Academic literature on the topic 'Bicriteria shortest path'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bicriteria shortest path.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bicriteria shortest path"

1

Azaron, Amir. "Bicriteria shortest path in networks of queues." Applied Mathematics and Computation 182, no. 1 (November 2006): 434–42. http://dx.doi.org/10.1016/j.amc.2006.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamacher, Horst W., Stefan Ruzika, and Stevanus A. Tjandra. "Algorithms for time-dependent bicriteria shortest path problems." Discrete Optimization 3, no. 3 (September 2006): 238–54. http://dx.doi.org/10.1016/j.disopt.2006.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Lin, and Mitsuo Gen. "An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems." IEEJ Transactions on Electronics, Information and Systems 128, no. 3 (2008): 416–23. http://dx.doi.org/10.1541/ieejeiss.128.416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohamed, Cheikh, Jarboui Bassem, and Loukil Taicir. "A genetic algorithms to solve the bicriteria shortest path problem." Electronic Notes in Discrete Mathematics 36 (August 2010): 851–58. http://dx.doi.org/10.1016/j.endm.2010.05.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

IDA, Kenichi, and Mitsuo GEN. "An Algorithm for Solving Bicriteria Shortest Path Problems with Fuzzy Coefficients." Journal of Japan Society for Fuzzy Theory and Systems 7, no. 1 (1995): 142–52. http://dx.doi.org/10.3156/jfuzzy.7.1_142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Müller-Hannemann, Matthias, and Karsten Weihe. "On the cardinality of the Pareto set in bicriteria shortest path problems." Annals of Operations Research 147, no. 1 (August 18, 2006): 269–86. http://dx.doi.org/10.1007/s10479-006-0072-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Funke, Stefan, and Sabine Storandt. "Polynomial-Time Construction of Contraction Hierarchies for Multi-Criteria Objectives." Proceedings of the International Symposium on Combinatorial Search 4, no. 1 (August 20, 2021): 214–15. http://dx.doi.org/10.1609/socs.v4i1.18273.

Full text
Abstract:
In this paper we consider a variant of the multi-criteria shortest path problem where the different criteria are combined in an arbitrary conic combination at query time. We show that contraction hierarchies (CH) — a very powerful speed-up technique originally developed for standard shortest path queries (Geisberger et al. 2008) — can be adapted to this scenario and lead - after moderate preprocessing effort - to query times that are orders of magnitudes faster than standard shortest path approaches. On the theory side we prove via some polyhedral considerations that the crucial node contraction operation during the CH construction can be performed in polynomial-time, while on the more practical side we complement our theoretical results with experiments on real-world data. Our approach extends previous results (Geisberger, Kobitzsch, and Sanders 2010) which only considered the bicriteria case. This is an extended abstract of the full paper published in (Funke and Storandt 2013).
APA, Harvard, Vancouver, ISO, and other styles
8

Hasuike, Takashi. "Robust shortest path problem based on a confidence interval in fuzzy bicriteria decision making." Information Sciences 221 (February 2013): 520–33. http://dx.doi.org/10.1016/j.ins.2012.09.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aboutahoun, Abdallah W. "Efficient solution generation for the bicriterion shortest path problems." International Journal of Operational Research 9, no. 3 (2010): 287. http://dx.doi.org/10.1504/ijor.2010.035522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Peng, and Yu (Marco) Nie. "Bicriterion shortest path problem with a general nonadditive cost." Transportation Research Part B: Methodological 57 (November 2013): 419–35. http://dx.doi.org/10.1016/j.trb.2013.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bicriteria shortest path"

1

Rossolini, Andrea. "Analysis and Implementation of Algorithms for Bicriteria Shortest Paths Problems." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19617/.

Full text
Abstract:
Questa tesi si pone l'obbiettivo di affrontare ed analizzare un problema di pathfinding partendo da un'analisi di alcuni algoritmi per la ricerca del percorso più breve su normali grafi, per poi ampliare lo studio e concentrarsi su algoritmi che calcolano molteplici percorsi su grafi che utilizzano due pesi per ogni arco. Gli algoritmi per i grafi `bicriteria' (appunto che considerano due pesi su ogni arco) verranno analizzati, implementati e le loro soluzioni confrontate con gli altri algoritmi, al fine di individuare i più efficienti in termini di tempo di elaborazione e quelli che riescono a minimizzare al meglio i pesi degli archi dei cammini trovati, quindi valutando quantità e qualità delle soluzioni. Dato che, lo studio di algoritmi per la ricerca del percorso più breve in grafi classici è piuttosto celebre in letteratura, è ormai facile trovare implementazioni che permettano di risolvere questo problema. Verrà effettuata quindi una rapida implementazione ed analisi riguardante gli algoritmi `monocriteria'. Per agli algoritmi che lavorano in grafi con più pesi, per i quali è più difficile reperire implementazioni ed analisi, ci sarà una spiegazione più approfondita ed accurata, soffermandosi anche su casi particolari e indicando le scelte implementative fatte per ottimizzare al meglio le loro prestazioni. L'analisi dei risultati confronterà, come già detto, l'insieme delle soluzioni calcolate dai vari algoritmi ed i loro tempi di elaborazione. Inoltre i suddetti algoritmi verranno utilizzati su mappe di alcune città, prese come esempio, per poter fare un confronto visivo sui cammini minimi trovati ed i nodi visitati durante l'elaborazione degli algoritmi; in modo da semplificare e rendere più immediato il confronto tra le varie implementazioni.
APA, Harvard, Vancouver, ISO, and other styles
2

Τσαγγούρης, Γεώργιος. "Συντομότερες Διαδρομές Δύο Κριτηρίων: Αλγόριθμοι και Πειραματική Αξιολόγιση." 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/153.

Full text
Abstract:
Το πρόβλημα εύρεσης συντομότερης διαδρομής είναι ένα από τα πιο θεμελιώδη προβλήματα μονοκριτηριακής βελτιστοποίησης σε δίκτυα. Σε πολλές εφαρμογές ωστόσο, μας ενδιαφέρουν περισσότερα από ένα κριτήρια προς βελτιστοποίηση. Για παράδειγμα, στην δρομολόγηση σε ένα οδικό δίκτυο με διόδια, μας ενδιαφέρει ταυτόχρονα η ελαχιστοποίηση του χρόνου και του κόστους σε χρήματα. Παρόμοια παραδείγματα βρίσκουμε και στον χώρο των δικτύων τηλεπικοινωνιών, όπου εξετάζονται κριτήρια όπως η καθυστέρηση, η πιθανότητα λάθους, ο αριθμός συνδέσμων και άλλα. Σε αυτές οι περιπτώσεις η ``καλύτερη\\\\
The shortest path problem is perhaps the most fundamental single objective optimization problem in networks. In many applications however we are interested in more than two objectives. For example, when routing in a network with tolls, we are interested in minimizing both the time and the cost. Similar examples can be also found in communication networks where the criteria under investigation are the delay, the fault probability, the number of hops and other. In such cases the \\\\
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bicriteria shortest path"

1

Xue, Guo-Liang, and Shang-Zhi Sun. "The Shortest Path Network and Its Applications in Bicriteria Shortest Path Problems." In Network Optimization Problems: Algorithms, Applications and Complexity, 355–62. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789812798190_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bicriteria shortest path"

1

Lin Lin and Mitsuo Gen. "A bicriteria shortest path routing problems by hybrid genetic algorithm in communication networks." In 2007 IEEE Congress on Evolutionary Computation. IEEE, 2007. http://dx.doi.org/10.1109/cec.2007.4425071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography