear layer between the jet and the recirculation zones. Relative Doppler spectral broadening (absolute broadening divided by the frequency shift), velocity fluctuation, and Doppler power indices provided consistent mapping of the centerline axial variation of turbulence evaluated by hot-film anemometry. The best agreement between the hot-film and Doppler ultrasound methods was however obtained with the Doppler back-scattered power. The most consistent bidimensional mapping of the flow characteristics downstream of the stenosis was also observed with the Doppler power index. The relative broadening and the velocity fluctuation produced artifacts in the shear layer and in the recirculation zones. Power Doppler imaging is a new emerging technique that may provide reliable in vivo characterization of blood flow turbulence.
APA, Harvard, Vancouver, ISO, and other styles
2

Souza, I. P., P. C. O. Pinto, N. G. D. Coelho, R. S. Prestes, R. C. S. Torres, and A. C. Nepomuceno. "Ultrasonographic findings of abdominal thrombosis in dogs." Arquivo Brasileiro de Medicina Veterinária e Zootecnia 74, no. 3 (June 2022): 412–18. http://dx.doi.org/10.1590/1678-4162-12383.

Full text
Abstract:
ABSTRACT This retrospective case series study describes the clinical and vascular ultrasound findings of 26 dogs diagnosed with abdominal thrombosis. Images were selected based on the detection of intravascular echogenic thrombus or the absence of vascular flow on color Doppler, confirmed by surgery or necropsy. Images were acquired using the Mylab 40 model, with linear and microconvex multifrequency probes. All the reports were evaluated along with the corresponding images by a veterinary diagnostic imaging radiologist. The ultrasonographic aspects evaluated were echogenicity (92.3%), anechogenicity (7.7%), vascularization (11.5%), mineralization (15.4%), and recanalization (7.7%) of the thrombosis. The vascular and hemodynamic findings were dilation of the affected vein (57.7%), total occlusion of blood flow (30.8%), presence of turbulent flow (65.38%), and visualization of smoke signal (blood flow detected as moving echogenic points in dynamic bidimensional mode) (11.5%). Neoplasms (19 cases) and nephropathies (13 cases) were the most common clinical conditions in the affected dogs. Eleven cases of vascular invasion due to adrenal neoplasms were identified. The results indicate that the vascular ultrasound examination is an important method for diagnosis, as 23 of the 26 cases did not show any clinical signs of thrombosis.
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshikawa, Hideki, and Takashi Azuma. "Blood Flow Imaging." Journal of the Acoustical Society of America 129, no. 1 (2011): 546. http://dx.doi.org/10.1121/1.3554819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chiao, Richard Y. "B‐mode blood flow (B‐Flow) imaging." Journal of the Acoustical Society of America 109, no. 5 (May 2001): 2360. http://dx.doi.org/10.1121/1.4744300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Uchibori, Takanobu. "Ultrasonic blood‐flow imaging apparatus." Journal of the Acoustical Society of America 88, no. 5 (November 1990): 2515–16. http://dx.doi.org/10.1121/1.399995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bradley, W. G., and V. Waluch. "Blood flow: magnetic resonance imaging." Radiology 154, no. 2 (February 1985): 443–50. http://dx.doi.org/10.1148/radiology.154.2.3966131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Namekawa, Kouroku. "Ultrasonic blood flow imaging apparatus." Journal of the Acoustical Society of America 85, no. 3 (March 1989): 1396. http://dx.doi.org/10.1121/1.397374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Itai, Y., and O. Matsui. "Blood flow and liver imaging." Radiology 202, no. 2 (February 1997): 306–14. http://dx.doi.org/10.1148/radiology.202.2.9015047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Redington, Rowland. "4516582 NMR blood flow imaging." Magnetic Resonance Imaging 4, no. 1 (January 1986): VI—VII. http://dx.doi.org/10.1016/0730-725x(86)91118-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lovstakken, L., S. Bjaerum, D. Martens, and H. Torp. "Blood flow imaging - a new real-time, flow imaging technique." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 53, no. 2 (February 2006): 289–99. http://dx.doi.org/10.1109/tuffc.2006.1593367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nakaji, Peter. "Laser Speckle Flow Imaging of Cerebral Blood Flow." World Neurosurgery 82, no. 6 (December 2014): e697-e698. http://dx.doi.org/10.1016/j.wneu.2014.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Alessio, Adam M., Erik Butterworth, James H. Caldwell, and James B. Bassingthwaighte. "Quantitative imaging of coronary blood flow." Nano Reviews 1, no. 1 (January 1, 2010): 5110. http://dx.doi.org/10.3402/nano.v1i0.5110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Imai, Hitoshi, Shiro Kobayashi, Makoto Sakakibara, Yoshihiro Nishimoto, Shigeru Watanabe, Yoshiaki Masuda, and Yoshiaki Inagaki. "-199-BLOOD FLOW IMAGING BY MRI." Japanese Circulation Journal 50, no. 6 (June 20, 1986): 517–18. http://dx.doi.org/10.1253/jcj.50.517_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Morgan, Steve, Barrie Hayes-Gill, and John Crowe. "CMOS Sensors for Imaging Blood Flow." Optics and Photonics News 21, no. 1 (January 1, 2010): 32. http://dx.doi.org/10.1364/opn.21.1.000032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Waluch, Victor. "Magnetic Resonance Imaging of Blood Flow." Seminars in Neurology 6, no. 01 (March 1986): 65–71. http://dx.doi.org/10.1055/s-2008-1041448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gould, K. Lance, and Nils P. Johnson. "Imaging Coronary Blood Flow in AS." Journal of the American College of Cardiology 67, no. 12 (March 2016): 1423–26. http://dx.doi.org/10.1016/j.jacc.2016.01.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

GORDON, I. "Cerebral blood flow imaging in paediatrics." Nuclear Medicine Communications 17, no. 12 (December 1996): 1021–29. http://dx.doi.org/10.1097/00006231-199612000-00004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Axel, Leon. "Magnetic resonance imaging of blood flow." Magnetic Resonance in Medicine 14, no. 2 (May 1990): 171. http://dx.doi.org/10.1002/mrm.1910140202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

HARRISON, MICHAEL R., MIKEL D. SMITH, PAUL A. GRAYBURN, O. I. LING KWAN, and ANTHONY N. DEMARIA. "Normal Blood Flow Patterns by Color Doppler Flow Imaging." Echocardiography 4, no. 6 (November 1987): 485–93. http://dx.doi.org/10.1111/j.1540-8175.1987.tb01362.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hennig, J., M. Mueri, P. Brunner, and H. Friedburg. "Quantification of blood flow using fast fourier flow imaging." Magnetic Resonance Imaging 5, no. 6 (January 1987): 545–46. http://dx.doi.org/10.1016/0730-725x(87)90421-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pollock, Bruce E. "Blood Flow Out Must Equal Blood Flow In." International Journal of Radiation Oncology*Biology*Physics 111, no. 4 (November 2021): 854. http://dx.doi.org/10.1016/j.ijrobp.2021.03.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shellock, FG. "Cutaneous blood flow changes during MR imaging." American Journal of Roentgenology 151, no. 5 (November 1988): 1059–60. http://dx.doi.org/10.2214/ajr.151.5.1059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wilcox, Ian, Peter J. Fletcher, and Brian P. Bailey. "Colour‐coded imaging of cardiac blood flow." Medical Journal of Australia 148, no. 6 (March 1988): 288–95. http://dx.doi.org/10.5694/j.1326-5377.1988.tb117837.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Coles, Jonathan P. "Imaging of cerebral blood flow and metabolism." Current Opinion in Anaesthesiology 19, no. 5 (October 2006): 473–80. http://dx.doi.org/10.1097/01.aco.0000245270.90377.00.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nayler, G. L., D. N. Firmin, and D. B. Longmore. "Blood Flow Imaging by Cine Magnetic Resonance." Journal of Computer Assisted Tomography 10, no. 5 (September 1986): 715–22. http://dx.doi.org/10.1097/00004728-198609000-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Namekawa, Koroku. "Ultrasonic blood flow imaging method and apparatus." Journal of the Acoustical Society of America 86, no. 3 (September 1989): 1211. http://dx.doi.org/10.1121/1.398029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Silverman, Ronald H., Raksha Urs, Jeffrey A. Ketterling, Billy Y. Yiu, and Alfred C. Yu. "Plane-wave imaging of ocular blood-flow." Journal of the Acoustical Society of America 146, no. 4 (October 2019): 2901. http://dx.doi.org/10.1121/1.5137064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Schmiesing, Daniel C. "Continuous display of cardiac blood flow imaging." Journal of the Acoustical Society of America 103, no. 3 (March 1998): 1252. http://dx.doi.org/10.1121/1.423229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

BURNS, PETER N., STEPHANIE R. WILSON, and DAVID HOPE SIMPSON. "Pulse Inversion Imaging of Liver Blood Flow." Investigative Radiology 35, no. 1 (January 2000): 58. http://dx.doi.org/10.1097/00004424-200001000-00007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kudo, Masatoshi. "Imaging Blood Flow Characteristics of Hepatocellular Carcinoma." Oncology 62, Suppl. 1 (2002): 48–56. http://dx.doi.org/10.1159/000048276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Li, Hangdao, Yao Li, Lu Yuan, Caihong Wu, Hongyang Lu, and Shanbao Tong. "Intraoperative cerebral blood flow imaging of rodents." Review of Scientific Instruments 85, no. 9 (September 2014): 094301. http://dx.doi.org/10.1063/1.4895657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Warnes, Carole A. "Color Blood Flow Imaging of the Heart." Mayo Clinic Proceedings 64, no. 2 (February 1989): 271. http://dx.doi.org/10.1016/s0025-6196(12)65696-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sahn, David J. "Color blood flow imaging of the heart." Cardiovascular and Interventional Radiology 11, no. 6 (November 1988): 360. http://dx.doi.org/10.1007/bf02577417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Simpson, Iain A. "Color blood flow imaging of the heart." International Journal of Cardiology 23, no. 2 (May 1989): 277. http://dx.doi.org/10.1016/0167-5273(89)90265-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sengupta, Partho P. "METHOD FOR IMAGING INTRACAVITARY BLOOD FLOW PATTERNS." Journal of the Acoustical Society of America 133, no. 6 (2013): 4360. http://dx.doi.org/10.1121/1.4808432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

LEMAILLET, PAUL, DONALD D. DUNCAN, ART LOMPADO, MOHAMED IBRAHIM, QUAN DONG NGUYEN, and JESSICA C. RAMELLA-ROMAN. "RETINAL SPECTRAL IMAGING AND BLOOD FLOW MEASUREMENT." Journal of Innovative Optical Health Sciences 03, no. 04 (October 2010): 255–65. http://dx.doi.org/10.1142/s1793545810001131.

Full text
Abstract:
Measurement of both oxygen saturation and blood flow in the retinal vessels has proved to give important information about the eye health and the onset of eye pathologies such as diabetic retinopathy. In this study, we present the implementation, on a commercially available fundus camera, of a retinal imager and a retina blood flow velocimeter. The retinal imager uses division of aperture to acquire nine wavelength-dependent sub-images of the retina. Careful consideration is taken to improve image transfer by measuring the optical properties of the fundus camera and modeling the optical train in Zemax. This part of the setup is calibrated with optical phantoms of known optical properties that are also used to build a lookup table (LUT) linking phantom optical properties to measured reflectance. The retina blood flow velocimeter relies on tracking clusters of erythrocytes and uses a fast acquisition camera attached to a zoom lens, with a green illumination LED-engine. Calibration is provided using a calibrated quartz capillary tube and human blood at a known flow rate. Optical properties of liquid phantoms are retrieved from measured reflectance using the LUT, and blood flow measurements in the retina are presented.
APA, Harvard, Vancouver, ISO, and other styles
37

Brown, B. H., A. Leathard, A. Sinton, F. J. McArdle, R. W. M. Smith, and D. C. Barber. "Blood flow imaging using electrical impedance tomography." Clinical Physics and Physiological Measurement 13, A (December 1, 1992): 175–79. http://dx.doi.org/10.1088/0143-0815/13/a/034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tamada, T., F. Moriyasu, S. Ono, K. Shimizu, K. Kajimura, Y. Soh, T. Kawasaki, T. Kimura, Y. Yamashita, and H. Someda. "Portal blood flow: measurement with MR imaging." Radiology 173, no. 3 (December 1989): 639–44. http://dx.doi.org/10.1148/radiology.173.3.2682771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

DWAMENA, BEN A., KELVIN K. BELCHER, NARASIMHAM DASIKA, and KIRK A. FREY. "Focal Hyperemia on RBC Blood-Flow Imaging." CLINICAL NUCLEAR MEDICINE 22, no. 8 (August 1997): 542–45. http://dx.doi.org/10.1097/00003072-199708000-00006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Branch, Craig A., J. A. Helpern, James R. Ewing, and K. M. A. Welch. "19F NMR imaging of cerebral blood flow." Magnetic Resonance in Medicine 20, no. 1 (July 1991): 151–57. http://dx.doi.org/10.1002/mrm.1910200116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

&NA;. "Cerebral blood flow." Nuclear Medicine Communications 8, no. 7 (July 1987): 453–56. http://dx.doi.org/10.1097/00006231-198707000-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Wenguang, Antonius F. W. van der Steen, Charles T. Lancée, Ignacio Céspedes, and Nicolaas Bom. "Blood Flow Imaging and Volume Flow Quantitation With Intravascular Ultrasound." Ultrasound in Medicine & Biology 24, no. 2 (February 1998): 203–14. http://dx.doi.org/10.1016/s0301-5629(97)00275-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Knaapen, Paul. "Quantitative myocardial blood flow imaging: not all flow is equal." European Journal of Nuclear Medicine and Molecular Imaging 41, no. 1 (October 22, 2013): 116–18. http://dx.doi.org/10.1007/s00259-013-2585-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ouyang, Cheng, and Bradley P. Sutton. "Localized blood flow imaging using quantitative flow-enhanced signal intensity." Magnetic Resonance in Medicine 67, no. 3 (June 28, 2011): 660–68. http://dx.doi.org/10.1002/mrm.23046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Laurent, S., P. Lacolley, P. Brunel, B. Laloux, B. Pannier, and M. Safar. "Flow-dependent vasodilation of brachial artery in essential hypertension." American Journal of Physiology-Heart and Circulatory Physiology 258, no. 4 (April 1, 1990): H1004—H1011. http://dx.doi.org/10.1152/ajpheart.1990.258.4.h1004.

Full text
Abstract:
Brachial artery hemodynamics including brachial artery diameter (D) and local blood flow velocity (V) was studied in 15 normotensive subjects (NT) and 19 age-matched hypertensive patients (HT) at rest using a bidimensional pulsed Doppler system during a 2-min period of distal circulatory occlusion and during reactive hyperemia. Kinetics of changes in V and D were determined during successive and reproducible maneuvers. V and D decreased significantly during distal circulatory occlusion in both groups. During reactive hyperemia, V reached similar maximum values in both groups, and D increased significantly in NT and HT. Changes in D during reactive hyperemia were positively and significantly correlated with changes in V recorded at the same level. No significant difference was found between the two groups. These results demonstrate noninvasively that there are velocity-dependent variations in the diameter of a large artery in humans and suggest that velocity-dependent vasodilation of the brachial artery is not impaired in essential hypertension.
APA, Harvard, Vancouver, ISO, and other styles
46

Witt, Jerome F., and Patrick G. Rafter. "Ultrasound doppler power imaging system for distinguishing tissue blood flow from chamber blood flow." Journal of the Acoustical Society of America 105, no. 3 (1999): 1451. http://dx.doi.org/10.1121/1.426681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vilov, Sergey, Guillaume Godefroy, Bastien Arnal, and Emmanuel Bossy. "Photoacoustic fluctuation imaging: theory and application to blood flow imaging." Optica 7, no. 11 (October 27, 2020): 1495. http://dx.doi.org/10.1364/optica.400517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Igarashi, Hironaka, Makoto Hamamoto, Hiroshi Yamaguchi, Seiji Ookubo, Junichi Nagashima, Hiroshi Nagayama, Shimon Amemiya, and Yasuo Katayama. "Cerebral Blood Flow Index." Journal of Computer Assisted Tomography 27, no. 6 (November 2003): 874–81. http://dx.doi.org/10.1097/00004728-200311000-00008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Keltner, John R., Mark S. Roos, Paul R. Brakeman, and Thomas F. Budinger. "Magnetohydrodynamics of blood flow." Magnetic Resonance in Medicine 16, no. 1 (October 1990): 139–49. http://dx.doi.org/10.1002/mrm.1910160113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wilder-Smith, Einar P., and Arvind Therimadasamy. "Nerve Blood Flow." Journal of Ultrasound in Medicine 32, no. 1 (January 2013): 187–88. http://dx.doi.org/10.7863/jum.2013.32.1.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography